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Metal additive manufacturing (AM) has recently attracted attention due to its potential for
batch/mass production of metal parts. This process, however, currently suffers from prob-
lems including low productivity, inconsistency in the properties of the printed parts, and
defects such as lack of fusion and keyholing. Finite element (FE) modeling cannot accu-
rately model the metal AM process and has a high computational cost. Empirical models
based on experiments are time-consuming and expensive. This paper enhances a previously
developed framework that takes advantages of both empirical and FE models. The validity
and accuracy of the metamodel developed in the earlier framework depend on the initial
assumption of parameter uncertainties. This causes a problem when the assumed uncertain-
ties are far from the actual values. The proposed framework introduces an iterative calibra-
tion process to overcome this limitation. After comparing several calibration metrics, the
second-order statistical moment-based metric (SMM) was chosen as the calibration
metric in the improved framework. The framework is then applied to a four-variable poros-
ity modeling problem. The obtained model is more accurate than using other approaches
with only ten available experimental data points for calibration and validation.
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1 Introduction
Additive manufacturing (AM) has attracted attention due to its

capability of producing complex parts and structures through the
layer-by-layer process without wasting material. Among all the
AM types and techniques, metal AM reduces lead time and pro-
duces nearly full-dense final parts, and has helped designers to
design novel structural materials and motivated them to change
material properties to meet specific performance requirements that
could not be done with traditional manufacturing techniques [1–3].
The underlying metal AM physics is so sophisticated and the
metal goes through a very complex thermal phenomenon during
the process. This causes the final parts to have defects such as
pinhole defects, lack of fusion, and keyholing [4]. To manufacture
a defect-free part, the process should be modeled and the process
parameters that lead to defect-free parts should be determined. Mod-
eling and simulation help quantify the influence of process param-
eters on final part properties [5].
It was claimed that more than 130 parameters affect the final part

property and quality in the process of metal AM [6]. Many of these
parameters are observed to have temporal fluctuations during fabri-
cation, including layer thickness (LT), laser power (LP), powder
size, scan speed (SS), laser spot diameter, powder absorptivity,
and so on [7,8]. For example, it was found that the laser power
can be 20% less than the set value during the process [9]. These
uncertainties and fluctuations will prevent metallic printed parts
from having the desired quality even when the same process param-
eters and machine are used [10]. The uncertainties associated with

the process should be quantified (uncertainty quantification) in
modeling as the effect of the uncertainties on the final quality of
the product is important [11].
Two commonly used models for AM process are empirical

(experimental) and physics-based (computational) models. Using
the design of experiment (DOE) approaches, one can perform
experiments and model the final part property. The problem with
empirical models is that they are not accurate enough unless
many experiments are performed [12]. Moreover, empirical
models cannot be transferred from one machine to another. On
the other hand, due to the complex thermal phenomena of the
process, physics-based models should consider all three modes of
heat transfer, i.e., radiation from the heat source, convection
across the surface of the material, and conduction through the
metallic part. Considering above all will result in a computationally
costly model [13]. Furthermore, multi-physics models include
many assumptions that may affect the final model’s accuracy. To
improve the computational efficiency of physics-based approaches,
metamodeling approaches have been recently applied [14–16].
As discussed earlier, both empirical and physics-based methods

have their own limitations. If one can design a modeling framework
that leads to a model with high accuracy and low computational cost
with a limited number of experiments, as well as can be easily trans-
ferred from machine to machine, the problems with both of the
methods will be resolved. Moreover, this model should be able to
accommodate parameter uncertainties. Olleak and Xi [8] recently
proposed a calibration and validation framework for metal AM
that takes the advantages of both physics-based models and meta-
models (a multi-fidelity model). Their framework can be applied
with a limited number of experiments. In the case study, they
used 14 data points for both calibration and validation. The frame-
work starts by developing a metamodel that can predict the desired
objective (e.g., melt pool size, porosity, etc.). Input data for training
the metamodel were acquired from finite element analysis (FEA).
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They assumed that the metamodel inaccuracy can be caused by two
factors: a bias from experimental data and randomness of uncon-
trollable parameters during the fabrication process. Uncertainties
for uncontrollable parameters were assumed and the bias was cali-
brated as a function of process parameters using metamodeling
approaches. The training data for bias calibration were a portion
of experimental data. To calibrate the model, they minimized an
area metric called the u-pooling metric [17] which is calculated
using the training experimental data. Finally, a hypothesis test
was performed to check whether there is a need to perform more
experiments, or if the metamodel can be accepted. This work is
an important advancement in the field and could help to develop
a highly efficient and accurate model. Their proposed framework,
however, suffers from the following problems:

• The framework just assumes uncertainties for uncontrollable
parameters. In reality, uncertainties can be observed for
many controllable parameters as discussed earlier.

• If the assumed uncertainty values are far from the actual value,
the metamodel accuracy will decrease significantly and the
framework would erroneously conclude that more experiments
are needed. In other words, the validity of the metamodel
depends on the assumed uncertainties of the parameters
before calibrating the metamodel.

• The framework used the u-pooling metric for calibration.
Given the fact that the model assumes the mean and standard
deviation for the parameters, which correspond to the first two
statistical moments, the statistical moment-based metric
(SMM) may be a better metric than the u-pooling metric for
calibration.

In this work, an improved framework is developed so that it can
model part properties (e.g., porosity) with a limited number of
experiments based on multi-fidelity models. Uncertainty will be
assumed for both uncontrollable and controllable parameters and
will be calibrated at the end of the framework. A loop in the frame-
work will be defined to assure that accepting or rejecting the meta-
model does not depend on the accuracy of the initial guess for
parameter uncertainties. Different metrics are tested and compared
as the calibration metric and the one that leads to the most accurate
metamodel will be chosen. Moreover, a suggestion on the percent-
age of experiments to be used for validating the metamodel is
provided.
The remainder of the paper is organized as follows. Section 2

explains the framework developed by Olleak and Xi [8]. Section
3 describes the new improved framework and the changes with
respect to the original one. In Sec. 4, the framework is applied to
a case study and the results are presented. The results are further dis-
cussed in Sec. 5 and, finally, the conclusions are drawn in Sec. 6.

2 Validation and Calibration Framework Developed
by Olleak and Xi
Olleak and Xi [8] developed a framework that uses multi-fidelity

models to predict component final properties using a limited
number of experiments. In this framework, it is assumed that param-
eters that can affect the final part property are categorized into two
groups: controllable and uncontrollable parameters. Controllable
parameters are the ones that can be set in the process (e.g., laser
power and scan speed). It is hypothesized that the uncertainties of
these parameters can be ignored. Uncontrollable parameters are
the ones that cannot be set during the process and their exact
value cannot be measured (e.g., powder absorptivity and laser
spot diameter). They have assumed that these parameters contain
inherent randomness which will be calibrated in the framework.
The flowchart of their framework is shown in Fig. 1. The steps of
the framework are as follows:

(1) Developing a physics-based model that can predict the prop-
erty of the printed part using FEA.

(2) Property predictions at inputs generated from DOEs.
(3) Building a metamodel based on the predictions from the

physics-based model.
(4) Assuming uncertainties for uncontrollable parameters and

calibrating a bias between experimental data and metamodel
predictions using training experimental data points.

(5) Calibrating the statistical moments of uncontrollable vari-
ables using training experimental data points.

(6) Checking the validity of the corrected metamodel with exper-
iment validation data.

(7) Performing new experiments if needed and repeat the process
from step 4.

In the following subsections, each of the steps of the framework
will be explained in detail.

2.1 Developing a Physics-Based Model. At this step, a
physics-based model is developed. Physics-based FEA models
have been developed using the thermo-mechanical physics of the
metal AM process to predict the final property of the printed part.

2.2 Property Predictions at Design of Experiment Points.
After defining each parameter, a range for each parameter is set.
DOE is adopted and sampling from physics-based model is per-
formed. To have a more accurate metamodel, a sufficient number
of samples should be employed.

2.3 Building a Metamodel. The results of the earlier step are
used as a training data set to build a metamodel that can predict the
printed part property. Different types of models such as Gaussian
process (GP) regression, response surface methodology (RSM),
radial basis function (RBF), kriging, and high-dimensional model
representation can be employed to build the metamodel. Olleak
and Xi used GP regression [8].

2.4 Calibrating the Bias. Step 4 aims to calibrate a bias to
improve the accuracy of the metamodel. Let Ym(.) and Ye(.) be the
metamodel prediction and experimental value of the part property,
respectively. Moreover, controllable and uncontrollable parameters
can be shown by x and θ, respectively. Metamodel prediction can be
found at any given x and θ, Ym(x, θ), however, the exact value of the
uncontrollable parameters (θ∗) during the experiment is unknown. It
is assumed that θ won’t change when x changes. The difference
between the metamodel prediction and experimental value can be
modeled by a bias function δ(.). As θ cannot be measured during
the experiment, the bias function cannot be obtained with respect
to θ, thus, the bias function is a function of controllable parameters
only. Equation (1) formulates their relation.

Ym(x, θ) + δ(x) = Ye(x, θ∗) (1)

Bias calibration is performed so that the equation is satisfied. Bias
is calibrated using limited experiment training data with an assumed
prior distribution of θ. The next step is to calibrate θ using the pre-
determined bias function. This decoupling process was used in
Ref. [18] and followed by Olleak and Xi [8]. To obtain the training
data set for bias calibration, Eq. (2) is acquired.

δ(x) = E(Ye(x, θ∗)) − E(Ym(x, θ)) (2)

In Eq. (2), E(.) is the expected value of the function under a deter-
mined uncertainty of uncontrollable parameters θ. Using Eq. (2),
one can find a value at each printing configuration for training the
bias function. Again, Olleak and Xi used GP regression to calibrate
the bias using the training set obtained from Eq. (2).

2.5 Calibrating the Statistical Moments of Process
Parameters. The purpose of this step is to calibrate the uncontrol-
lable parameters using the predetermined bias function and limited
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experiment data in a way that agreement between the left and
right sides of Eq. (1) is maximized. U-pooling is employed to
find the degree of agreement between the model and experiment
data [17]. U-pooling is a validation metric that measures the
area between distributions of cumulative density function (CDF)
of two random variables, which is used as an indicator of the agree-
ment between the distributions. The smaller is the u-pooling metric
value, the better the agreement. The purpose is to find the first two
statistical moments (mean and standard deviation (StD)) of uncon-
trollable parameters which minimize the value of u-pooling calcu-
lated between experimental data and metamodel predictions. By
this definition, the optimization problem can be formulated as
follows (Eq. (3)):

min U[Ym(x, θ) + δ(x), Ye(x, θ∗)] (3)

In Eq. (3), U[.,.] is the u-pooling metric value that should be min-
imized. The value of the u-pooling metric is between 0 and 0.5. If it
becomes zero it means that the experiment data and model have the
perfect agreement.

2.6 Validation Hypothesis Test. After training the metamo-
del, the u-pooling metric between the corrected metamodel and
experiment validation data will be calculated, if it is less than the
critical value of the u-pooling metric then the corrected metamodel
is valid and the framework is finished but if it is higher than the crit-
ical value, new experiments should be performed to improve the
accuracy of the metamodel and the process should be repeated
from step 4. This hypothesis test for validity check is introduced
in Ref. [19]. The critical value of the u-pooling metric for each

number of experiments can be calculated using the following
procedure:

Step 1: Take n values from a given distribution (n is the number
of experiment data for validation).

Step 2: Calculate the u-pooling metric after calculating the empir-
ical CDF of the n samples.

Step 3: Steps 1 and 2 should be repeated sufficient times, e.g., 1 ×
106, to obtain the u-pooling metric distribution for given n
samples.

Step 4: Choose a one-side confidence level, e.g., 95%, and select
the critical value from the distribution of the u-pooling
metric.

If the aforementioned process is repeated for different numbers of
experiment points, Fig. 2 will be generated.
Although the earlier framework has shown promising results, it

suffers from some drawbacks which are explained in the last
section. Section 3 describes the proposed framework that over-
comes these problems.

3 The Improved Framework
A new framework based on the earlier framework is defined, as

shown in Fig. 3. The overall framework is similar to what was pro-
posed by Olleak and Xi [8], but it has several changes and improve-
ments that are explained in this section.
The first two steps of the earlier framework are repeated here.

After developing an FEA model that can simulate the process and
output the desired part final property, DOE is adopted and the prop-
erty is predicted at different DOE points. Based on the data gathered

Fig. 1 Flowchart of the framework proposed by Olleak and Xi [8]

Journal of Mechanical Design JANUARY 2023, Vol. 145 / 012001-3



from FEA results, different metamodels are developed. Chosen
metamodel techniques are noisy GP regression, RSM, RBF, and
GP regression without noise (kriging). 90% of the simulation data
is used for training the metamodels and 10% is used as testing
data to compare different metamodels. The one that has the
highest R-squared value calculated with the testing data points is
chosen. Randomization over different sets of training simulation
data is adopted to increase the accuracy of the metamodel. One

more difference with the earlier framework is that the improved
framework considers uncertainty for all the parameters. For uncon-
trollable parameters, the uncertainty assumption is the same as
before and the two first statistical moments (mean and standard
deviation) of these parameters are calibrated. Moreover, for the con-
trollable parameters, it is assumed that they have uncertainty but
their uncertainty is unbiased and the expected value of these param-
eters is set in the process. In other words, for controllable

Fig. 2 95% confidence level of the u-pooling metric (critical value) for different numbers of
experiment data

Fig. 3 Flowchart of the improved framework. The added/improved components are in bold.
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parameters, the framework calibrates their standard deviations. If θ
contains l and x contains m parameters, the number of variables that
should be calibrated during the process is 2l+m. These 2l+m var-
iables are called uncertainty calibration variables (UCVs). A set of
UCVs includes the mean and standard deviation of uncontrollable
parameters and the standard deviation of the controllable parame-
ters. Same as the earlier framework, an assumption for UCVs is
made and the bias is calibrated using the experimental training data.
Calibrating the UCVs is performed by optimizing a calibration

metric value. Instead of the u-pooling metric that was used in the
earlier framework, the SMM or the combination of SMM and
u-pooling can be used. SMM is introduced by Xu et al. [20]. This
metric measures the difference between statistical moments of the
model and original data. The formula that gives the SMM value
is written in Eq. (4).

IM =
1

N
M

( ) ∑
1≤i<j<k<...<l≤N 1 −

Ê[Y0,iY0,jY0,k . . . Y0,l]

Ê[YiYjYk . . .Yl]

∣∣∣∣∣
∣∣∣∣∣
p( )1/p

(4)

In Eq. (4), IM is the Mth-order SMM that measures the discre-
pancy between the first M-statistical moments of the two data sets
(model and original data). N is the number of different locations
where the data are captured. It is worth noting that 1≤M≤N and
the set {i, j, k, …, l} is an M-member set. Y0 is the experimental
data and Y0,i is the experimental data collected at the ith location.
Similarly, Y is the model data and Yi is the model prediction at
the ith location. Ê[.] is the statistical expectation. To make the equa-
tion an Lp-norm, p should be a positive real number. It is noted that
the lower-order SMMs are more important than the higher ones
[20]. Hence, the first- and second-order SMMs are considered to
be used in this framework. When M= 1 and p= 1, the first-order
SMM is derived (Eq. (5)). Also, the second-order SMM (Eq. (6))
can be found by replacing M= 2 and p= 1 in Eq. (4).

I1 =
1
N

∑N

i=1
1 −

Ê[Y0,i]

Ê[Yi]

∣∣∣∣
∣∣∣∣

( )
(5)

I2 =
1

N
2

( ) ∑
1≤i,j≤N 1 −

Ê[Y0,iY0,j]

Ê[YiYj]

∣∣∣∣∣
∣∣∣∣∣

( )
(6)

Each one of the mentioned metrics or any combination of them
can be used to calibrate UCVs. It is worth mentioning that in the
improved framework u-pooling is still being used as the validation
metric but the calibration metric would be the one that increases the
agreement between the model and experimental data. Comparing
different metrics and choosing the one that leads to the lowest
u-pooling value on validation data points is done for the case
study in the next section.
In the earlier framework, parameters with calibrated randomness

along with experimental validation data were used to perform a
hypothesis test to determine if the corrected metamodel is valid or
not. However, if the uncertainty that is assumed before the bias cal-
ibration is far from reality, it leads to rejecting the metamodel and
more experiments are needed. This invalid metamodel could actu-
ally be valid if the assumed UCVs were closer to the actual value
as different assumed UCVs change metamodel predictions. To
overcome this problem, if the hypothesis test concludes that the
metamodel is not valid, the framework uses the calibrated UCVs
as the initial guess to perform the metamodel calibration. Then,
the new calibrated UCVs along with validation data points are
used to perform the hypothesis test. This process terminates while
the relative change in the u-pooling metric value in two consecutive
iterations, i.e., a convergence criterion, is less than ɛ(|(Ui−Ui−1)/
Ui−1| < ɛ). If the convergence criterion is met and the framework
could not generate a valid metamodel, it means that the framework

cannot improve the metamodel accuracy and more experiments
should be performed. By using this strategy, it will be shown in
the next section that the validity and accuracy of the final metamo-
del do not depend on the assumed UCVs.
In Sec. 4, the improved framework is applied to a case study,

which will help to describe the proposed strategy in detail.

4 Application of the Improved Framework to a Case
Study
Porosity is one of the most concerned properties associated with

additively manufactured parts [21]. Efficient models with high
accuracy will help the operator of metal AM machines to choose
the best set of process parameters so that the final printed part has
no or the least amount of porosity [22]. This paper is focused on
introducing an uncertainty calibration framework and is not
meant to be a research study on porosity prediction and formation.
Porosity modeling is used as a case study to verify the developed
modeling strategy. The improved framework was used to predict
the porosity of the additively printed parts made of Stainless Steel
316L during a laser powder bed fusion (LPBF) process. The
model that is built is purely empirical and is blind to the physics
of the process meaning that the physical laws and relationships
that are true for porosity modeling is not considered and the
model holds a relationship between input and output variables.
ANSYS ADDITIVE PRINT SOLUTION (ANSYS Additive 2020 R2) was
used as the FEA software to predict the solid ratio of 2 × 2 ×
2 mm cubic parts. The experiment data used for calibrating and val-
idating the metamodel were taken from Ref. [23]. Table 1 shows
values of process parameters during the experiments and the final
solid ratio of the fabricated parts. The total number of experiments
is ten. Six data points were used for calibrating the model and four
data points were used for validation. LP, SS, and hatch spacing (HS)
are the parameters selected for the experiment. As it is claimed that
one of the uncertain parameters during LPBF process is the layer
thickness, even though the thickness is set as constant [7]; this
parameter was assumed to be the uncertain parameter that should
be calibrated. In other words, LP, SS, and HS were the controllable
parameters (m= 3) and layer thickness was the uncontrollable
parameter (l= 1). Full factorial sampling was used and a total of
240 FEA simulations were run at different levels of four process
parameters. The values for each process parameter are listed in
Table 2. The final results of all of the 240 FEA simulations were
tabulated and can be downloaded.2

After performing simulations, four different metamodeling tech-
niques (GP regression, RBF, RSM, and kriging) are used to model
the part porosity. These metamodels were trained using the simula-
tion data. After comparing four different metamodels using 10% of

Table 1 Experiment data used for model calibration and
validation

Data ID
Laser power

(W)
Scan speed
(mm/s)

Hatch spacing
(mm) Solid ratio

1 150 1250 0.080 0.966
2 200 1667 0.080 0.974
3 150 714 0.140 0.975
4 200 952 0.140 0.974
5 150 750 0.120 0.987
6 175 750 0.120 0.997
7 150 781 0.080 0.999
8 200 1042 0.080 0.997
9 150 446 0.140 0.998
10 200 595 0.140 0.993

2https://docs.google.com/spreadsheets/d/1Y7OPPCTOKYWJ6Ia8GRz41dkj6WR
jzQa3/edit?usp=sharing&ouid=110739677234419213365&rtpof=true&sd=true
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the simulation data, it was found that GP regression is the most
accurate one (R2= 0.98), hence, GP regression was chosen as the
metamodeling technique. Five variables were considered as the
uncertain variables (2l+m= 5) which were the standard deviations
of LP, SS, and HS, as well as the mean and standard deviation of
LT. A set of UCVs can be shown like Eq. (7). An initial guess
for UCVs was assumed to start the calibration process.

UCVs=
(
Mean of LT in mm, StD of LT in mm,

StD of HS in mm, StD of SS in
mm
s

, StD of LP in W
)

(7)

The bias was calibrated using the six experimental training data.
The metamodeling technique used for bias calibration is GP regres-
sion. To calibrate the uncertainty of the parameters, three different
metrics (u-pooling, first-order SMM, and second-order SMM) or a
combination of these metrics could be used as the objective function
of the optimization. For this case study, seven different cases were
compared with each other. The cases include:

• Using u-pooling as the objective function.
• Using first-order SMM (I1) as the objective function.
• Using second-order SMM (I2) as the objective function.
• Using u-pooling and I1 as the objective functions and perform-

ing a multi-objective optimization (MOO). Select UCVs that
has the highest I1 and the lowest u-pooling from the Pareto
front.

• Using u-pooling and I1 as the objective functions and perform-
ing a MOO. Select UCVs that has the lowest I1 and the highest
u-pooling from the Pareto front.

• Using u-pooling and I2 as the objective functions and perform-
ing a MOO. Select UCVs that has the highest I2 and the lowest
u-pooling from the Pareto front.

• Using u-pooling and I2 as the objective functions and perform-
ing a MOO. Select UCVs that has the lowest I2 and the highest
u-pooling from the Pareto front.

The case that had the lowest u-pooling metric value on the vali-
dation experiment point was chosen as the metric to be used in the
framework. The results of this step are presented in Table 3. Each
row represents the results of one initial guess for UCVs, which is
specified in the first column. Columns 2–8 are the u-pooling
values calculated on the validation points and the calibrated
UCVs achieved by optimizing each one of the objective functions
described above. Column 9 is the u-pooling metric value before per-
forming any optimization. In Table 3, except for one case, the
u-pooling value has the lowest value when I2 is used as the objec-
tive function. This means the metamodel is in the best agreement
with the validation experiment points when I2 is used. The last
row shows the average of u-pooling metric values for each of the
objective functions. The average u-pooling value when the
second-order SMM is used (u-pooling= 0.1687) is the lowest com-
pared to the cases where other objective functions are used. Hence,
I2 is used as the metric to be optimized in the framework.
It can be seen in Table 3 that using the u-pooling metric value as

the objective function will not improve the metamodel in this case
study. This can be found by comparing the last column with the
second one. In some cases (e.g., second and fourth row), the
u-pooling value is higher after optimization when the u-pooling
metric value is used as the objective function. Although this is
not desirable, this should not bring up any surprise as optimization
is done using the calibration data points but the u-pooling is calcu-
lated using the validation points. The conclusion is that the earlier
framework could not calibrate the uncertain parameters properly
and optimizing the u-pooling did not improve the metamodel. To
compare the improved metamodel with the earlier one, one can
compare columns 2 and 4 of Table 3. Except for one case, the
u-pooling metric value calculated using the improved framework
(column 4) is less than the one calculated using the previous frame-
work (column 2). This shows that the framework is improved and
agreement between metamodel and experimental data is increased.
To understand the benefits brought by considering uncertainty

for all the parameters, a comparative study is done. The comparison
is made between two cases which are: (1) when uncertainty is
assumed for all the parameters, and (2) when uncertainty is
assumed for only uncontrollable parameters which is the same as
the earlier framework. In case (1), the number of UCVs is two,
which are the mean and standard deviation of LT. In case (2), the
number of UCVs is five, which is the same as we defined before.
The u-pooling values on validation data points are calculated
when different initial uncertainties are assumed to start the calibra-
tion. The initial assumed uncertainties of controllable parameters
were the same for each of the cases to have a fair comparison.
The initial assumed uncertainties of controllable parameters which
are used in case (2) and did not exist in case (1) are set to zero in
case (1) for all the different starting points. Figure 4 is drawn to

Table 3 U-pooling metric values calculated on validation data points using different metrics. The last row is the average of u-pooling
value when different objective functions are used

Assumed UCVs

Calibration metric value used as the objective function

Before optimizationU-pooling I1 I2

U-pooling+ I1 U-pooling+ I2

Highest I1 Lowest I1 Highest I2 Lowest I2

(0.024, 0.002, 0.006, 60, 3) 0.1834 0.1053 0.1010 0.1692 0.1333 0.1723 0.1206 0.1365
(0.026, 0.003, 0.003, 30, 4.5) 0.1394 0.1367 0.1224 0.1845 0.1232 0.2344 0.1656 0.1981
(0.028, 0.002, 0.006, 48, 6) 0.2767 0.1301 0.1336 0.2757 0.1979 0.2787 0.1775 0.2179
(0.03, 0.001, 0.003, 24, 3) 0.1570 0.2127 0.1403 0.3082 0.2167 0.2423 0.2115 0.2960
(0.032, 0.003, 0.009, 24, 6) 0.3005 0.2950 0.1293 0.3067 0.2531 0.3060 0.2012 0.2496
(0.034, 0.001, 0.003, 24, 6) 0.3120 0.2696 0.1998 0.3112 0.2706 0.3115 0.2567 0.2970
(0.036, 0.015, 0045, 42, 4.8) 0.3120 0.2809 0.1502 0.3120 0.2709 0.3120 0.2534 0.2950
(0.038, 0.001, 0.0045, 72, 4.2) 0.3107 0.2548 0.1887 0.3120 0.2418 0.3110 0.2375 0.2784
(0.04, 0.002, 0.0054, 60, 3) 0.2975 0.2524 0.3097 0.3115 0.2523 0.1889 0.2258 0.2623
(0.039, 0.002, 0.054, 60, 3) 0.2345 0.2572 0.2124 0.3057 0.2629 0.3112 0.2506 0.2658
Average u-pooling metric value 0.2524 0.2195 0.1687 0.2797 0.2222 0.2668 0.2100 0.2497

Table 2 Parameters and their levels used for FEA simulations

Parameter # of levels Parameter values

Power (W) 4 140, 160, 180, and 200
Scan speed (mm/s) 5 500, 800, 1100, 1400, and 1700
Hatch spacing (mm) 4 0.08, 0.1, 0.12, and 0.14
Layer thickness (mm) 3 0.02, 0.03, and 0.04
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compare cases (1) and (2). Solid bars show the u-pooling metric
values when uncertainty is assumed for all the parameters
(improved framework) and dotted lines show the metric when
uncertainty is only assumed for uncontrollable parameters. It can
be seen that for the entire initial starting points, case (2) (solid
line) achieved a lower u-pooling metric value than case (1)
(dotted line). This means that the model developed by the improved
framework has a better agreement with the experimental data
points.
The point of having a loop in the improved framework becomes

clear when the calibration starts using an assumed uncertainty far
from reality. Assuming UCVs= (0.060, 0.002, 0.018, 240, 18)

and ɛ= 0.01 to start the framework, the earlier framework calcu-
lates the u-pooling metric to be 0.4321 which leads to rejecting
the metamodel and calling for new experiments. However, the
improved framework can find a valid metamodel after three itera-
tions, as shown in Fig. 5. The value of the u-pooling at iteration
zero is in fact the u-pooling value before the optimization is
0.472. The dashed line shows the critical u-pooling value for four
experiments. The squared bold point is where the process is fin-
ished. Figure 5 also shows that after the metamodel becomes
valid (iteration number 3), continuing the loop is not useful as the
value of the u-pooling metric does not improve after 12 iterations.
The results after iteration number three are meant to show that no
improvement will be made if the number of iterations increases
after finding the valid metamodel. That’s why it is decided to end
the framework when a valid metamodel is found. The final cali-
brated UCVs for this case study, found after iteration number 3, are

UCV = (0.0375, 0.0093, 0.00012, 22.885, 2.3339) (8)

Another question yet to be addressed is, what is the percentage of
data should be used for training and validation, respectively? In
Fig. 6, the u-pooling metric value on the validation points is calcu-
latedwith respect to different percentages of data used for validation.
Although, using all the data for training is recommended Fig. 6
shows that the percentage of data used for validation should
ensure that the calculated u-pooling value (solid line) goes below
the dashed line (critical value). When only 10% of the data are
used for validation, the u-pooling metric value is above the critical
value, which indicates that the number of data points used for calcu-
lating the u-pooling metric is not enough. On the other hand, when
more than 60% of the data are used for validation, the data used
for training are insufficient and the metamodel doesn’t shows
enough accuracy, which in turn leads to rejecting the metamodel.
In conclusion, the number of experimental validation data points
should not be less than four as u-pooling is sensitive to the empirical
CDF of the validation data points. However, if the number of exper-
imental data exceeds 40, using 10% of the data as the validation set
satisfy the sensitivity of the u-pooling. In the presenting case study,
as the number of experiments is ten, four data points are used for val-
idation. It means that 40% of the data are used for validation (square
bold points in Fig. 6).

5 Discussion
Several observations can be made from the case study. First, the

effect of initial UCVs on the validity of the metamodel is significant.
This can be seen in Table 3 that different initial UCVs result in dif-
ferent u-pooling metric values. This becomes critical when the
framework starts using initial UCVs far from their actual values. If

Fig. 4 U-pooling metric value calculated on validation data
points when uncertainty is considered for all the parameters
compared with the case considering uncertainty only for uncon-
trollable parameters

Fig. 5 U-pooling value calculated on the validation data points
after each iteration of the framework (the dashed line shows
the critical value)

Fig. 6 U-pooling values calculated when different percentages of data are used for validation
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the earlier frameworkwas used, this would lead to rejecting themeta-
model and performing more experiments. However, using the itera-
tive process devised in the improved framework resolves this issue
and finds the valid metamodel if any exists (Fig. 5).
In the presented case study, the second-order SMM is selected as

the calibration metric since it leads to the lowest u-pooling metric
value calculated on the validation points (Table 3). The reason lies
under the definition of I2. The second-order SMM considers the dis-
crepancies in the first two statistical moments (mean and standard
deviation) between the metamodel and experiment data [20]. This
matches the framework better than other SMMs as the presented
framework only assumes two first statistical moments and neglects
the higher moments such as the skewness or kurtosis. It is also
found that involving the u-pooling metric value as the objective for
model calibration is neither helpful, nor necessary. Moreover, it
was found that assuming uncertainty for all the parameters rather
than uncontrollable parameters not only more compatible with
reality but increases the agreement between the model and the exper-
imental data points. The reason is that when the uncertainty is
assumed for all the parameters a five-variable optimization
problem is solved. This would lead to more optimum results com-
pared with the case that uncertainty is only considered for controlla-
ble parameters, in which case a two-variable optimization problem is
solved.
Although the proposed framework assumes Gaussian distribution

for uncertain variables, the proposed framework should work if var-
iables follow other distributions. In this case, however, higher order
statistical moment-based metric may lead to lower u-pooling metric
value than the SMM. For example, if the distribution of the param-
eters is assumed to have skewness, the framework that optimizes the
third-order statistical moment-based metric is expected to lead to a
lower u-pooling metric value than the one that uses the second- or
first-order metric.
The optimized parameters found during the calibration can be far

from reality as there are many optimum points in the optimization
problem. To further increase the accuracy of the final metamodel
and find more exact UCVs, performing more experiments is
highly recommended. In general, more experiments lead to more
accurate final metamodel and more exact uncertainty distribution.
Moreover, nothing prevents this framework to be utilized for high-
dimensional problems, however, for higher dimensional problems
more experimental data for both bias and uncertainty calibration
steps are required.
Although the proposed framework addresses some of the prob-

lems in the last framework, it still has some limitations. For
example, the user should be careful about choosing the ɛ. In the
described case study, if the ɛ is set to 0.05 then the framework
decides to perform more experiments after the first iteration
whereas it could have found a valid metamodel after three iterations
(Fig. 5) if a proper ϵ was used (ɛ= 0.01). The other limitation is that
the efficiency of the framework highly depends on the assumed initial
UCVs as different UCVs lead to different metamodels and this can
affect the number of iterations and efficiency of the framework.
The metamodel works only on the range where the experimental

data are captured. For example, in the case study the range that the
laser power is captured is 150–200 W. Hence, the developed model
only works when the power is set to be between 150 and 200. If one
wants to extrapolate the model in a wider range, then data should be
taken from the wider range. It then means that more experimental
data are needed to achieve similar model accuracy. If one starts
the framework with insufficient number of experiments in a wide
range, the chance to find a valid metamodel will decrease and the
framework may call for more experiments.
It is also worth noting that the number of data points used for val-

idation should be at least four points as the u-pooling metric is sen-
sitive to the empirical CDF of the experimental validation data
points. Nevertheless, if the number of experimental data points
exceeds 40, 10% of the total data points satisfy the sensitivity of
the u-pooling. The remaining points can be used for calibration
purposes.

6 Conclusion
This study proposes an iterative calibration and validation frame-

work for modeling the metal AM process that considers uncertain-
ties of both controllable and uncontrollable parameters with limited
experimental data. The validity of the metamodel generated in this
iterative framework does not depend on the initial assumption about
the uncertain variables.
The framework was utilized to develop a metamodel that can

predict the porosity of the metallic parts manufactured by LPBF
process. Several calibration metrics were compared and the
second-order SMM (I2) was chosen as it matches the metamodel
assumptions better than other cases and led to higher accuracy.
The metamodel was accurate and efficient although it was trained
and validated with only ten experimental data points. The devel-
oped framework can help operators and designers to model the
final property of the parts fabricated by metal AM machines with
limited experimental data and optimize the process parameters to
print parts with improved final properties. It can also calibrate the
statistical moments of the parameters involved in the process.
Future work will examine the applicability of the proposed
method to different AM machines and technologies.
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