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A Dimension Selection-Based
Constrained Multi-Objective
Optimization Algorithm Using
a Combination of Artificial
Intelligence Methods
The computational cost of modern simulation-based optimization tends to be prohibitive in
practice. Complex design problems often involve expensive constraints evaluated through
finite element analysis or other computationally intensive procedures. To speed up the opti-
mization process and deal with expensive constraints, a new dimension selection-based con-
strained multi-objective optimization (MOO) algorithm is developed combining least
absolute shrinkage and selection operator (LASSO) regression, artificial neural networks,
and grey wolf optimizer, named L-ANN-GWO. Instead of considering all variables at each
iteration during the optimization, the proposed algorithm only adaptively retains the vari-
ables that are highly influential on the objectives. The unselected variables are adjusted to
satisfy the constraints through a local search. With numerical benchmark problems and a
simulation-based engineering design problem, L-ANN-GWO outperforms state-of-the-art
constrained MOO algorithms. The method is then applied to solve a highly complex opti-
mization problem, the design of a high-temperature superconducting magnet. The
optimal solution shows significant improvement as compared to the baseline design.
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1 Introduction
Two fundamental challenges exist for a complex simulation-

based optimization problem: (1) long simulation time and (2)
expensive constraints. Finite element analysis (FEA) and other
numerical simulation methods are often employed to predict the
performance of a complex system, where a single simulation can
take hours or days to complete. Since optimization, especially
multi-objective optimization (MOO), usually needs to call the simu-
lation iteratively to search for optima, the computational cost for
optimization often becomes prohibitive. On the other hand,

constraints involved in complex engineering problems are usually
obtained together with objective values as a result of simulations.
Therefore, how to deal with expensive constraints becomes a ques-
tion in improving the optimization efficiency for complex problems.
By reducing the number of expensive simulation calls during the

optimization of such types of problems, surrogate models are gen-
erally employed. The common way to use a surrogate model in opti-
mization is to construct and validate them before optimization. The
structure of the model remains stable during optimization [1]. In the
cases studied in this article, the accuracy of the surrogate model sig-
nificantly influences the optimization results. If the approximation
accuracy is low, the Pareto frontier obtained from the surrogate
model will not be acceptable. Therefore, the state-of-art
surrogate model-based optimization algorithms usually update the
surrogate model adaptively during the optimization iterations to
improve the accuracy in specific areas of interest. This is the case
for the Pareto set pursuing method [2,3]. Employing a kernel
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function and a prior distribution, Bayesian optimization (BO) [4]
focuses on using acquisition functions to guide new sample gener-
ation. In multi-objective BO, two kinds of operations are applied
usually: one is to convert the multi-objective problems to single
objective [5–8], and the other is to employ Pareto frontier-related
acquisition functions, such as expected hypervolume improvement
[9–11] and predicted entropy search [12]. In addition, adaptive sur-
rogate model-assisted evolutionary algorithms can be employed as a
design space exploration strategy, where surrogate models are
updated when new samples are generated [13–15].
To further improve the efficiency of the optimization algorithm,

the idea of focusing on only a subset of the dimensions at each
iteration is proposed in single-objective optimization algorithms.
In dynamic coordinate search (DYCORS) [16], the dimensions
are selected randomly and only the selected dimensions are pertur-
bated during the iteration. A more aggressive dimension selection
method, based on the sensitivity of the variables, has been
developed in methods such as mode-pursuing sampling using dis-
criminative coordinate perturbation [17] and partial metamodel
optimization [18].
With the development of artificial intelligence (AI), more and

more AI-based MOO algorithms are proposed. Machine learning
methods, such as extreme learning machines [19] and convolutional
neural networks [20], are employed as surrogate models to deal with
MOO problems. However, the networks used in both studies are
static and a large number of initial samples are needed to ensure
the accuracy of the surrogate. Additionally, compared to other sur-
rogate models, such as radial basis function (RBF), deep neural net-
works usually need much more samples to train the model. On the
other hand, a k-means clustering method is used in a large-scale
MOO algorithm to divide the design variables into two groups
[21]. Since the cluster needs samples by perturbing each design var-
iable, extra computational costs are required before optimization.
How to deal with expensive constraints is another research

direction. Constraint handling strategies can be classified into four
categories: using a penalty function, separating objectives and con-
straints, converting constraints into an extra objective, or hybrid
methods [22]. Different penalty types are utilized in the category
of using penalty functions. Themain issue with using a penalty func-
tion is the difficulty to determine the penalty factors. The adaptive
penalty factor is the most attractive in this category [23]. In the cat-
egory of separating objectives and constraint methods, one of the
common approaches is considering constraints in the dominance
principles, such as constraint dominance principle [24] and epsilon
constraint handling [25]. Other constraint handling approaches are
developed recently. In the push and pull search framework [26],
the optimization process is divided into the pull and push stages.
Only the objectives are considered in the pull stage, and all objectives
and constraints are involved in the pushing stage. In Ref. [27], a
coevolutionary framework is constructed by optimizing two sepa-
rated groups of the population concerning two problems: one is the
original problem with constraints and the other is the original
problem without constraints. During optimization, the two popula-
tion groups are connected to share information to converge to the
feasible Pareto solutions. The method of converting constraints
into an extra objective is proposed in Ref. [28], where the degree
of constraint violation is calculated and treated as an extra objective
to be optimized to find feasible solutions located at the constraint
boundaries. But in MOO, the Pareto solutions do not always locate
on the boundaries. Therefore, hybrid methods are developed, such
as infeasibility-driven evolutionary algorithms (IDEA) [29]. In
IDEA, two groups of the population are generated: one is solved
for the original constrained MOO problem and the other smaller
group is solved by converting the constraint violation as an extra
objective to focus on the boundaries of the constraints. However,
the number of function evaluations for this kind of method is
usually higher than for other kinds of methods.
Meanwhile, surrogate models are employed to handle expensive

constraints to reduce the computational cost. One way is to employ
surrogate models in the constrained MOO algorithms. For example,

a surrogate model-based evolution strategy uses the prediction
values from RBF models of objectives and constraints to estimate
the constraint dominance scores for each offspring in a framework
of non dominated sorting genetic algorithm-II (NSGA-II) [30]. By
directly replacing expensive simulations with surrogate models, it
becomes harder to find feasible solutions when the accuracy of the
surrogatemodel is low.Anotherway is to adjust the surrogatemodel-
based constraint handling strategies in single-objective optimization
to solve multi-objective problems. In Refs. [31,32], a surrogate-
based constraint handling process, named constrained optimization
by radial basis function approximation [33], is employed to deal
with the expensive constraints by optimizing a problem based on sur-
rogate models. In both cases, an optimization problem based on sur-
rogate models is solved at each iteration to produce a new sample
for a MOO problem. As a result, the extra optimization process
will increase the complexity when dealing with high-dimensional
problems. In multi-objective BO, one way to deal with constraints
is to add constraints to the acquisition function to solve a constrained
suboptimization problem to find feasible new samples [34]. Another
way is to include constraint satisfaction in the acquisition function
[9]. However, multi-objective BO needs to solve a suboptimization
problem on the acquisition function, and it is an inefficient approach
when high-dimensional problems are considered.
In this article, we focus on the strategy of separating the objectives

and constraints to avoid involving unnecessary complexity in the
original problem. To inherit the high efficiency of a partial model
and fully utilize each dimension to deal with constrained optimiza-
tion problems, an AI technique-based dimension selection strategy
and related constraints handling processes are developed in this
article. A novel sensitivity-based dimension selection method
using the least absolute shrinkage and selection operator (LASSO)
[35] regression is proposed to separate the variables into two
subsets, one for objectives and one for constraints. The subset of var-
iables related to objectives is updated by a grey wolf optimizer
(GWO) only considering the objectives, while the other subset of
variables is adjusted to find feasible solutions through a random
local search process. To reduce the number of expensive simulations
evaluated during optimization, artificial neural networks (ANNs) for
objectives and constraints are trained based on the existing samples
and updated when new samples are generated along with
optimization.
Superconducting magnetic field optimization is an excellent

example of a complex multi-objective optimization problem with
expensive constraints. Superconducting magnet has highly nonlin-
ear material properties. FEA simulations are needed to obtain the
magnet field properties. However, few studies have been developed
using optimization algorithms to deal with superconducting mag-
netic field optimization [23,24]. In this article, the proposed MOO
algorithm is employed to solve a superconducting magnetic field
design problem to minimize the amount of required superconductor
material and to obtain the largest magnetic field under the require-
ments of the field qualities.
This article is organized as follows. Section 2 details the proposed

method. To validate the performance of the proposed algorithm,
comparisons with ANN-GWO and well-known state-of-the-art opti-
mization algorithms are performed in Sec. 3. Then, the proposed
method is applied to solve solenoid magnetic design problems
using Cu tapes and second-generation high-temperature supercon-
ductor (2G HTS) tapes in Sec. 4. Section 5 concludes the article by
summarizing the properties of the algorithm.

2 Proposed Optimization Algorithm
The proposed constrained multi-objective optimization algorithm

is introduced in this section. At the beginning of each iteration,
dimensions are divided into two subsets, one subset is for objectives
and the other is for constraints. The GWO updating mechanism
updates the values of the samples focusing on the subset of dimen-
sions for objectives. Constraint handling operations are performed
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on the subset of dimensions for constraints to find feasible solutions
afterward. To utilize the expensive simulation efficiently, only the
candidates selected based on the prediction values from ANNs
are evaluated by the simulation. In this section, the components
of the algorithm are introduced first and the overall flowchart of
the algorithm is summarized at the end.

2.1 Dimension Selection Strategy Using LASSO. LASSO is
a variable selection method derived from the ordinary least square
(OLS) regression method [35]. LASSO is a method of choice for
cases where several potential features or variables are most influen-
tial. LASSO is not employed alone in our approach but in conjunc-
tion with an L2 regularization approach such as OLS methods or
ANN, for example. As an L1 regularization method, LASSO
requires a few numbers of samples to achieve a relatively accurate
prediction. Additionally, since the goal of using LASSO in this
article is for variable selection rather than for function prediction,
using nonlinear selection methods such as random forest or autoen-
coder methods would bring additional computing costs. In addition,
those nonlinear approaches demand large training data sets and thus
are not compatible with the goal of optimization using the least
number of samples in this work. Additionally, the process is itera-
tive, and the selection is also updated with the iterations. Thus,
LASSO is selected to realize the dimension selection strategy.
The details are presented as follows.
Given a linear regression model Ŷ = w0 + XTw, where X repre-

sents the position, Ŷ is the predicted response from the regression
model, and w0 and w are the coefficients for the linear model.
The LASSO regression is to find the value w0 and w to solve the
minimization problem as shown in Eq. (1).

min
w0, w

∑n
i=1

(Yi − Ŷ i)
2 + λ

∑p
j=1

|wj| (1)

where n is the number of positions, λ is a nonnegative parameter,
and p is the number of the weights w. For a given λ, due to the prop-
erty of the L1 regression function (i.e., the second term in Eq. (1)),
some elements in w0 and w will be zero. By gradually increasing the
value of λ, more coefficients become zero, which means fewer var-
iables contribute to the linear model. However, the prediction accu-
racy of the linear model will become worse with the decreasing
number of selected variables. Thus, the question is, what value of
λ is to be selected to determine the regression model? In this
article, to find the optimal set of selected variables, an accuracy cri-
terion is proposed to select the value of λ. The largest λ value (λmax)
that gives a nonnull model is calculated. Then, a vector of a

geometric sequence of λ values is generated in the range
[10−4*λ max, λ max]. For each λ value, the problem in Eq. (1) is
solved to obtain a regression model and the regression error of
the model is estimated. The regression errors of the models (i.e.,
mean square error (MSE)) with two adjacent λ values are compared.
If the relative difference between two regression errors is larger than
a threshold (e.g., 10−2), it means an important variable is missing in
the model with the larger λ value. Thus, the regression model using
the smaller λ value is selected, and the variables whose coefficient is
not zero are selected as the important variables. Note that the impor-
tant variables are those that have a large impact on the objectives.
According to the selection result, the set of variables can be
divided into two subsets: one includes the selected variables from
LASSO regression that have a large impact on the objectives and
the other includes the rest of the variables that are used in constraint
handling. In this article, Xvar obj is used to represent the variables
selected in the objective subset, while Xvar con represents the vari-
ables in the constraint subset.
An example of how the dimension selection strategy works is

presented as follows. In this case, the first objective of the CF6
problem (equations in the Appendix) is approximated using
LASSO regression. First, λmax is determined as 0.1519 since
when λ is larger than the value, all the weights (w0 and w) in
Eq. (1) shrink to zero. Then, a geometric sequence vector of λ is
generated in the range [1.5e-5, 0.1519], where 100 λs are generated.
For each λ value, Eq. (1) is solved to obtain the regression model.
The prediction errors presented by MSE are plotted in Fig. 1(a),
while the relative differences of MSE values for two adjacent λ
values are plotted in Fig. 1(b). As the threshold is set to 0.01, the
75th λ is selected, where λ= 0.0148. For the given λ for the CF6
problem, the weight for the ninth variable (X9) is zero. Therefore,
Xvar obj is [X1, X2, …, X8, X10] and Xvar con is X9.
Since LASSO is a linear regression method but most of the sim-

ulations are nonlinear, a log10 transformation is performed on the
positions (X) and their objective values (Y) to create nonlinearity.
Then, the regression problem in Eq. (1) is modified to Eq. (2).

min
w0 w

∑n
i=1

(log10Yi − log10w0 + (log10Xi)
Tw)2 + λ

∑p
j=1

|wj| (2)

An adaptive strategy is used in the proposed algorithm in that the
LASSO regression model is updated at each iteration. In the early
iterations, few samples have been generated. Some variables are
not selected as the objective subset, which means more variables
can be used in constraint handling (details in Sec. 3.1) to find fea-
sible solutions. Additionally, the uncertainty caused by the lack

Fig. 1 MSE and relative MSE differences plots in LASSO regression: (a) MSE versus the number of λ values and (b) relative
differences of MSE values for two adjacent λ values
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of samples may lead to the selection varying at each iteration, which
increases the explorative ability of the algorithm. On the other hand,
by updating the LASSO regression with new samples, errors in
selections can be corrected. As a result, the optimization can
focus on the real important variables at the latter iterations for
exploitation. More details are presented in Sec. 3.1.

2.2 Artificial Neural Network Approximation. Multilayer
neural networks [36] are employed to approximate the objectives
and constraints to reduce the number of expensive simulations in
the optimization. Compared to conventional surrogates, such as
RBF and Kriging, ANN is a regression model that does not
always go through every sample point. The partial model with the
selected variables can be regarded as a sparse dataset with zero
values for the nonselected variables. In Ref. [37], it is reported
that ANN performs better in sparse data regression problems com-
pared to the Kriging model. The usage of ANNs in this article is to
judge which newly generated sample is not dominated by others at
the current iteration. New ANNs are constructed at each iteration
and only used at the iteration. For this purpose, a multilayer ANN
satisfies the requirement. Thus, ANNs with two hidden layers and
four hidden neurons for each layer are selected to construct for
each objective and constraint, respectively. The nonlinear tansig-
moid function is used as the activation function in all ANNs. For
the objective functions, only the variables selected from the
LASSO regression are used as the input nodes. At each iteration,
the number of inputs for the objective ANNs is updated and the
ANNs are re-trained with all the existing samples. On the other
hand, all the variables are used to construct the ANNs for con-
straints, and the ANNs will also be updated for all samples.

2.3 GWO Updating Mechanism. The GWO updating mech-
anism [38], as shown in Eq. (3), is employed to update the position
of the samples to generate new candidates at each iteration,

xnewvar obj =
x1,var obj + x2,var obj + x3,var obj

3

x1,var obj = xα,var obj − A1 · Dα

x2,var obj = xβ,var obj − A2 · Dβ

x3,var obj = xδ,var obj − A3 · Dδ

Dα = |C1 · xα,var obj − xvar obj|
Dβ = |C1 · xβ,var obj − xvar obj|
Dδ = |C3 · xδ,var obj − xvar obj|
Ai = 2ar1,i − a, i = 1, 2, 3

Ci = 2 · r2,i, i = 1, 2, 3

a =
2(maxNFE − NFE)

maxNFE

(3)

where r1 and r2 are random numbers generated in the range [0, 1].
To speed up the updating process, the dimensions that have a large
influence on the objective values participate in the updating mech-
anisms. The nonselected dimensions remain at the original value
and are updated in the constraint handling process to find a feasible
solution. The parameter a is used to balance the exploitation and
exploration in the GWO updating process, which is controlled by
the current number of function evaluations and the maximal func-
tion evaluations (maxNFE).
xα, xβ, and xδ represent the three leaders of the wolves (i.e., the

three best-performing samples) to guide the position updating
process, which are selected following the criteria in the original
multi-objective GWO algorithm [39]. The entire design space is
divided into multiple subspaces, and the subspace with a smaller
number of nondominated solutions has a large chance to be
selected. In this case, the proposed algorithm employs the GWO
updating mechanism to ensure the spread of the Pareto set.

2.4 Constraint Handling Operations. The constraint han-
dling operations are performed at the initial sampling step, the
potential nondominated solution determination step, and the
current Pareto set determination step. Note that a nondominated
solution is used among the newly generated samples at one iteration
to represent the sample that is not dominated by other newly gener-
ated samples. On the other hand, if one sample is not dominated by
all the other existing samples, it is called a Pareto solution. At initial
sampling, the goal is to generate an initial Pareto set. The second
handling operation is the key part that adjusts the values for the
subset of variables to satisfy constraints. This operation is per-
formed after updating the positions of the samples using GWO.
The last operation is a checking process to ensure all the solutions
in the Pareto set are feasible. The details are introduced as follows.
Constraint operation 1: Initial Pareto set determination consid-

ering the feasibility
Initial samples are generated randomly in the design space and

their feasibility is checked to determine the initial Pareto set. As
per the requirements of the GWO updating mechanism, there is at
least one solution in the current Pareto set. Thus, when there are
no feasible solutions found from the initial sampling, a constraint
operation is performed to find a potential Pareto solution for
GWO. If one solution is the optimum for one objective, it could
be a Pareto solution. Following this logic, an ANN is constructed
for one objective, and a single-objective local search is performed
on the ANN to obtain the potential Pareto solution. To be clarified,
the ANN constructed in constraint operation 1 is only used in the
initial sampling step. ANNs are constructed for each objective at
the following optimization steps.

Step 1.1: Start point determination
• Calculate the maximal constraint violation values for each

sample.
• Select the sample with the smallest violation value as the start-

ing point, x0.
Step 1.2: ANN construction
• Construct ANN_obj(X) based on a randomly selected

objective.
• Construct the ANN_con(X) for all constraints.
Step 1.3: Local search
• Use sequential quadratic programming (SQP) to perform a

local search on ANN_obj and ANN_con. Obtain the solution
as xfe.

• Evaluate xfe using simulations to obtain the objectives
response (ffe) and constraints response (gfe).

• Create the Pareto set, [XP, FP, Gp]← [xfe, ffe, gfe].
• Store the new sample [xfe, ffe, gfe] into the sample base.
Constraint operation 2: Local search considering feasibility

After updating the dimensions related to objectives, the new
positions of the samples can be presented as [Xnew

var obj, Xvar con].
For each sample xnew = [xnewvar obj, xvar con], the following con-
straint operation is performed.
Step 2.1: Feasibility checking
• Estimate the constraint values for the sample using ANNs,

ĝ = ANN con(xnew).
• Check the feasibility of the sample. If the sample is feasible,

return xnew,c = [xnewvar obj, xvar con], else go to Step 2.2.
Step 2.2: Local search
• Randomly change the values of the dimensions for constraints,

xnewvar con.
• Check the feasibility of the new sample, xnew,c =

[xnewvar obj, xnewvar con] by the predicted values from ANNs.
• If the sample is feasible, return the new sample xnew,c; other-

wise, repeat this step until a feasible solution is found or the
maximum repetition number is reached. In this case, the
maximum repetition number is set to 20.
Note that no feasible solution may be found at this step. In this

case, one sample will be randomly selected from the set of
samples to be evaluated by the simulation.
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Constraint operation 3. This operation is performed at the end of
each iteration when determining the current Pareto set. As
infeasible solutions may exist from the initial samples, the
feasibility of the solutions in the current Pareto set is
checked. When the number of current solutions is larger
than one and the infeasible solution exists, the infeasible
solution is removed from the current set; otherwise, the infea-
sible solution is the only solution in the current set, and it will
be kept until new solutions are found.

2.5 Overall Algorithm. Figure 2 shows the flowchart of the
L-ANN-GWO algorithm. The details of each step are listed as
follows.

Step 1: Initial random sampling:
• Generate N uniform random points Xwolf, where N is the

number of wolves.
• Evaluate samples by the simulation, [Fwolf, Gwolf] ← Simula-

tion (Xwolf).

• Store initial samples in the sample base, [X, F, G] ← [Xwolf,
Fwolf, Gwolf].

Step 2: Pareto set determination
• If a feasible solution exists, determine the current Pareto set,

[XP, FP, Gp].
• Else, perform constraint handling operation 1 to produce the

Pareto set.
Step 3: Dimension selection
• Use LASSO to divide the variables into two subsets: one for

objectives, Xvar obj, and the other for constraints, Xvar con.
Step 4: ANN approximation
• Train ANN_obj with respect to Xvar obj.
• Train ANN_con with respect to X.
Step 5: Position updating
• Update the position of the selected variables via Eq. (3),

Xnew
wolf ,var obj ← GWO(Xwolf , var obj, XP).

Step 6: Constraint operation 2
• Perform constraint operation 2 to generate the feasible sample

set, Xnew,c
wolf = [Xnew,c

wolf ,var obj, Xnew,c
wolf ,var con].

• Output the feasible solution set Xnew,c
fe .

Step 7: Nondominated solution determination
• If Xnew,c

fe ∉ Φ, find the nondominated solutions from Xnew,c
fe

according to the objective predicted value from ANNs,
Xnon−dom ← findNonDom(Xnew,c

fe , ANN obj(Xnew,c
fe )).

• Otherwise, a sample is randomly selected from Xnew,c
wolf ,

Xnon−dom ← randSelect(Xnew,c
wolf ).

• Evaluate the nondominated solution(s) by simulation,
[Xnon-dom, Fnon-dom, Gnon-dom]← simulation(Xnon-dom).

• Store the samples in the sample base, [X, F, G]← [[X, F,
G];[Xnon-dom, Fnon-dom, Gnon-dom]].

Step 8: Pareto set updating
• Check the feasibility of Gnon-dom by the real constraint values

(Gnon-dom), Xnon-dom,fe← checkFeasible(Xnon-dom, Gnon-dom).
• If Xnon−dom,fe ∉ Φ, update the Pareto set, [XP, FP, Gp]←

updatePareto([XP, FP, Gp], [Xnon-dom,fe, Fnon-dom,fe, Gnon-dom,fe]).
• Otherwise, Pareto set remains.
Step 9: Constraint operation 3
• Perform the constraints operation 3 to check the current Pareto

set.
Step 10: Stopping criterion checking
• If the number of simulation evaluations is larger than the preset

maximum number of function evaluations, terminate the opti-
mization; otherwise, go back to Step 3.

3 Numerical Benchmark Problems Tests and Results
To test and verify the performance of the proposed algorithm,

seven constrained multi-objective optimization problems [3] are
employed in this section. The function of each benchmark is
shown in the Appendix. Note that the objectives and constraints
of the benchmarks are assumed to be black-box and expensive
simulation models. In this case, the maximum number of function
evaluations is set to a small number (i.e., 500) for all the algorithms
to test the effectiveness of the proposed algorithm when the number
of simulations is limited.

3.1 Comparison with ANN-GWO. The effectiveness of the
dimension selection strategies used in the proposed algorithm is
tested first by comparing it to the ANN-GWO, which does not
contain the dimension selection stage. Different from L-ANN-
GWO, in ANN-GWO, all variables are used to construct the
ANNs for objectives and participate in the GWO updating
process. Accordingly, constraint operation 2 is not performed in
the ANN-GWO. Instead, the candidate solutions are checked by
the predicted values from the constraint ANN models, and only
the feasible nondominated solutions are evaluated by the actual
objective and constraint functions. In the tests, the maximum
number of function evaluations for both methods is set to 500.
The number of wolves is set to be 20.Fig. 2 Flowchart of L-ANN-GWO
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The performance criterion, hypervolume [40], is applied to judge
the performance of each algorithm. The hypervolume measures the
volume in the objective space that is encapsulated by the Pareto
frontier and a reference point. To make the reference point consis-
tent in the comparison of different algorithms, the point is defined as
the maximum of all objective values in all three sets of Pareto solu-
tions. For a given Pareto solution in a set of solutions, the hypercube
using the solution and the reference point as the diagonal corners is
defined and the volume of the hypercube is calculated. The summa-
tion of the volumes of the hypercubes defined by all the Pareto solu-
tions is defined as the hypervolume of the Pareto set. As shown in
Fig. 3, the area within the dotted line indicates the hypervolume of
the Pareto set. A large hypervolume value means that the obtained
solutions are close to the actual Pareto frontier, which indicates a
better performance of the optimization algorithm. In this article,
all the benchmark problems are solved by each algorithm 30
times, and the mean and standard deviation values are shown in
Table 1.
As shown in Table 1, by adding the dimension selection strategy,

L-ANN-GWO outperforms ANN-GWO in all the test problems
with higher hypervolume values. The column named rate of
success shows the percentage of the runs that find feasible Pareto
solutions out of the total 30 runs. For example, for P113mod, the
number of runs finding feasible Pareto solutions using
ANN-GWO is 10 out of 30; therefore, the rate of success is
33.3%. Tables 2 and 3 show examples of selected variables in
L-ANN-GWO solving CF6 and P116mod problems concerning
the iterations. Note that the algorithm terminates according to the
maximum number of function evaluations. As shown in step 7 in
Sec. 2.5, every feasible nondominated solution generated at one
iteration is evaluated by the simulation, which means the number
of function evaluations at each iteration may vary for different
test problems. Thus, the total number of iterations (i.e., the iteration
number in the last row of Tables 2 and 3) is different for different
problems. For the functions in the CF6 problem, every dimension

shares similar importance to both objectives. As shown in
Table 2, a few dimensions are not selected at the early stage of
the optimization due to the lack of samples. By updating the
LASSO selection with newly generated samples, all the dimensions
are selected from the 15th iteration, which reflects well the mathe-
matical definition of the problem. At the early stage, the update
mechanism focusing on some of the dimensions makes the algo-
rithm more aggressive to generate more nondominant solutions.
As a result, when all the variables participated in the optimization,
more nondominant solutions increase the spread of the Pareto fron-
tier according to the leader selection strategy in the GWO updating
mechanism.
Different from the CF6 problem, the objective functions of

P116mod are only influenced by six variables, [x1, x2, x3, x11, x12,
x13]. As shown in Table 3, the variables x4, x5, …, x10 are mistak-
enly selected at the early iterations. Then, the error is corrected
by updating the LASSO regression with new samples. In the last
few iterations, seven variables, [x1, x2, x3, x10, x11, x12, x13], are
selected to participate in the GWO updating process. In this case,
the variables of the objectives are distinguished by the dimension
selection strategy. The GWO update can focus on the variables
affecting the objectives, and other variables are used to ensure the
feasibility of the solutions with no change to the objective values.
To be noticed, x10 is selected mistakenly even at the last 12 itera-
tions. This may be because the log10 transfer creates a nonlinearity
for each variable that may have caused this problem.
Compared to ANN-GWO, by performing the dimension selec-

tion strategy and the related constraint operation 2, L-ANN-
GWO succeeded to find feasible solutions in all the tests. In the
constraint handling process proposed in this article, the key is to
find the first feasible solution as the leader. Since the GWO updat-
ing mechanism used in this article has no constraint handling oper-
ations, the feasibility of the new samples generated from GWO is
unknown. In ANN-GWO, missing constraint operation 2 generates
randomness in the process of finding feasible solutions. On the other

Fig. 3 2D illustration of the hypervolume criterion

Table 1 Comparison of L-ANN-GWO with ANN-GWO

L-ANN-GWO ANN-GWO

Hypervolume Rate of success Hypervolume Rate of success

CF6 21.71 (1.24) 100% 21.00 (1.08) 100%
CF7 254.77 (9.75) 100% 245.15 (19.13) 100%
P113mod 8.60E+ 05 (4.81E+ 04) 100% 6.89E+ 05 (5.28E+ 04) 33.3%
TP3mod 89.40 (27.09) 100% 74.08 (32.72) 66.7%
P106moda 6.6E+ 03 (0.54E+ 03) – – –
P116mod 8.45E+ 03 (1.16E+ 03) 100% 6.26E+ 03 (2.46E+ 03) 100%
Beam 0.026 (0.001) 100% 0.025 (0.001) 60%

Note: Data are presented as mean (standard deviation). The best performances are presensed in bold face.
aP106mod is a special case, which is explained in Sec. 4.

Table 2 Dimension selection example for CF6 problem (a black
dot means the dimension was selected)

No. of iteration x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 ● ● ● ● ● ● ● ● ●
2 ● ● ● ● ● ● ● ● ●
3 ● ● ● ● ● ● ● ● ●
4 ● ● ● ● ● ● ● ● ●
5 ● ● ● ● ● ● ● ● ●
10 ● ● ● ● ● ● ● ● ●
15 ● ● ● ● ● ● ● ● ● ●
20 ● ● ● ● ● ● ● ● ● ●
30 ● ● ● ● ● ● ● ● ● ●
50 ● ● ● ● ● ● ● ● ● ●
99 ● ● ● ● ● ● ● ● ● ●
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hand, due to the lack of samples at the early stage, it is common that
some of the dimensions are not selected from the LASSO selection
method. Thus, via a local search on the nonselected variables, the
chance to find feasible solutions at an early stage of the optimiza-
tion increases. Therefore, the proposed L-ANN-GWO can success-
fully find feasible solutions in those problems where ANN-GWO
fails (i.e., P113mod, TP3mod, and Beam).
For the P106mod problem, the objective functions are influenced

by [x1, x2, x3, x4, x6], and the constraints are with respect to [x4, x5,
x7, x8]. A Pareto solution [ f1= 2100, f2=−0.95] with [x1= 100, x2
= 1000, x3= 1000, x4= 10, x6= 10] can be found to dominate
almost any other solution. The values of x5, x7, and x8 vary to
satisfy the constraints. In other words, for P106mod, there exist
multiple feasible Pareto solutions that have the same objective
values. It is observed that ANN-GWO always finds those solutions
with the same values for x1, x2, x3, x4, and x6, but different values for
x5, x7, and x8. In this case, the rate of success for ANN-GWO is
100% but there is only one point shown in the Pareto frontier in
the objective space. That is why the hypervolume value and rate
of success are not reported in Table 1. L-ANN-GWO also has the
same situation in 10 out of 30 tests, but it can also find other solu-
tions such as [ f1= 2104, f2=−0.95] and [ f1= 2100, f2=−0.93] in
other runs. One reason to find other solutions is that when one
dimension always has the same value for the samples, the
LASSO dimension selection process has the chance to eliminate
this dimension to participate in the GWO updating mechanism.
As shown in Table 4 of one example in the dimension selection,
x6 is not selected in the 23rd iteration. Then, the local search in con-
straint operation 2 has a chance to modify the value of x6 according

to the feasibility to reach other Pareto solutions. As a result, a Pareto
solution different from [ f1= 2100, f2=−0.95] may be generated
during the constraint handling step.

3.2 Comparison With Other Algorithms. Two multi-
objective optimization algorithms (NGPM [41] and MOFEPSO
[42]), which are based on evolutionary algorithms, as well as one
multi-objective BO method (MOEGO [34]) are employed as a
comparative benchmark with the proposed algorithm. The NPGM
(NSGA-II Program in Matlab v1.4) adds a rudimentary expensive
constraint handling process in the NSGA-II algorithm. On the
other hand, MOFEPSO is a multi-objective particle swarm
optimization-based employing constraints handling strategies for
feasible and infeasible particles. In MOEGO, the constrained
achievement scalarization function optimization is solved to generate
new samples at each iteration under the Bayesian optimization
framework. NGPM, MOFEPSO, and MOEGO are recently included
in MATLAB [41–43]. The maximum function evaluation for each
algorithm is set to be 500. The population size is set to 20 for
L-ANN-GWO and NPGM and 10 for MOFEPSO following the
setting in Ref. [3]. Each problem is repeated 30 times, and the
mean and standard deviation values of hypervolume are shown in
Table 5. Note that since the reference points are different, the
hypervolume values of L-ANN-GWO are different between
Tables 1 and 5.
As shown in Table 5, L-ANN-GWO has the largest mean hyper-

volume values in six out of seven tests. MOFEPSO performs the
best for CF6. For the TP3mod problem, however, MOFEPSO
cannot find any feasible solutions in the given computational
budget. MOEGO fails to find feasible solutions for the Beam
problem. Compared to another surrogate model-based optimization
algorithm, MOEGO, the proposed algorithm outperforms in all the
tests at the same computational budget. Especially, MOGEO fails
for the Beam problem, which is high-dimensional (30 dimensions)
with many constraints (21 constraints).
To illustrate the comparison clearly, one single run that can rep-

resent the average performance of each algorithm is selected and
plotted in Fig. 4. For the CF6 problem, most of the solutions
from L-ANN-GWO are gathered in the lower f1 values, which
reduces the performance of L-ANN-GWO. For CF7, L-ANN-
GWO can generate more solutions with lower f1 function values,
which leads to higher performance compared to NGPM. For the
P113mode problem, although the performance of each algorithm
is similar in the middle part, more solutions are found by
L-ANN-GWO at each end of the frontier. The solutions for
TP3mod, generated from L-ANN-GWO, clearly outperform the
solutions found by NGPM. For the P106mod problem, L-ANN-
GWO finds solutions with smaller values for the second objective,
while MOFEPSO focuses on the smaller value of the first objective.
Both algorithms have better performance than NGPM. The beam
problem is a difficult problem with 30 design variables and 21 con-
straints. As shown in the results and plot, L-ANN-GWO reaches
better solutions than the other two algorithms in dealing with a
large number of design variables and many constraints. For the

Table 3 Dimension selection example for P116mod problem

No. of
iteration x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 ● ● ● ● ● ● ● ● ● ●
2 ● ● ● ● ● ● ● ● ● ●
3 ● ● ● ● ● ● ● ● ● ● ●
4 ● ● ● ● ● ● ● ● ● ● ● ●
5 ● ● ● ● ● ● ●
10 ● ● ● ● ● ● ● ● ● ● ● ●
15 ● ● ● ● ● ● ● ● ● ● ● ●
20 ● ● ● ● ● ● ● ● ● ●
30 ● ● ● ● ● ● ● ● ●
35 ● ● ● ● ● ● ●
47 ● ● ● ● ● ● ●

Table 4 Dimension selection example for P106mod problem

No. of iteration x1 x2 x3 x4 x5 x6 x7 x8

21 ● ● ● ● ●
22 ● ● ● ● ●
23 ● ● ● ●
24 ● ● ● ● ●

Table 5 Comparison of L-ANN-GWO with NGPM, MOFEPSO, and MOEGO for benchmark problems using hypervolume values with
best performances in boldface

L-ANN-GWO NGPM MOFEPSO MOEGO

CF6 76.18 (2.64) 78.44 (2.08) 79.86 (1.32) 66.97 (4.85)
CF7 549.48 (14.92) 534.55 (28.44) 518.26 (20.06) 439.13 (25.98)
P113mod 8.75E+ 05 (4.95E+ 04) 8.11E+ 05 (3.70E+ 04) 8.44E+ 05 (1.10E+ 04) 7.21E+ 5 (6.36E+ 04)
TP3mod 92.29 (23.29) 84.53 (32.65) – 48.75 (7.33)
P106mod 9.44E+ 04 (1.86E+ 04) 8.57E+ 04 (2.85E+ 04) 9.04E+ 04 (2.91E+ 04) 5.44E+ 04 (0.69E+ 04)
P116mod 7.46E+ 03 (1.05E+ 03) 4.19E+ 03 (1.06E+ 03) 6.30E+ 03 (1.98E+ 03) 0.44E+ 03 (0.13E+ 03)
Beam 0.067 (0.0050) 0.042 (0.0376) 0.037 (0.0052) —

Note: Data are presented as mean (standard deviation).
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tri-objective optimization problem, P116mod, the results of
L-ANN-GWO and MOFEPSO are similar and L-ANN-GWO can
find more results on the edges, while the results of NGPM are gath-
ered in a smaller area in the objective space. As a result,
L-ANN-GWO performs well in numerical-constrained optimization
problems when the number of function evaluations is limited. For
some specific problems (e.g., CF6), the variable selection process

using LASSO may generate results with a lower value for one
objective. In that case, tightening the regression model accuracy
threshold in LASSO regression will enable the algorithm to select
more variables. The variables influencing any objective will have
a large chance to be selected. On the other hand, the Pareto frontiers
found by MOEGO are always dominated by the frontiers found by
the other three algorithms.

Fig. 4 Single-run solution plots of objectives of the numerical benchmark problems: (a) CF6,
(b) CF7, (c) P113mod, (d ) TP3mod, (e) P106mod, (f ) Beam, and (g) P116mod

081704-8 / Vol. 145, AUGUST 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/145/8/081704/7018529/m
d_145_8_081704.pdf by Sim

on Fraser U
niversity user on 06 January 2024



4 Application in Solenoid Magnetic Design
Due to the capability of generating high magnetic fields, the

magnet using 2G HTS tape is becoming an attractive solution for
different engineering fields, such as particle accelerators.
However, the nonlinear material property of the HTS tape makes
it difficult and time consuming to calculate the magnetic field for
an HTS magnet. Thus, the proposed algorithm is applied to deal
with an optimization design problem of an HTS magnet using
YBCO tape. Figure 5(a) shows the CAD model of a solenoid.
When applying an HTS magnet in the particle accelerators to

guide the particle beam, a larger central magnetic field is needed
when the speed of the particle increases. Additionally, supercon-
ducting materials are usually very expensive. Therefore, the goal
is to design a magnet geometry so that the magnetic field at the
center of the magnet is maximized with a minimal amount of
required superconductor materials (measured by the length of the
HTS tape). Finite element method (FEM) simulation with commer-
cial software (COMSOL) is used to compute the magnetic field distri-
bution in the coil, and each simulation can take up to 30 min. It is
estimated that detailed mapping of the design space (e.g., six dimen-
sions in this study) takes hundreds of simulations, so that there is a
clear motivation to apply the L-ANN-GWO algorithm to reduce the
magnet design time. Before going to the nonlinear HTS tape, we
first solved a simpler case where the HTS tape was replaced with
Cu tape. FEM simulation for Cu tape lasts only 2–3 min. We
used the Cu tape simulation to benchmark the algorithm perfor-
mance with the other three algorithms, NGPM, MOFEPSO, and
MOEGO. After showing the capability of the proposed algorithm
in dealing with the FEM simulation-based optimization problem,
L-ANN-GWO is applied to solve the HTS tape magnetic field
design problem.
It is worth mentioning that the model is parametric so that the

design constraints (e.g., area of the uniform field at the center of
the coil, or field homogeneity requirement) can be easily changed
for future optimization studies. Moreover, the optimization algo-
rithm is directly linked with the FEM solver, so that the expert
user’s time for preparing the FEM simulations and interpreting
the results is minimized.

4.1 Formulation of the Optimization Problems. The mag-
netic design includes defining the coil geometry and choosing the
transport current (It). The geometry is described by the number of
turns in each winding (in each horizontal coil layer), the number
of windings (number of coil layers stacked vertically), the thickness
of the tape, the distance of tapes vertically, and the distance between
tapes horizontally (radially), see Fig. 5(b) and Table 6. The goal of
this design optimization case is to

– maximize the central magnetic field (B0)
– minimize the length of the tape conductor (L)

The following design criteria must be fulfilled:

– In the 2 cm× 2 cm area at the center of the solenoid, the differ-
ence between the maximal and minimal magnetic field (Bsqdiff)
is less than 0.1 T. (The unit T is Tesla for the magnetic flux
density.)

– In Cu tape: the maximum magnetic field (norm) in any of the
tapes (Btape) is 2 T.

– In HTS tape: the transport current does not exceed the critical
current, Ic(B), in any of the tapes. This ensures that the tape
stays in the superconducting state. Note, that the tape Ic is a
function of the magnetic field seen by the tape.

– The upper and lower bounds of each design variable are shown
in Table 7.

The length of the tape (L) is calculated by the equation of the
length of the spiral in polar coordinates, as shown in Eq. (4).

l =
∫ϕ1

ϕ0

d

2π

��������
1 + ϕ2

√
dϕ

ϕ0 =
rm

dbr + thtape
× 2π

ϕ1 = ϕ0 + 2π × nr
d = dbr + thtape

(4)

Fig. 5 Solenoid magnet design problem: (a) CAD model of the solenoid and (b) geometry
parameters of the solenoid

Table 6 Geometry parameters of the solenoid

Parameters Descriptions

L The total length of the tape
thtape The thickness of the tape
nr Number of tapes in each winding
nz Number of windings in the coil
rm The radius of the magnet bore
dbr Distance between tapes in each winding
dbz Distance between windings

Table 7 Design variables of the magnet design test

Design variables Upper and lower bounds

nr [9, 36]
nz [4, 12]
rm (cm) [2.5, 10]
dbr (mm) [0.05, 0.1]
It (A) [100, 300]
dbz (mm) [0.25, 1]

Journal of Mechanical Design AUGUST 2023, Vol. 145 / 081704-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/145/8/081704/7018529/m
d_145_8_081704.pdf by Sim

on Fraser U
niversity user on 06 January 2024



The total length of the tape used is calculated by multiplying the
number of windings, nz and the length of each winding, l, i.e., L= nz
× l. In this article, a 2G HTS tape provided by S-innovations [44] is
used in the tests. The thickness of the tape, thtape, is 109 μm. The Cu
tape problem uses the same thtape value.
The magnetic field in the center and the magnetic field-related

criteria, i.e., B0, Bsqdiff, Btape, and Ic, are computed from the FEM
simulation. Maxwell’s equations are solved for both the Cu tape
magnet and the HTS magnet using the FEM solver in COMSOL. A
2D axisymmetric geometry for the solenoid model is used for the
simulation. An A-H formulation, presented in Ref. [45], is chosen
for Maxwell’s expressions because it is high simulation speed and
high stability. The mesh used in the simulation is shown in
Fig. 6. The simulation and optimization are run on a laptop with
Intel Core i7-7700HQ @2.8 Hz and 32 GB RAM.

In summary, the optimization problem for the Cu tape is formu-
lated in Eq. (5) and that for the HTS tape in Eq. (6):

find x = [nr , nz, rm, dbr , It , dbz]

min L

maxB0

s.t. Bsqdiff ≤ 0.1 (T)

Btape ≤ 2 (T)

nr and nz are integers

(5)

find x = [nr , nz, rm, hKp, It]

min L

maxB0

s.t. Bsqdiff ≤ 0.1 (T)

It ≤ Ic
nr and nz are integers

(6)

In the HTS tape problem, the parameters dbr and dbz are related to
the Kapton insulation thickness (hKp) around the tape. The relation
to the distance parameters is expressed as follows:

dbr = dbz = 2 ∗ hKp (7)

Therefore, in the HTS tape problem, hKp is defined as one of the
design variables to replace dbr and dbz.

4.2 Optimization Results for Cu Tape Problem.
L-ANN-GWO, along with NGPM, MOFEPSO, and MOEGO, is
applied to solve the Cu tape solenoid magnetic design problem.
The maximum number of function evaluations for all three algo-
rithms is set to 300. The population size for NGPM and the
wolve size of L-ANN-GWO are set to 20, while the number of par-
ticles in MOFEPSO is set to 10. The Pareto frontiers obtained from
three algorithms are shown in Fig. 7. The hypervolume values for
the three Pareto sets are presented in Table 8. The running time
for each of the algorithms is around 6 h.
As shown in the results, with the limited number of function eval-

uations, L-ANN-GWO generates better solutions compared to
NGPM and MOFEPSO. When the length of the tape is in the
range between 20 m and 50 m, the results of the three algorithms
are comparable with L-ANN-GWO outperforming the other two
algorithms. In specific, L-ANN-GWO finds more solutions whose

Fig. 6 Global mesh of the solenoid in the FEM model with an enlarged view of turns of winds in the red box (a), and a mesh
for 2G HTS tape where different colors mark different layers: orange—copper; dark gray—substrate; light gray—silver; and
brown—YBCO (b). (a) Global mesh and (b) detailed mesh between layers.

Fig. 7 Comparison of Pareto solutions to the Cu tape solenoid
magnetic field design

Table 8 Hypervolume comparison with the other three
algorithms

L-ANN-GWO NPGM MOFEPSO MOEGO

Hypervolume 89.21 59.73 77.00 80.66
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length is lower than 50 and the magnetic field is higher. When the
length of the tape is longer than 50 m, the advantages of
L-ANN-GWO become greater. On the other hand, compared to
the MOEGO, L-ANN-GWO generates more solutions along the
Pareto frontier, especially when the length of the tape is lower
than 50. That is the reason that the Hypervolume value of
L-ANN-GWO is larger than that of the MOEGO. As a result,
L-ANN-GWO leads to designs with a much stronger magnetic
field with the same tape length as the other three algorithms.

4.3 2G Second-Generation High-Temperature
Superconductor Tape Problem Results and Analysis. A base-
line of the 2G HTS tape design is simulated first. The values of
the design variables, the length of the tapes, and the central mag-
netic field value are shown in Table 9. The magnetic field distribu-
tion for the baseline design is shown in Fig. 8. Then, L-ANN-GWO
is applied in a 2G HTS tapes magnetic design problem to test the
performance of the proposed algorithm in real superconductivity
magnetic design cases. As the 2G HTS tape is used in the simula-
tion, one simulation may last from several minutes to half an hour
to obtain the magnetic field results, according to the number of
windings and the number of tapes in each winding. Considering the
computational cost of the simulation, the number of function eval-
uations is limited to 200. The number of wolves is set to be 20. The
total running time for the optimization is around 50 h.
Figure 9 shows the Pareto frontier obtained from the optimiza-

tion, compared with the baseline design. In summary, L-ANN-
GWO provides 15 feasible Pareto solutions using 200 simulation
evaluations in the 2G HTS tape magnetic design case. The central

magnetic field varies from 0.08 T to 0.30 T with the length of the
tape between 5.7 m and 22.0 m. Table 9 shows two examples of
the Pareto solutions obtained. Compared to the baseline design,
the magnetic field can be improved by 31% with a similar tape
length (solution 1), or the length of the tape can be reduced by
33% when the magnetic field is similar to the baseline (solution
2). The magnetic field distributions for the two solutions are
shown in Fig. 10. The magnetic field strength at the original point
of both Figs. 7 and 9 shows the values of B0 for the three
designs. Thus, solution 1 in Fig. 10(a) shows the highest B0
value, while solution 2 is comparable to the baseline. Compared
to the baseline design, the HTS tape windings in both solutions
are closer to the original point, as shown in the x-axis values in
Figs. 8 and 10. In other words, the radius of the magnet bore (rm)
in both solutions is smaller than that in the baseline design. In
Fig. 8, the magnetic field reduces starting from 0.02 m to the
center of the bore, which means that the HTS tape is too far from
the center. On the other hand, by reducing the rm values, solution
1 and solution 2 generate a larger magnet field at the center of the

Table 9 Design variable and objective values of the baseline
design and two examples of Pareto solutions

nr nz
rm
(cm)

hKp
(µm) It (A) B0 (T)

Length
(m)

Baseline 9 8 4 30 200 0.1929 18.4213
Solution 1 11 9 2.56 18.99 146.30 0.2677 16.3799
Solution 2 9 8 2.50 46.22 146.68 0.2046 11.7015

Fig. 8 Magnetic field distribution of the baseline design. (x and y axes show the dimensions of
the area in meters; the color bar shows the magnetic field strength in unit T.)

Fig. 9 Pareto frontier of the 2G HTS tape solenoid magnet
optimization
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bore. Additionally, for solution 1, B0 is further improved by
increasing the number of windings and the number of tapes in
each winding, while the total length of tapes is reduced by reducing
the thickness hKp. The current (It) is reduced to fulfill the con-
straints of the constraints. For solution 2, reducing rm leads to a
decrease in the length. The values of hKp and It are adjusted to
fulfill the constraints.

5 Conclusion
This work proposes a dimension selection-based multi-objective

optimization algorithm with the capability of handling expensive
constraints. The motivation for such an effort lies in the very tight
requirements involved in the 2G HTS magnetic field design. The
results demonstrate that the new L-ANN-GWO algorithm out-
performs the NGPM, MOFEPSO, and MOEGO in most of the
numerical benchmark problems and the Cu tape solenoid magnetic
field optimization problem. Finally, 15 Pareto solutions were gener-
ated from the optimization of the 2G HTS design.

Besides finding good designs for the HTS design case, key con-
tributions of the proposed method are listed as follows:

• A new dimension selection-based multi-objective optimization
algorithm is designed for simulation-based problems. The
algorithm is benchmarked and successfully applied to a
complex real-world engineering design problem.

• The dimension selection strategy using LASSO regression
improves the efficiency of the optimization when the number
of simulations is limited. The dimensions selected from
LASSO have large influences on the objective values. Thus,
focusing on those dimensions in the GWO updating mecha-
nism generates large improvement in the objective values.
Additionally, since the LASSO regression model is updated
along the optimization process, more accurate regression
models are generated and gradually more dimensions are con-
sidered in the GWO updating process, which helps to find new
nondominant solutions at the latter stage of the optimization.
Additionally, the error selection due to the lack of data at the

Fig. 10 Magnetic field distributions of the two example solutions: (a) solution 1 and
(b) solution 2
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early iterations is corrected due to the updating process at each
iteration.

• The separation of variables for objective minimization and
constraint satisfaction shows promises. Since the nonselected
dimensions have less impact on the objective values, those
dimensions are more efficiently used to find a feasible solution
than pursuing lower objective values. On the other hand, by
modifying the values of selected and nonselected dimensions
for separate purposes, new nondominant and feasible solutions
can be generated more efficiently at the early stage of the opti-
mization to provide high-quality leaders for GWO updates.

Since the algorithm is designed to solve the multi-objective opti-
mization problem with two or three objectives, the ability of the
proposed algorithm in dealing with many-objective optimization
problems is not evaluated in this article. This will be our future
work.
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Appendix: Numerical Benchmark Problems in Sec. 4

CF6

f1(x) = x1 +
∑
j∈J1

y2j

f2(x) = (1 − x1)
2 +

∑
j∈J2

y2j

g1(x) = x2 − 0.8x1 sin 6πx1 +
2π
n

( )
− sign(0.5(1 − x1) − (1 − x1)

2)
��������������������������
|0.5(1 − x1) − (1 − x1)2|

√
≥ 0

g2(x) = x4 − 0.8x1 sin 6πx1 +
4π
n

( )
− sign(0.25(1 − x1) − 0.5(1 − x1))

������������������������������
|0.25(1 − x1) − 0.5(1 − x1)|

√
≥ 0

J1 = { j|j is odd and 2 ≤ j ≤ n}

J2 = { j|j is even and 2 ≤ j ≤ n}

yj =
xj − 0.8x1 cos 6πx1 +

jπ

n

( )
if j ∈ J1

xj − 0.8x1 sin 6πx1 +
jπ

n

( )
if j ∈ J2

⎧⎪⎪⎨
⎪⎪⎩

x1 ∈ [0, 1]; x2, . . . , xn ∈ [−2, 2]; n = 10

(A1)

CF7

f1(x) = x1 +
∑
j∈J1

hj(yj)

f2(x) = (1 − x1)
2 +

∑
j∈J2

hj(yj)

g1(x) = x2 − 0.8x1 sin 6πx1 +
2π
n

( )
− sign(0.5(1 − x1) − (1 − x1)

2)
��������������������������
|0.5(1 − x1) − (1 − x1)2|

√
≥ 0

g2(x) = x4 − 0.8x1 sin 6πx1 +
4π
n

( )
− sign(0.25(1 − x1) − 0.5(1 − x1))

������������������������������
|0.25(1 − x1) − 0.5(1 − x1)|

√
≥ 0

J1 = { j|j is odd and 2 ≤ j ≤ n}

J2 = { j|j is even and 2 ≤ j ≤ n}

yj =
xj − 0.8x1 cos 6πx1 +

jπ

n

( )
if j ∈ J1

xj − 0.8x1 sin 6πx1 +
jπ

n

( )
if j ∈ J2

⎧⎪⎪⎨
⎪⎪⎩

h2(t) = h4(t) = t2; hj(t) = 2t2 − cos (4πt) + 1 for j = 3, 4, . . . , n

x1 ∈ [0, 1]; x2, . . . , xn ∈ [−2, 2]; n = 10

(A2)
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P113mod

f1(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2

+ (x5 − 3)2 + 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2

+ (x10 − 7)2 + 45

f2(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 (A3)

g1(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g2(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g3(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

x ∈ [−10, 10]

TP3mod

f1(x) = 5
∑4
i=1

xi − 5
∑4
i=1

x2i −
∑13
i=5

xi

f2(x) = 2x1 + 2x2 + x10 + x11 − 10

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

(A4)

P106mod

f1(x) = x1 + x2 + x3
f2(x) = 0.0025(x4 + x6) − 1

g1(x) = 0.0025(x5 + x7 − x4) − 1 ≤ 0

g2(x) = 0.01(x8 − x5) − 1 ≤ 0

x1 ∈ [1e2, 1e4], {x2, x3} ∈ [1e3, 1e4],

{x4, x5, x6, x7, x8} ∈ [10, 1e3]

(A5)

P116mod

f1(x) = x11 + x12 + x13

f2(x) = x2 − x3

f3(x) = x1 − x2

g1(x) = 0.002x7 − 0.002x8 − 1 ≤ 0

g2(x) = 50 − x11 − x12 − x13 ≤ 0

g3(x) = x11 + x12 + x13 − 250 ≤ 0 (A6)

g4(x) = 1.262626x10 − 1.231059x3x10 − x13 ≤ 0

g5(x) = 0.03475x2 + 0.975x2x5 − 0.00975x22 − x5 ≤ 0

g6(x) = 0.03475x3 + 0.975x3x6 − 0.00975x23 − x6 ≤ 0

{x1, x2, x3} ∈ [0.1, 1], x4 ∈ [1e − 4, 0.1], {x5, x6} ∈ [0.1, 0.9],

{x7, x8} ∈ [0.1, 1e3], x9 ∈ [500, 1000], x10 ∈ [0.1, 500],

x11 ∈ [1, 150], {x12, x13} ∈ [1e4, 150]

Beam

f1(x) =
P

3E

∑10
i=1

12

x3i−2x23i−1

∑10
j=i

x3j

( )3

−
∑10
j=i+1

x3j

( )3
⎡
⎣

⎤
⎦

⎧⎨
⎩

⎫⎬
⎭

f2(x) =
∑10
i=1

x3i−2x3i−1x3i

gi(x) =
6P

x3i−2x23i−1

∑10
j=i

x3j − σallow ≤ 0, i = 1, 2, . . . , 10

g10+i(x) =
x3i−1
x3i−2

− AR ≤ 0, i = 1, 2, . . . , 10 (A7)

g21(x) = Lmin −
∑10
i=1

x3i ≤ 0

x3i−2 ∈ [0.01, 0.05], x3i−1 ∈ [0.3, 0.65],

x3i ∈ [0.5, 1], i = 1, 2, . . . , 10

P = 50e3, E = 200e9, σallow = 35e7, AR = 25, Lmin = 6
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