
Hermitian Spectral Theory of
Mixed Graphs

Ivan Lau

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2020





Abstract
We survey existing results on Hermitian Adjacency, Hermitian Laplacian and nor-
malised Hermitian Laplacian of mixed graphs simultaneously. We also show how to
easily construct non-isomorphic mixed graphs which are cospectral with respect to all
three Hermitian matrix representations.
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Chapter 1

Introduction

Spectral graph theory investigates the relationship between the structure of graphs
and the eigenvalue of matrices associated, notably adjacency matrix, Laplacian ma-
trix and normalised Laplacian matrix. In the undirected graphs settings, there has
been extensive studies about the interplay of eigenvalues of these matrices and various
graph properties, such as the diameter [Chu89Chu89, Moh91Moh91], the chromatic number [Wil67Wil67,
Hof70Hof70, Cve72Cve72, Hae95Hae95], the independence number [Wil86Wil86, LZ14LZ14], bipartiteness and
connectivity. Many surveys and textbooks have been written to keep track of this devel-
opment [Big74Big74, Moh91Moh91, Moh92Moh92, Mer94Mer94, Chu97Chu97, GR00GR00, CRS09CRS09, Zha11Zha11, BH12BH12, Bap14Bap14,
Nic18Nic18]. Beyond mathematical interest, tools and techniques from spectral graph theory
have provided us with many applications across computer science. This includes algo-
rithm design and combinatorial optimization [MP93MP93, ARV08ARV08, BSST13BSST13, Pen13Pen13, Spi17Spi17],
complex network [CL06CL06, Gag11Gag11, VM11VM11], computer vision [SM00SM00, Rob03Rob03], machine
learning and data mining [BN03BN03, Lux07Lux07, Sch07Sch07, Saw08Saw08, NdC11NdC11], to name a few. See
also [Dra11Dra11, ACSŠ12ACSŠ12].

In contrast, there has been relatively little result in the spectral theory of mixed graphs.
The main reason for this is because the adjacency matrix of a mixed graph is not sym-
metric, unlike the case for undirected graphs. Consequently, some eigenvalues may
be complex numbers, which cannot be ordered meaningfully. On the other hand,
many well-known results in the undirected settings rely on studying the smallest,
second smallest, second largest or largest eigenvalue of various associated matrices
[CR90CR90, CS95CS95, Abr07Abr07, ST07ST07, Tre12Tre12, KLL+17KLL+17].

In order to circumvent this, Li and Liu [LL15LL15], and independently Guo and Mohar
[GM17GM17], introduced a different matrix representation, known as Hermitian adjacency
matrix to encode the adjacency of the mixed graph. This matrix is Hermitian, and
hence diagonalizable with real eigenvalues. Several interesting results on the inter-
play between the these eigenvalues and mixed graph structure have been given in these
papers. In fact, certain results generalise from the undirected settings to the mixed
graphs settings immediately by using the same proof technique. This can be seen from
the statement as well as the proof method of [GM17GM17, Proposition 4.4] in generalising
Cvetković inertia bound [Cve71Cve71] (see also [GR00GR00, Lemma 9.6.3]). On the flip side,
[GM17GM17, Corollary 7.3] shows that the diameter of a mixed graph cannot be bounded in
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terms of the number of distinct eigenvalues, unlike the well-behaved undirected case
[BH12BH12, Proposition 1.3.3]. Building on top of the Hermitian adjacency matrix, Hermi-
tian Laplacian matrix and normalised Hermitian Laplacian matrix were introduced by
[QY15QY15] and [Hu18Hu18] respectively, with definitions analogous to their undirected coun-
terparts. Beyond theoretical interest, these matrix representations of mixed graphs have
recently found applications in computer science [LSZ18LSZ18, MBAB18MBAB18].

1.1 Objective

Although Hermitian Laplacian matrix and normalised Hermitian Laplacian matrix of
mixed graphs have been introduced, results about them are relatively sparse as com-
pared to Hermitian adjacency matrix of mixed graphs. Furthermore, the relationship
between the eigenvalues of different matrices are not explicitly stated in any of the
exisiting literature.

The main objective of this report is to survey existing basic results for all three matrix
representations of mixed graphs simultaneously. The author believes that this integral
approach makes their relationship more apparent to be appreciated. For some of the
results being surveyed, the report will also comment on whether there is an analogue
in the undirected setting, as well as the similarity in the proof technique used.

1.2 Main Contributions

The main contributions of the report to the existing literature are as follows:

• We found and fixed errors in Theorems 12(a) and 12(b) of [QY15QY15]. See the
discussion before Propositions 3.3.53.3.5 and 3.4.63.4.6.

• We show how to easily construct non-isomorphic mixed graphs which are cospec-
tral with respect to all three Hermitian matrix representations. See Chapter 4.14.1.

• We proved an analogue of Expander Mixing Lemma for directed graphs. See
Theorem 5.3.15.3.1 and Theorem 5.3.25.3.2.

1.3 Organisation

This report is organised as follows. Chapter 22 sets out the basic notations and terminol-
ogy which will be used throughout the report. Chapter 33 introduces various Hermitian
matrix representations of mixed graphs as well as basic results on the relationship of
their eigenvalues with the graph structure. In Chapter 44, we study cospectrality of
mixed graphs. In particular, we study certain kinds of graph “switching” operations
which allow us to construct many non-isomorphic mixed graphs which have the same
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adjacency, Laplacian and normalised Laplacian spectrum. In Chapter 55, we focus on
directed graphs. In particular, we look at the implications of having a low/high spectral
radius on the graph structure. Chapter 66 reviews what have been done in the report as
well as providing direction for future work.
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Chapter 2

Preliminaries

This report assumes a good background in graph theory and linear algebra. Recomm-
nended texts for these are [Die17Die17] and [HJ13HJ13] respectively. When potentially advanced
concept is used, we will provide pointers to other source for more information. Below
we set out graph-theoretic notations and terminology which will be used throughout
the report.

Let G = (V,E) be a mixed graph with V = {v1,v2, . . . ,vn} and an edge set E ⊆V ×V .
We follow the convention that |V | = n and |E| = m throughout this report. Unless
stated otherwise, V is always finite and there is no loops nor multiple edges in G.

We distinguish undirected edges as unordered pairs {v j,vk} of vertices; and the di-
rected edges as ordered pairs (v j,vk) of vertices. For any pair of vertices v j and vk,
we write v j ↔ vk if there is an undirected edge between them; and v j → vk if there is
a directed edge from v j to vk. If all edges of a mixed graph G is undirected, we call G
an undirected graph. Meanwhile, if all edges of a mixed graph G is directed, we call
G is a directed graph.

The underlying graph of a mixed graph G, denoted by ΓG, is the undirected graph
with the same vertex set with the edge set being undirected edges that ignore the
orientations in E(G). Formallly, V (ΓG) = V (G) and E(ΓG) = {{v j,vk} | {v j,vk} ∈
E(G) or (v j,vk) ∈ E(G)}. The set of all mixed graphs whose underlying graph is
undirected graph Γ is denoted by D(Γ). The elements of D(Γ) will be referred to as
mixed graphs based on Γ. For a vertex v j ∈ V (G), the degree of vertex v j, denoted
by d(v j), is defined as the cardinality of the set {vk ∈V (G) | {v j,vk} ∈ E(ΓG)}.

G = K′3 ΓG = K3

Figure 2.1: Mixed graph G with its underlying graph. Each vertex of G has degree 3.
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Chapter 3

Hermitian Spectral Graph Theory

3.1 Hermitian Adjacency Matrix

We study the spectral theory of mixed graphs based on their Hermitian Adjacency
matrix representations, which is defined as follows: Let G be a mixed graph, then the
Hermitian adjacency matrix of G is the matrix A = A(G) ∈ Cn×n, where

A jk =


1 if v j↔ vk;
i =
√
−1 if v j→ vk;

−i if vk→ v j;
0 otherwise.

Notice that A j,k = Ak, j for 1 ≤ j,k ≤ n. Hence the defined adjacency matrix is Her-
mitian, i.e. A is equal to its conjugate transpose, A∗. This implies that A is unitarily
diagonalizable with real eigenvalues. Furthermore, spectral theorem states that there
exists an orthonormal basis of Cn that consists of eigenvectors of A. For any mixed
graph G, we denote the eigenvalues of A with λ1 ≥ λ2 ≥ ·· · ≥ λn. For convenience, we
call this multiset the adjacency spectrum of G or eigenvalues of G. We further call the
spectral radius of A(G), i.e. max(|λ1|, |λn|), as the spectral radius of G and denote it
by ρ(G). We remark that for an undirected graph Γ (as a special case of mixed graph),
A(Γ) is essentially the adjacency matrix of Γ. Hence, Hermitian adjacency matrix can
be viewed as a generalisation of the well-studied adjacency matrix.

Example 3.1.1. Figure 3.13.1 shows us a mixed graph G and its Hermitian adjacency
matrix. The adjacency spectrum of G is {−2,1,1}. The spectral radius of G is 2.

3.2 Basic Properties of Adjacency Spectrum

Consider forming a mixed graph G by taking the disjoint union of two mixed graphs
G1 and G2. Since adjacency spectrum are invariant for any relabelling of vertices, we
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G = K′3

A(G) =

 0 i 1
−i 0 i
1 −i 0


Figure 3.1: Example of a mixed graph with its Hermitian adjacency matrix

can let matrix A(G) to be the direct sum of matrices A(G1) and A(G2) as illustrated in
Figure 3.23.2.

Hence, the adjacency spectrum of G is simply the multiset sum of the adjacency spectra
of G1 and G2. Inductively, we have the following proposition.

A(G) =

[
A(G1) 0

0 A(G2)

]
Figure 3.2: Hermitian adjacency matrix of disjoint union of two mixed graphs

Proposition 3.2.1. [LL15LL15, Theorem 2.5] If a mixed graph G is a disjoint union of
mixed graphs G1,G2, . . . ,Gc, then the adjacency spectrum of G is the multiset sum of
the adjacency spectra of G1,G2, . . . ,Gc.

We now investigate the relationships between the sum of powers of eigenvalues and the
number of cycle subgraphs in a mixed graph. Lemmas 3.2.23.2.2 and 3.2.43.2.4 are from Propo-
sition 3.6 of [GM17GM17] (see also [LL15LL15, Theorem 3.1(1)]). Since these lemmas hold for
undirected graphs (as special cases of mixed graphs), they generalise the well-studied
corresponding results in the undirected settings, which can be found in many spectral
graph theory monographs such as [BH12BH12, Proposition 1.3.1] and [GR00GR00, Corollary
8.1.3]. In fact, the proof technique used in the mixed graphs settings is similar to the
undirected settings.

Lemma 3.2.2. [GM17GM17, Proposition 3.6] Let G be a mixed graph and let λ1, . . . ,λn be
its eigenvalues. Then it holds that

(i)
n

∑
j=1

λ j = 0;

(ii)
n

∑
j=1

(
λ j
)2

= 2m.

Corollary 3.2.3. A mixed graph G has all eigenvalues being 0 if and only if it is a
trivial graph, i.e. has no edges. In particular, if G has at least an edge, then λ1 > 0 and
λn < 0.

Lemma 3.2.4. [GM17GM17, Proposition 3.6] Let G be a mixed graph, and λ1, . . . ,λn be
its eigenvalues. We denote xk as the number of copies of the subgraph Xk as listed in
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Figure 3.33.3, for any 1≤ k ≤ 4. Then it holds that
n

∑
j=1

(
λ j
)3

= 6(x2 + x3 + x4− x1)

X1 X2 X3 X4

Figure 3.3: The number of subgraphs listed above, whose underlying graph is a 3-cycle,
will contribute to the trace of A3.

3.3 Spectral Radius

In this section, we study some bounds on the spectral radius of any mixed graph G =
(V,E). For convenience, we denote the maximum degree of a mixed graph G by ∆(G).

We first show that the spectral radius of any mixed graph G is bounded above by the
biggest eigenvalue of its underlying graph in Theorem 3.3.13.3.1. Clearly, this result has
no analogue in the undirected settings! That said, its proof is elementary and requires
only triangle inequality.

Theorem 3.3.1. [GM17GM17, Theorem 5.7] Let G be a mixed graph. Then ρ(G)≤ ρ(ΓG).

Next, we recall the well-known spectral graph theory result that the spectral radius
of an undirected graph Γ is bounded above by ∆(Γ) in Proposition 3.3.23.3.2. The proof
for the equality requires knowledge of Perron-Frobenius theorem. However, the proof
for the inequality is elementary. Note that analogue of Proposition 3.3.23.3.2 doesn’t hold
for mixed graphs. For instance, the mixed graph K′3 in Example 3.1.13.1.1 has adjacency
spectrum {−2,1,1}. For further discussion about mixed graphs with property λ1(G)<
ρ(G), we refer readers to Section 5 of [GM17GM17].

Proposition 3.3.2. [BH12BH12, Section 3.1] For undirected graph Γ, ρ(Γ) = λ1(Γ)≤∆(Γ).

By transitivity on Theorem 3.3.13.3.1 and Proposition 3.3.23.3.2, we know that the spectral ra-
dius of any mixed graph G is bounded above by ∆(G). A one-liner proof was first given
for this result in [LL15LL15, Theorem 3.1(2)] by using the rather sophisticated Gershgorin
Circle Theorem. A more elementary but lengthier proof was given later in [GM17GM17,
Theorem 5.1]. And here, we presented yet another proof.

Theorem 3.3.3. For a mixed graph G, ρ(G)≤ ∆(G).

Proof. This follows immediately from Theorem 3.3.13.3.1 and Proposition 3.3.23.3.2.
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We now give a lower bound for spectral radius of mixed graph.

Proposition 3.3.4. Let G be a mixed graph. Let davg to be the average of the degree
of all vertices in G. Then ρ(G)≥

√
davg.

Proof. It follows from the handshaking lemma, Lemma 3.2.23.2.2(ii) and the definition of
spectral radius that

n

∑
j=1

d(v j) = 2m =
n

∑
j=1

(
λ j
)2 ≤ n(ρ(G))2.

Divide both sides by n and takes the square root gives us the claim.

Proposition 3.3.43.3.4 is tight for the directed graph K′4 in Figure 3.43.4. Note that this proposi-
tion implies that the well-known inequality in the undirected settings, ρ(G)= λ1≥ davg
[BH12BH12, Proposition 3.12], doesn’t hold in the mixed graphs settings.

D1 D2

A(K′4) =


0 i i i
−i 0 −i i
−i i 0 −i
−i −i i 0



Figure 3.4: K′4 with adjacency spectrum {−
√

3,−
√

3,
√

3,
√

3}.

We would also like to point out that K′4 in Figure 3.43.4 seems to contradict the claim in
Theorem 12(a) of [QY15QY15]. Theorem 12(a) of [QY15QY15] claims that for a mixed graph G,
it holds that

√
∆(G)+1 ≤ λ1. Applying the claim to K′4, we have 2 =

√
3+1 ≤

√
3,

which is absurd. Scrutinising the proof , we found a careless mistake on the line

“By Theorem 8, we have λ1(M)≥ λ1(K1,∆) =
√

∆+1”

It is well-known that for star graph Sn = K1,∆, we have λ1(K1,∆) =
√

∆ instead of√
∆+1. Once this is fixed, the proof works fine. We remark that this proposition

generalises the corresponding result in the undirected settings, using a similar proof
[CR90CR90].

Proposition 3.3.5. [QY15QY15, Theorem 12(a)] Let G be a mixed graph with maximum
degree ∆. Then λ1(G)≥

√
∆.

3.4 Hermitian and Normalised Hermitian Laplacian Ma-
trix

In the spectral theory of undirected graphs, there are other matrix representations which
are well-studied besides adjacency matrix representation. Two very common represen-

10



tations are known as the Laplacian matrix representations and normalised Laplacian
matrix representation. The spectrum of these matrices have many useful properties
and applications. For instance, the second smallest eigenvalue of both these matrices
can be used to approximate the sparsest cut of a graph [AM85aAM85a, Alo86Alo86]. They have
been used to construct low dimensional embeddings [NdC11NdC11], which are useful for a
variety of machine learning applications. Motivated by this, we study similar matrix
representations in the mixed graphs settings.

3.4.1 Hermitian Laplacian Matrix

The Hermitian Laplacian matrix of a mixed graph G is the matrix L = L(G) ∈Cn×n

defined by L = D−A, where D is the diagonal matrix defined by D j j = d(v j) and A is
the Hermitian adjacency matrix of G. More explicitly, we have

L jk =

{
d(v j) if j = k;
−A jk otherwise.

It is clear that any Hermitian Laplacian matrix L is Hermitian. Thus, L is also unitarily
diagonalizable with real eigenvalues. For any mixed graph G, we denote the eigen-
values of L with τ1 ≤ τ2 ≤ ·· · ≤ τn. We call this multiset the Laplacian spectrum of
G. It is clear that we have an analogue of Proposition 3.2.13.2.1 for Laplacian spectrum.
Note that we are following the convention of denoting the Laplacian spectrum in an
increasing order.

Example 3.4.1. Reusing K′4 as example, we have its Laplacian matrix as below.

D1 D2

L(K′4) =


3 −i −i −i
i 3 i −i
i −i 3 i
i i −i 3



Figure 3.5: K′4 with Laplacian spectrum {3−
√

3, 3−
√

3, 3+
√

3, 3+
√

3}.

Proposition 3.4.2. If a mixed graph G is a union of mixed graphs G1,G2, . . . ,Gc,
then the Laplacian spectrum of G is the multiset sum of the Laplacian spectra of
G1,G2, . . . ,Gc.

Applying handshaking lemma on the trace of L, we immediately get the following
proposition. This clearly holds in the undirected settings.

Proposition 3.4.3. Let G be a mixed graph. Then
n

∑
j=1

τ j =
n

∑
j=1

d(v j) = 2m.
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Furthermore, L is a positive semi-definite matrix, i.e. all its eigenvalues are non-
negative. This is first proved in [QY15QY15, Theorem 9]. A different proof is given in
Remark 1 of the same paper. This theorem is a generalisation of the corresponding
theorem in the undirected settings [AM85bAM85b]. That said, both proof techniques used in
[QY15QY15] are similar to the proofs used in the undirected settings (see [GR00GR00, page 280]
and [Nic18Nic18, Formula 7.2]).

Theorem 3.4.4. [QY15QY15, Theorem 9] The Hermitian Laplacian matrix of any mixed
graph is a positive semi-definite matrix.

We remark that although τ1 = 0 is always an eigenvalue of the Laplacian matrix in
undirected settings [GR00GR00, page 280], this is not the case for mixed graphs. We are
only certain that τ1≥ 0 for mixed graphs. For instance, K′4 in Figure 3.53.5 has a Laplacian
spectrum of {3−

√
3, 3−

√
3, 3+

√
3, 3+

√
3}.

Proposition 3.4.33.4.3 and Theorem 3.4.43.4.4 give us some bounds on τ2. Of course, this bound
holds for undirected graphs as well using an identical proof.

Proposition 3.4.5. Let G be a mixed graph. Then τ2 ≤ 2m/(n−1).

Proof. Since τ1 ≥ 0, we have
n

∑
j=2

τ j ≤ 2m. Hence, we have τ2 ≤ 2m/(n−1).

We would like to point out that the claim in Theorem 12(b) of [QY15QY15] is again,
careless. Theorem 12(b) of [QY15QY15] claims that for a mixed graph G, it holds that
∆(G)+ 1 ≤ τn. There is a trivial counter example: G is a mixed graph with a vertex
but no edges. It is clear that ∆(G) = 0 = τn(G). This implies 1 ≤ 0, which is absurd.
The statement can be fixed by adding the condition of “Let G be a mixed graph with at
least one edge.” Now the statement and the proof work fine. This result also generalise
from the undirected settings, using a similar proof [GM94GM94, Corollary 2].

Proposition 3.4.6. [QY15QY15, Theorem 12(b)] Let G be a mixed graph with at least one
edge. Denote the maximum degree of G by ∆. Then ∆+1≤ τn(G)≤ 2∆.

3.4.2 Normalised Hermitian Laplacian Matrix

Let G be a mixed graph with Hermitian Laplacian matrix L. The normalised Her-
mitian Laplacian matrix of G is the matrix L = L(G) ∈ Cn×n defined by L =

D−1/2LD−1/2, where D−1/2 is the diagonal matrix defined by
(

D−1/2
)

j j
=
√

d(v j).

More explicitly, we have

L jk =


1 if j = k and d(v j) 6= 0;

−
A jk√

d(v j)d(vk)
if j 6= k and v j is adjacent to vk;

0 otherwise.
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Example 3.4.7. Reusing K′4 as example, we have its normalised Laplacian matrix as
below.

D1 D2

L(K′4) =


1 −i/3 −i/3 −i/3

i/3 1 i/3 −i/3
i/3 −i/3 1 i/3
i/3 i/3 −i/3 1



Figure 3.6: K′4 with normalised Laplacian spectrum {1−
√

3/3, 1−
√

3/3, 1+
√

3/3,
1+
√

3/3}.

It is clear that any normalised Hermitian Laplacian matrix L is Hermitian. Thus, L is
unitarily diagonalizable with real eigenvalues. For any mixed graph G, we denote the
eigenvalues of L(G) with µ1 ≤ µ2 ≤ ·· · ≤ µn. We call this multiset the normalised
Laplacian spectrum of G. It is clear that we have an analogue of Proposition 3.2.13.2.1
for normalised Laplacian spectrum.

Proposition 3.4.8. If a mixed graph G is a union of mixed graphs G1,G2, . . . ,Gc, then
the normalised Laplacian spectrum of G is the multiset sum of the Laplacian spectra
of G1,G2, . . . ,Gc.

Observe that tr(L) is the number of non-isolated vertices, which is bounded above by n.
Hence, the sum of normalised Laplacian spectrum is at most n. It is also clear that each
trivial component of a mixed graph (consisting only an isolated vertex) contributes a 0
to the normalised Laplacian spectrum. Furthermore, when G has no isolated vertices,
we have L = In−D−1/2AD−1/2. In this case, tr(L) = n.

Similar to (unnormalised) Laplacian matrix, L is also a positive semi-definite matrix.
This is first proved in [Hu18Hu18, page 113]. This theorem is also the generalisation of the
theorem in the undirected setting, using a similar proof technique [Chu97Chu97, Equation
1.1]. We also remark that although 0 is always an eigenvalue of the normalised Lapla-
cian matrix in undirected settings [Chu97Chu97, page 4], this is not the case for mixed graphs.
For instance, K′4 in Figure 3.63.6 has a normalised Laplacian spectrum of {1−

√
3/3,

1−
√

3/3, 1+
√

3/3, 1+
√

3/3}.

Theorem 3.4.9. [Hu18Hu18, page 113] The normalised Hermitian Laplacian matrix of any
mixed graph is a positive semi-definite matrix.

In fact, the normalised Laplacian spectrum is bounded above by 2. This is first proved
in [Hu18Hu18, page 114]. Again, this is also the generalisation of the theorem in the undi-
rected setting using a similar proof technique [Chu97Chu97, Lemma 1.7(v)].

Theorem 3.4.10. [Hu18Hu18, page 114] The eigenvalues of the normalised Hermitian
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Laplacian matrix of any mixed graph is at most 2.

Similar to the undirected graphs settings, for mixed graph G with no isolated vertices,
we can relate the adjacency spectrum and normalised Laplacian spectrum by applying
Sylvesters law of inertia [Cav10Cav10, page 25]. For more details about Sylvesters law of
inertia, see [HJ13HJ13, Theorem 4.5.8])

Proposition 3.4.11. Let G be a mixed graph with no isolated vertices. Then t he
multiplicity of 0 as an eigenvalue for A equals the multiplicity of 1 as an eigenvalue for
L . Furthermore, the number of positive (resp. negative) eigenvalue of A corresponds
to the number of eigenvalues of L in [0,1) (resp. (1,2]) for L .

Proof. The proof follows immediately from applying Sylvesters law of inertia to the
matrix I−L and A.
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Chapter 4

Cospectrality

We say two mixed graphs G1 and G2 are isomorphic if they are the “same” graph up
to relabelling. Formally, G1 and G2 are isomorphic if there is a permutation matrix
such that A(G1) = PA(G2)Pᵀ. It is clear that two isomorphic mixed graphs have the
same Hermitian adjacency, Laplacian and normalised Laplacian spectrum. However,
the converse is not true.

In spectral theory of undirected graph, it is well known that there are non-isomorphic
undirected graphs which share the same adjacency spectrum. The smallest such pair
of graphs have 5 vertices each, as shown in Figure 4.14.1 [VCS57VCS57]. Each of them has the
adjacency spectrum of {−2,0,0,0,2}. Notice also that the first graph in Figure 4.14.1 is
not connected while the second graph is connected. Therefore, we see that having the
same adjacency spectrum does not translate to having the same connectivity properties.

S5C4∪K1

Figure 4.1: The smallest pair of non-isomorphic cospectral undirected graphs.

In this report, we say two mixed graphs are cospectral if they have the same adjacency
spectrum. Clearly, any pair of cospectral but non-isomorphic undirected graph such as
Figure 4.14.1 is a pair of cospectral non-isomorphic mixed graph. We remark that there
exist mixed graphs which share the same adjacency spectrum but not Laplacian and
normalised Laplacian spectrum. Figure 4.14.1 gives an easy example.

The smallest pair of non-isomorphic cospectral mixed graphs (4 vertices and 3 edges)
with non-isomorphic underlying graph is as shown in Figure 4.24.2 below. Furthermore,
we observe from Figure 4.34.3 that although mixed graphs G1,G2 and G3 are cospectral,
they are connected, weakly connected, and disconnected respectively. Therefore, we
see that cospectrality doesn’t translate to sharing the same connectivity properties for
mixed graphs.

15



Figure 4.2: The smallest pair of cospectral mixed graph with non-isomorphic underlying
graph [GM17GM17, Figure 10].

G3G2G1

Figure 4.3: Cospectral mixed graphs with different connectivity properties [GM17GM17, Fig-
ure 9].

Observe G1 and G2 in Figure 4.34.3 are non-isomorphic even though they are cospec-
tral and share a same underlying graph. The smallest pair of such non-isomorphic
cospectral mixed graphs is given in Figure 4.44.4, which both have adjacency spectrum
of {−1,1}.

K2 K′2

Figure 4.4: The smallest pair of non-isomorphic cospectral mixed graphs.

In Chapter 4.14.1, we will investigate in details on cospectral mixed graphs which share
the same underlying graph. This involves studying various graph “switching” opera-
tion that preserve spectrum and underlying graph. Later on in Chapter 4.24.2, we focus
on mixed graphs which are cospectral with their underlying graph.

4.1 Cospectrality within D(Γ)

Consider two cospectral mixed graphs G and G′ which have the same underlying graph.
One way to describe G′ is by describing the changes required to make on each edge in
E(G). For instance, we can change certain directed edge to an undirected edge, reverse
the direction of an directed edge, etc.

It is natural to ask if there is a general structure behind graph operations that output
a cospectral graph of the input mixed graph. In this section, we will investigate two
different types of graph operations that output a cospectral graph of the input mixed
graph. Interestingly, the output mixed graphs of both types have the same Laplacian
and normalised Laplacian spectrum as the input mixed graph (see Propositions 4.1.24.1.2
and 4.1.44.1.4). This allows us to easily construct many non-isomorphic mixed graphs
which have the same adjacency, Laplacian and normalised Laplacian spectrum.
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4.1.1 Converse Graph is Cospectral

Our first type of graph operation is rather straightforward: reverse the direction of each
directed edge, i.e. the output graph is the converse graph. Observe that for a mixed
graph G, we have A(G∗) = [A(G)]ᵀ. Since a square matrix is similar to its transpose,
we immediately have the following proposition.

Proposition 4.1.1. [GM17GM17, Proposition 8.1] A mixed graph G and its converse are
cospectral.

In fact, G∗ shares the same Laplacian and normalised Laplacian spectrum with G as
well.

Proposition 4.1.2. A mixed graph G and its converse have the same Laplacian and
normalised Laplacian spectrum.

Proof. For convenience, we write A = A(G) and D = D(G) = D(G∗). Note that Aᵀ =
A(G∗) and Dᵀ = D. We then have

L(G∗) = Dᵀ−Aᵀ = (D−A)ᵀ = [L(G)]ᵀ.

As a square matrix is similar to its transpose, the claim follows.

Similarly, for normalised Laplacian matrix, we have

L(G∗) = D−1/2L(G∗)D−1/2

=
(

D−1/2
)ᵀ

[L(G)]ᵀ
(

D−1/2
)ᵀ

=
(

D−1/2L(G)D−1/2
)ᵀ

= L(G)ᵀ

While the graph operation of taking converse can be applied to any mixed graph, it
is rather limited and provides us at most one cospectral graph of G. For instance, the
graph operation required to obtain K2 from K′2 in Figure 4.44.4 is not included.

4.1.2 Graph Switching

In contrast to the graph operation of taking converse, our next type of cospectral graph
operations is rather complicated. This idea was first shown in page 23 of [GM17GM17]. Al-
gebraically, the graph operations are represented by similarity transformations through
invertible diagonal matrices. Furthermore, we will show that these graph operations
preserve the Laplacian and normalised Laplacian spectrum.

We first describe the edge relations required. Let G be a mixed graph. Suppose that its

vertex set V is partitioned into 4 (possibly empty) sets, V1,Vi,V−1,V−i, i.e. V =
3⋃

r=0

Vir .
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V1
V−1

V−i Vi

V1
V−1

V−i Vi

Figure 4.5: Four-way switching on the admissible edges. [GM17GM17, Figure 11]

An undirected edge {v j,vk} or a directed edge (v j,vk) is said to be of type (ω1,ω2) if
v j ∈Vω1 and vk ∈Vω2 for ω1,ω2 ∈ {1, i,−1,−i}. We say a partition of vertex set V is
admissible if all of the following conditions hold:

(i) each edge must be of type (ω,ω),(ω, iω),(ω,−iω),(ω,−ω);

(ii) each edge of type (ω, iω) is an undirected edge;

(iii) each edge of type (ω,−iω) is a directed edge from Vω to V−iω;

(iv) each edge of type (ω,−ω) is a directed edge from Vω to V−ω.

We now describe the graph operations. Let G be a mixed graph. A four-way switching

with respect to partition V (G) =
3⋃

r=0
Vir is a graph operation of changing G into a mixed

graph G′ by making the following changes:

(i) reversing the direction of each directed edge of type (ω,−ω);

(ii) replacing each undirected edge of type (ω, iω) with a directed edge from Vω to
Viω;

(iii) replacing each directed edge of type (ω,−iω) with an undirected edge of type
(−iω,ω).

We are now ready to state [GM17GM17, Theorem 8.5], which proves that if admissibility
is satisfied, then the adjacency spectrum is preserved under four-way switching oper-
ation. We will sketch a proof below as certain notions used in the proof is required to
prove Proposition 4.1.44.1.4.

Theorem 4.1.3. [GM17GM17, Theorem 8.5] Let G be a mixed graph such that the partition

of its vertex set V =
3⋃

r=0
Vir is admissible. Let G′ be the mixed graph obtained from G

through the four-way switching operation. Then, G and G′ are cospectral.

Proof Sketch. Define a diagonal matrix S ∈ Cn×n such that S j j = ω ∈ {1, i,−1,−i} if
v j ∈Vω. For brevity, we write A = A(G) and A′ = A(G′). Define a matrix B = S−1AS.
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Then, for an arbitrary pair of vertex v j and vertex vk, we can verify that

B jk = A jk
Skk

S j j
= Bk j.

Thus, B is a well-defined Hermitian adjacency matrix of a mixed graph with the same
underlying graph as G, which is due to the admissibility of V . We are left with ver-
ifying that the similarity transformation correctly represents the four-way switching
operation, i.e. A′jk = B jk for all j,k.

Proposition 4.1.4. Let G and G′ be mixed graphs as in Theorem 4.1.34.1.3, then G has the
same Laplacian and normalised Laplacian spectrum with G′.

Proof. For convenience, we write A = A(G), A′ = A(G′), L = L(G), L′ = L(G′), L =
L(G), L ′ = L(G′) and D = D(G) = D(G′). From the proof sketch of Theorem 4.1.34.1.3,
we have A′ = S−1AS for some invertibe diagonal matrix S. We have

L′ = D−A′

= D−S−1AS

= S−1SD−S−1AS

= S−1DS−S−1AS

= S−1(D−A)S

= S−1LS.

Note that the fourth equality is due to diagonal matrices commute under matrix mul-
tiplication. As L′ and L are similar matrices, G and G′ have the same Laplacian spec-
trum.

Similar analysis on L ′ gives us

L ′ = D−1/2L′D−1/2

= D−1/2 (S−1LS
)

D−1/2

= S−1
(

D−1/2LD−1/2
)

S

= S−1LS.

Thus, G and G′ have the same normalised Laplacian spectrum.

Consider an undirected forest F and a mixed graph G ∈ D(F). We can change each
edge in F to match the edge type in G through repeated four-way switchings. We will
illustrate how to do this through an example. Suppose we want to change an edge
{u,v} of F from an undirected edge to a directed edge (u,v). Then we can partition the
vertices of F into V1 and Vi such that u ∈ V1 and v ∈ Vi and {u,v} is an cut-edge. The
four-way switching will change {u,v} to (u,v) while all the other edges are unaffected.
Since this partition is admissible, we have the adjacency spectrum preserved after the
switching. Similar analysis applies to other types of edge change. Inductively, we
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can change each edge in F to become G eventually, while preserving the adjacency
spectrum throughout the process.

This gives us the following corollary which was first proved in [LL15LL15, Corollary 2.21].
The proof idea in the paragraph above is based on the proof in [GM17GM17, Corollary 8.4].

Corollary 4.1.5. [LL15LL15, Corollary 2.21] Let F be a forest. Then all mixed graphs
whose underlying graph is F are cospectral with F .

Proposition 4.1.44.1.4 allows to strengthen the claim in Corollary 4.1.54.1.5.

Corollary 4.1.6. Let F be a forest. Then all mixed graphs whose underlying graph is
F have the same Laplacian and normalised Laplacian spectrum with F .

4.1.3 Switching Equivalence

Suppose G′ can be obtained from G by applying a sequence of four-way switchings
and operations of taking the converse. We say these two mixed graphs are switching
equivalent. Proposition 3.3 in [Moh16Moh16] shows that two mixed graphs G and G′ being
switching equivalent is in fact an equivalence relation on the set D(ΓG).

Proposition 4.1.7. [Moh16Moh16, Proposition 3.3] Let Γ be an undirected graph. Then,
switching equivalence is an equivalence relation on the set D(Γ). Furthermore, for all
G∈D(Γ), switching equivalence class of G contains all mixed graphs that are obtained
from G or G∗ by a single application of four-way switching operation.

Proposition 4.1.8. If mixed graphs G and G′ are switching equivalent, then G has the
same Laplacian and normalised Laplacian spectrum with G′.

Proof. From Proposition 4.1.74.1.7, either G′ is obtained from G or G∗ by a single appli-
cation of a four-way switching. For the first case, the claim follows immediately from
Proposition 4.1.44.1.4.

For the second case, Proposition 4.1.14.1.1 gives us G and G∗ have the same Laplacian and
normalised Laplacian spectrum, while Proposition 4.1.44.1.4 gives us G∗ and G′ have the
same Laplacian and normalised Laplacian spectrum. The claim follows.

It is clear that two switching equivalent graphs necessarily have the same underlying
graph. However, we are not sure if two cospectral graph with the same underlying
graph are necessarily switching equivalent. Hence, we would like to propose the fol-
lowing problem:

Problem 4.1.9. For any mixed graph G, are the following conditions equivalent?

(i) G′ is switching equivalent to G;

(ii) G′ ∈D(ΓG) and G′ is cospectral to G.
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4.2 Mixed Graphs Which are Cospectral to Their Under-
lying Graph

If a pair of mixed graphs G and G′ are switching equivalent, then they share the same
underlying graph, i.e. ΓG = ΓG′ . As stated in Problem 4.1.94.1.9, we are not sure if there
exist cospectral graphs G and G′ such that ΓG = ΓG′ , but G and G′ are not switching
equivalent. However, much more can be said if a mixed graph is cospectral to its
underlying graph. In this section, we show that for any undirected graph Γ, all mixed
graphs G ∈D(Γ) which are cospectral to Γ are switching equivalent to each other.

We first show in Theorem 4.2.14.2.1 that for a connected (undirected) graph Γ, a mixed
graph G ∈ D(Γ) is cospectral to Γ if and only if G and Γ are switching equivalent.
This allows us to deduce in Corollary 4.2.24.2.2 that for a connected graph Γ, if G and
G′ ∈ D(Γ) are both cospectral to Γ, then G and G′ are switching equivalent. We
then generalize this to all undirected mixed graph using mathematical induction on the
number of components.

The next theorem is first shown in [Moh16Moh16, Theorem 4.1].

Theorem 4.2.1. [Moh16Moh16, Theorem 4.1] Let Γ be a connected undirected graph. Let
G be a mixed graph obtained from Γ by deleting some edges and orienting a subset of
the remaining edges. The following statements are equivalent:

(i) G and Γ are cospectral.

(ii) λ1(G) = λ1(Γ).

(iii) None of the edges have been deleted and there exists a partition of the vertex-
set of G into 4 (possibly empty) parts V1,Vi,V−1,V−i such that the following
holds. For ω ∈ {1, i,−1,−i}, the subgraph induced by Vω in G contains only
undirected edges. Every other edges of G is a directed edge from Vω to V−iω for
some ω ∈ {1, i,−1,−i}. See Figure 4.64.6.

(iv) G and Γ are switching equivalent.

V1 V−i

Vi
V−1

(a)

V1 V−i

Vi
V−1

(b)
Figure 4.6: Structure from Theorems 4.2.14.2.1(iii) [Moh16Moh16, Figure 3].

It is clear from Theorem 4.2.14.2.1 that for a connected undirected graph Γ, a mixed graph
G ∈ D(Γ) is cospectral to Γ if and only if G and Γ are switching equivalent. Since
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switching equivalence is an equivalence relation on the set D(Γ), we have the follow-
ing corollary.

Corollary 4.2.2. Let Γ be a connected undirected graph and G, G′ ∈ D(Γ). If G and
G′ are both cospectral to Γ, then G and G′ are switching equivalent.

Recall that the smallest eigenvalue for Laplacian and normalised Laplacian matrix of
undirected graph is always 0. Together with Proposition 4.1.84.1.8 and Theorem 4.2.14.2.1, we
can deduce the following.

Corollary 4.2.3. Let Γ be a connected undirected graph. If mixed graph G ∈D(Γ) is
cospectral with Γ, then τ1(G) = µ1(G) = 0.

In fact, the converse is true as well.

Theorem 4.2.4. [QY15QY15, Theorem 10] Let G be a connected mixed graph. If τ1(G) = 0
or µ1(G) = 0 , then G is cospectral with ΓG.

To summarise, for a weakly connected mixed graph G = (V,E), the following condi-
tions are equivalent.

(i) G is cospectral to ΓG.

(ii) λ1(G) = λ1(ΓG).

(iii) There exists a partition of V into 4 (possibly empty) parts V1,Vi,V−1,V−i such
that the following holds. For ω ∈ {1, i,−1,−i}, the subgraph induced by Vω in
G contains only undirected edges. Every other edges of G is a directed edge
from Vω to V−iω for some ω ∈ {1, i,−1,−i}. See Figure 4.64.6.

(iv) G and ΓG are switching equivalent.

(v) G has the same Laplacian spectrum as ΓG.

(vi) G has the same normalised Laplacian spectrum as ΓG.

(vii) τ1(G) = 0.

(viii) µ1(G) = 0.

We emphasize that Theorem 4.2.14.2.1 and Theorem 4.2.44.2.4 are true only for weakly con-
nected mixed graph. In particular, conditions (ii), (vii) and (viii) of the summary above
are necessary but not sufficient conditions for a mixed graph G to be cospectral to ΓG.

In fact, it is easy to construct counterexample: Let G be the disjoint union of mixed
graphs G1 and G2, where G1 is cospectral to ΓG1 but G2 isn’t cospectral to ΓG2 . Ap-
plying Proposition 3.2.13.2.1 to G = G1 ∪G2 and ΓG = ΓG1 ∪ΓG2 , we see that G is not
cospectral to ΓG. However, Propositions 3.4.23.4.2 and 3.4.83.4.8, together with the fact that G1
is cospectral to ΓG1 gives us τ1(G) = µ1(G) = 0.

Fortunately, the remaining conditions can be extended to mixed graphs which are not
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weakly connected, using mathematical induction and Proposition 3.2.13.2.1.

Theorem 4.2.5. Let Γ be an undirected graph with c components, i.e. Γ is a union of
undirected graphs Γ1,Γ2, . . . ,Γc. Suppose a mixed graph G ∈D(Γ) is cospectral to Γ.
Then G is switching equivalent to Γ.

Proof. We denote G j as the component corresponds to Γ j for j = 1, . . . ,c. Since G is
cospectral to Γ, we have λ1(G) = λ1(Γ).

We first notice that there exists some j where 1 ≤ j ≤ c, such that λ1(G j) = λ1(G) =
λ1(Γ) = λ1(Γ j). This must be true as otherwise we will have λ1(G j) > λ1(Γ j) for
some j. But then this implies ρ(G j) ≥ λ1(G j) > λ1(Γ j) = ρ(Γ j). which contradicts
Theorem 3.3.13.3.1.

Applying Theorem 4.2.14.2.1 on G j and Γ j, we have G j and Γ j are switching equivalent.
Thus, we can get Γ j from G j through four-way switching operation. We now consider
the remaining graph components, i.e. the mixed graph G−G j and the undirected
graph Γ−Γ j. Repeating the same argument inductively, we have each component of
G is switching equivalent to its corresponding component in Γ. It follows easily that
we can get Γ from G through four-way switching operations and hence G is switching
equivalent to Γ.

Corollary 4.2.6. Let Γ be an undirected graph and G, G′ ∈D(Γ). If G and G′ are both
cospectral to Γ, then G and G′ are switching equivalent.
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Chapter 5

Structure and Randomness in
Directed Graphs

In this chapter, we will focus only on directed graphs. In Section 5.15.1, we will look
at what extra eigenvalues properties do directed graphs possess. In Section 5.25.2, we
revisit earlier studies on cospectrality for mixed graphs by restricting them to directed
graphs. In Section 5.35.3, we investigate the graph properties of directed graphs which
possess low µn. In Section 5.45.4, we look at Quasi-randomness conditions for directed
graphs from the perspective of spectral radius and netflow. In Section 5.55.5, we study
the upper bound for the minimum spectral radius among all directed graphs with the
same underlying graph.

Skew-Adjacency Matrix of Directed Graphs

Before Hermitian adjacency matrix was introduced to study mixed graphs, a matrix
representation known as skew-adjacency matrix of directed graphs was introduced to
study directed graphs [CCF+12CCF+12]. Instead of using ±i to encode the directed edges, the
skew-adjacency matrix uses ±1. It is clear that if we use Hermitian adjacency matrix
to study only directed graphs, then these two matrix representation are essentially the
same up to scalar multiple of i. In particular, the spectrum are purely imaginary, which
can be harmlessly made real by multiplying by −i. That said, skew-adjacency matrix
representation has a big disadvantage: if we try to define skew Laplacian matrix “nat-
urally” by taking off the adjacency matrix from the degree matrix, then the resulting
Laplacian matrix is not necessarily diagonalisable with real eigenvalues.

5.1 Directed Graphs and their Spectrum

Let G be a directed graph with adjacency matrix A. In fact, the adjacency spectrum
of a directed graph G is symmetric about 0. Two rather different proofs are given by
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[LL15LL15, Corollary 2.13] and [GM17GM17, Theorem 6.2].

The proof given by [LL15LL15, Corollary 2.13] is an easy corollary of [LL15LL15, Theorem
2.8], which gives an explicit formula for the coefficients of the characteristic polyno-
mial of A based on the combinatorial properties of G. Meanwhile, the proof given
by [GM17GM17, Theorem 6.2] requires only basic algebra. We present another proof here,
which requires only elementary linear algebra.

Proposition 5.1.1. The adjacency spectrum of a directed graph G is symmetric about
0.

Proof. Notice that A jk = −Ak j for all 1 ≤ j,k ≤ n. Thus, A is skew-symmetric, i.e.
Aᵀ =−A. Since A is similar to Aᵀ, A is similar to −A. This implies A and −A have the
same spectrum. Since λ is an eigenvalue of A if and only if−λ is an eigenvalue of−A,
we conclude that the adjacency spectrum of A is symmetric about 0.

In fact, our proof technique used in Proposition 5.1.25.1.2 can be used to prove a similar
statement for the normalised Laplacian spectrum.

Proposition 5.1.2. Let G be a directed graph with no isolated vertices, then its nor-
malised Laplacian spectrum of is symmetric about 1.

Proof. Recall that if G has no isolated vertices, we have L = In−D−1/2AD−1/2. Ap-
plying similar analysis as in the proof of Proposition 5.1.25.1.2 on the matrix D−1/2AD−1/2

shows that the eigenvalues of D−1/2AD−1/2 is symmetric about 0. It follows that the
eigenvalues of L is symmetric about 1.

This motivates us to define spectral expansion of a directed graph G as µ(G) =
max

j∈{1,...n}
|1− µ j| = 1− µ1. In particular, for directed graph with no isolated vertices,

we have µ(G) = 1− µ1 = µn− 1. For a directed graph G with isolated vertices, we
know each trivial component of G contributes a 0 to the normalised Laplacian spec-
trum. In some sense, its normalised Laplacian spectrum is symmetric about 1 if we
“ignore” these trivial 0’s. Furthermore, it is possible that µ(G) = 1−µ1 = 1 > µn−1.

5.2 Directed Graphs with maximum spectral expansion

We now revisit earlier studies on cospectrality for mixed graphs by restricting them to
directed graphs. It is clear that a weakly connected directed graph G = (V,E) has no
isolated vertices. For weakly connected directed graphs, the following conditions are
equivalent.

(i) G is cospectral to ΓG.

(ii) λ1(G) = λ1(ΓG).

(iii) λn(G) =−λ1(ΓG).
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(iv) There exists a partition of V into 4 (possibly empty) parts V1,Vi,V−1,V−i such
that the following holds. Every edge of G is a directed edge from Vω to V−iω for
some ω ∈ {1, i,−1,−i}. See Figure 5.15.1.

(v) G and ΓG are switching equivalent.

(vi) G has the same Laplacian spectrum as ΓG.

(vii) G has the same normalised Laplacian spectrum as ΓG.

(viii) τ1(G) = 0.

(ix) µ1(G) = 0.

(x) µn(G) = 2.

(xi) µ(G) = 1.

V1 V−i

Vi
V−1

(a)

V1 V−i

Vi
V−1

(b)
Figure 5.1: Structure for Directed Graphs with maximum spectral radius/expansion.

Note that if a directed graph G is not weakly connected, then conditions (ii), (iii), (viii),
(ix), (x) and (xi) are necessary but not sufficient for G to be cospectral to its underlying
graph ΓG.

Observe that the equivalence of graph property based condition (iv) with other spectrum-
based conditions has an interesting suggestion: the information about the flow of edges
such as imbalances in the directions of the edges perhaps can be known by studying the
various graph spectrum. We highlight an example which may arise naturally in many
contexts: Suppose we are interested to investigate whether it’s possible to partition the
vertices of a directed graph G = (V,E) into two partitions V =V1

⋃
V−i such that every

edge is an edge from V1 to V−i, i.e. the net flow from V1 to V−i is exactly |E|. It follows
that a necessary condition is that µ(G) = 1.

We also remark that the example above can be seen as a directed analogue of the classic
result in spectral theory of undirected graph: An undirected graph Γ can be partitioned
into 2 components if and only if the second smallest eigenvalue of the normalised
Laplacian matrix is 0 [Chu97Chu97, Lemma 1.7(iv)].
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5.3 Directed Graphs with low spectral expansion

In the previous section, we have seen that having a maximum spectral expansion is
necessary to be able to bi-partition a directed graph to achieve a net flow of |E|. In this
section, we show that having a low spectral expansion corresponds to not being able to
find any bi-partition that yields a high net flow.

Let G = (V,E) be a directed graph. For any two subsets S,T ⊆ V , we define the net
flow of edges from from S to T (counting edges contained in the intersection of S and
T twice) as∣∣∣{(v1,v2) ∈ S×T : (v1,v2) ∈ E

}∣∣∣− ∣∣∣{(v1,v2) ∈ T ×S : (v1,v2) ∈ E
}∣∣∣.

For ease of notation, we denote net flow of edges from from S to T as Net(S,T ). We
further denote Vol(S) as the sum of degree of the vertices in subset S.

The next theorem shows that for directed graphs with no isolated vertices, having a
low spectral expansion corresponds to having a low Net(S,T ) for any two subsets of
vertices S,T ⊆V . As a corollary, low spectral expansion corresponds to having a low
net flow for any bi-partition of V .

Theorem 5.3.1. Let G = (V,E) be a directed graph with no isolated vertices. Then,
for any subsets S,T ⊆V , we have

|Net(S,T )| ≤ µ(G)
√

Vol(S)Vol(T )

Proof. We write 1S as the column vector with kth element being 1 if vk ∈ S and 0
otherwise. We define 1T similarly.

We first observe that

−i
(

1ᵀSA1T

)
=−i

n

∑
k=1

n

∑
j=1

1SAk j1T

=−i

(
∑

vk→v j,
vk∈S,v j∈T

i + ∑
v j→vk,

vk∈S,v j∈T

−i

)

=
∣∣∣{(v1,v2) ∈ S×T : (v1,v2) ∈ E

}∣∣∣− ∣∣∣{(v1,v2) ∈ T ×S : (v1,v2) ∈ E
}∣∣∣

= Net(S,T )

Since G has no isolated vertices, we have A = D1/2(In−L)D1/2. Thus,

Net(S,T ) =−i
(

1ᵀS
(
D1/2(In−L)D1/2)1T

)
=−i

((
D1/21S)

ᵀ(In−L)
(

D1/21T )

)
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Let {µ j}n
j=1 be the eigenvalues of L and { f j}n

j=1 be the associated orthonormal eigen-
vectors. In particular, f ᵀk f j = 1 if k = j and 0 otherwise. Without loss of generality,
we have

D1/21S =
n

∑
j=1

a j f j

and

D1/21T =
n

∑
k=1

bk fk

This implies

|Net(S,T )|=

∣∣∣∣∣( n

∑
j=1

a j f j

)ᵀ
(In−L)

( n

∑
k=1

bk fk

)∣∣∣∣∣
=

∣∣∣∣∣( n

∑
j=1

n

∑
k=1

a jbk f ᵀj fk

)
−
( n

∑
j=1

n

∑
k=1

a jbk f ᵀj L fk

)∣∣∣∣∣
=

∣∣∣∣∣( n

∑
j=1

a jb j

)
−
( n

∑
j=1

a jb j f ᵀj µ j f j

)∣∣∣∣∣
=

∣∣∣∣∣( n

∑
j=1

(1−µ j) a jb j

)∣∣∣∣∣
≤

n

∑
j=1

∣∣∣(1−µ j)
∣∣∣∣∣∣ a jb j

∣∣∣
≤ µ(G)

n

∑
j=1

∣∣∣ a jb j

∣∣∣
≤ µ(G)

√
n

∑
j=1

a2
j

√
n

∑
j=1

b2
j

= µ(G)
√

Vol(S)Vol(T )

where the first inequality follows from triangle inequality, the second inequality fol-
lows from the definition of spectral expansion, the third inequality follows from Cauchy-
Schwarz inequality and the final equality follows from

n

∑
j=1

a2
j =
( n

∑
j=1

a j f ᵀj
)( n

∑
k=1

ak fk

)
= (D1/21S)

ᵀD1/21S

= 1ᵀSD1S

= ∑
v j∈S

d(v j)

= Vol(S).

We remark that the theorem above and its proof technique is similar to the well-studied
Expander Mixing Lemma in the undirected settings [Chu97Chu97, Theorem 5.1].
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Consider now a directed graph G with some isolated vertices. Notice that for any
S,T ⊂ V , the isolated vertices in S and T does not contribute to any of the quantities
Net(S,T ), Vol(S), Vol(T ). Hence, we can apply Theorem 5.3.15.3.1 on the induced sub-
directed graph which leave out isolated vertices. We should also change the factor
from µ(G) to µn−1, so that it corresponds to induced sub-directed graph which leave
out isolated vertices. This gives us the following theorem.

Theorem 5.3.2. Let G = (V,E) be a directed graph. Then, for any subsets S,T ⊆ V ,
we have

|Net(S,T )| ≤ (µn−1)
√

Vol(S)Vol(T )

5.4 (Quasi-)Random Oriented Graph

Theorem 5.3.25.3.2 says that for a directed graph G with a low µn, any two subsets S,T ⊆
V (G) has a low Net(S,T ). An intuitive interpretation of this phenomenon is that low
spectral expansion corresponds to randomness (no clear structure of flow of edges)
while high spectral expansion corresponds to structure (with extreme case having di-
rection of edges as in Figure 5.15.1). In this section, we formalise this idea and give a
brief discussion.

Let Γ = (V,E) be an undirected graph. For convenience, we denote ~D(Γ) to be the set
of directed graphs with underlying graph being Γ. Consider generating a directed graph
G from Γ by “randomly” assigning orientation to any {v j,vk} ∈ E with probability 1/2
being v j→ vk and probability 1/2 being vk→ v j.

It may happen that for certain graph properties P , we have any randomly oriented
directed graph G ∈ ~D(Γ) satisfies P with high probability. In [Gri12Gri12, Theorem 1.1],
it’s proven that a number of conditions on directed graphs, all of which are satisfied
with high probability by randomly oriented graphs, are in fact qualitatively equivalent.
We call these conditions quasi-randomness conditions. We will state two of these
conditions below, which are most relevant to our studies thus far.

Theorem 5.4.1. [Gri12Gri12, Theorem 1.1] The following conditions on a directed graph
G are equivalent, in the sense that any one of them, with any positive value of its
parameter can be deduced from the other, when the parameter of the latter is taken
sufficiently small.

(i) Net(S,T )≤ αn2 for all S,T ⊆V .

(ii) λ1(G)≤ βn.

We remark that Theorem 5.4.15.4.1 uses the spectral radius/biggest adjacency eigenvalue to
capture the notion of “randomness” as compared to Theorem 5.3.25.3.2 which uses µn−1.

30



5.5 Upper bound for minimum Spectral Radius

Having studied the correspondence between low spectral radius and quasirandomness,
it is natural to ask what is the minimum spectral radius taken over all possible orien-
tations of a fixed underlying graph. We know from the discussion immediately after
Proposition 3.3.43.3.4 that the directed graph K′4 with spectral radius of

√
3 in Figure 3.43.4

is such an example. For a general fixed underlying graph, [GMO19GMO19, Theorem 1.1]
gives an upper bound for this value. The proof of this theorem uses the technique of
interlacing families of polynomials. 11

Before stating the theorem, we first recall the definition of matching polynomial for an
undirected graph. Let mk be the number of k-edge matchings of undirected graph Γ.
We set m0 = 1. The matching polynomial of Γ is defined as

MΓ(x) :=
n/2

∑
k=0

(−1)kmkxn−2k.

It is known for any undirected graph Γ, MΓ is real rooted [God81God81]. Denote ρ(MΓ)
as the biggest root of MΓ. For more details about matching polynomial, see [EM11EM11,
Section 10.3.1]. We are now ready to state Theorem 1.1. of [GMO19GMO19].

Theorem 5.5.1. [GMO19GMO19, Theorem 1.1] Let Γ be an undirected graph and let MΓ be
its matching polynomial. Then there exists an orientation σ of Γ such that the directed
graph G ∈ ~D(Γ) with orientation σ satisfies λ1(G)≤ ρ(MΓ).

It is known that for any undirected graph Γ, ρ(MΓ) ≤ λ1(Γ). If Γ is connected then
ρ(MΓ) = λ1(Γ) if and only if Γ is a tree [GG81GG81]. Recall from Corollary 4.1.54.1.5 that
for an undirected tree T (a special case of forest), all directed graphs (special case of
mixed graphs) whose underlying graph is T are cospectral with T . Hence, we see that
for a tree T , any G ∈ ~D(T ) has λ1(G) = ρ(MT ) = λ1(T ). Therefore, Theorem 5.5.15.5.1 is
tight.

1This method is first used in the seminal paper [MSS15MSS15] to prove the existence of infinite families of
Ramanujan graphs.
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Chapter 6

Conclusion

In this project, we have surveyed existing results for Hermitian adjacency, Hermitian
Laplacian and normalised Hermitian Laplacian matrix of mixed graphs simultaenously.
In particular, we highlighted if certain results have an analogue in the undirected set-
ting, as well as the similarity in the proof technique used. Along the way, we proved
some new results. Perhaps the most interesting result is that we know how to construct
non-isomorphic mixed graphs which are cospectral with respect to all three matrix
representations (See Chapter 4.14.1). We also provided new proof for Theorem 3.3.13.3.1 and
Proposition 5.1.25.1.2.

Future Work

In the undirected settings, near-zero normalised Laplacian eigenvalues have found ap-
plications in spectral clustering [Lux07Lux07, Section 7]. This corresponds to “structure”.
Meanwhile, having second largest eigenvalue that is far from the first is basically what
characterises an expander graph. This corresponds to the “randomness” [Alo86Alo86].

It is interesting to investigate if analogous studies can be done for directed graphs
through spectral radius and spectral expansion. In particular, we know there are results
(though the intention of study was for graph energy) showing for all positive integers
d, there exists a d-regular graph with orientations having the theoretical minimum
spectral radius of

√
d [Tia11Tia11]. In fact, we know how to recursively construct them.

This result, together with [GMO19GMO19] makes the situation somewhat looks like the study
of expander and Ramanujan graph in the undirected settings. The author believes
that this is a promising direction of research which could potentially comparable to
expander graph.
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Introduction to the Theory of Graph Spectra. London Mathe-
matical Society Student Texts. Cambridge University Press, 2009.
doi: 10.1017/CBO978051180151810.1017/CBO9780511801518. 11
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