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What can be used instead of a Barker sequence?

Jonathan Jedwab

Abstract. A classical problem of digital sequence design, first studied in the
1950s but still not well understood, is to determine long binary sequences

for which the absolute values of the aperiodic autocorrelations are collectively
as small as possible. The ideal sequence from this point of view is a Barker

sequence, but there is overwhelming evidence that no Barker sequence of length

greater than 13 exists.
Since a Barker sequence of length greater than 13 must have constant pe-

riodic autocorrelations at all non-zero shifts, it is equivalent to a difference set

in a cyclic group. The rich structure of the group setting allows the application
of techniques and tools from finite field theory, algebraic number theory, char-

acter theory, and elsewhere. This has stimulated much research on difference

sets, whose study has matured into a fertile body of theory.
However the motivating practical problem remains firmly in the aperiodic

domain, and has attracted renewed interest in recent years. We survey vari-

ous responses to the presumed nonexistence of long Barker sequences, namely:
multi-dimensional Barker arrays; the peak sidelobe level of binary sequences;

the merit factor of binary sequences; Barker sequences over a non-binary al-

phabet; and pairs of Golay complementary sequences and arrays.

1. The Barker Sequence Conjecture

We consider a length s binary sequence to be a one-dimensional matrix A =
(A[i]) whose elements satisfy

A[i] =
{
−1 or 1 for 0 ≤ i < s
0 otherwise.

The aperiodic autocorrelation function of a length s binary sequence A = (A[i]) is
given by

(1.1) CA(u) :=
∑

i

A[i]A[i + u] for integer u,

and measures the extent to which a binary sequence resembles a shifted copy of
itself.
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Barker [Bar53] proposed a group synchronisation digital system in 1953, based
on the use of binary sequencesA of length s for which CA(u) is small (not necessarily
in magnitude) for each u 6= 0. The purpose of this constraint was to ensure a large
difference between the system output CA(0) at the moment of synchronisation and
the maximum possible system output CA(u) + |u| when synchronisation is delayed
by u time units, for |u| < s [Bar53, Figure 6a]. Consideration of the probability of
false synchronisation at each value of u led Barker to seek solutions for large s to
the problem:

(1.2) minimise max0<u<s CA(u) over all length s binary sequences A.

Now by summing (1.1) over all integers u, we find that 2
∑

0<u<s CA(u) = (
∑

i A[i])2−
s ≥ −s + (s mod 2). But since CA(u) is the sum of exactly s − |u| terms, each of
which is±1, we also have CA(u) ≡ s−u (mod 2). It follows that max0<u<s CA(u) ≥
0 for s > 2 (since otherwise CA(u) ≤ −1 when s− u is odd and CA(u) ≤ −2 when
s− u is even), and that equality is achieved if and only if

(1.3) CA(u) = 0 or −1 for all u 6= 0

(where CA(u) = −1 for u in the range 0 < u < s exactly when s − u is odd).
Barker therefore proposed that, for this synchronisation application, an ideal binary
sequence A is one satisfying (1.3) for large s. He gave examples of such sequences
for lengths s = 3, 7 and 11, but speculated (correctly, by Theorem 1.2 and (1.5))
that examples for larger values of s do not exist.

Subsequent authors recognised that several additional application contexts, in-
cluding pulse compression and especially radar, would benefit from the use of long
binary sequences for which |CA(u)|, rather than CA(u), is small for each u 6= 0
[Wel60], [Boe67], [Tur68]. This motivates the fundamental sequence design prob-
lem:

Problem 1.1. Find binary sequences A of large length s for which the elements
of the set {|CA(1)|, |CA(2)|, . . . , |CA(s− 1)|} are collectively as small as possible.

The importance of Problem 1.1 is that it deals with the aperiodic domain, which
is the natural physical setting in which many autocorrelation processes arise. An
ideal solution of Problem 1.1 is a long binary sequence for which

for each u 6= 0 independently, |CA(u)| takes its smallest possible value.

Barker’s condition was therefore relaxed from (1.3) to

(1.4) |CA(u)| = 0 or 1 for all u 6= 0

(where |CA(u)| = 1 for u in the range 0 < u < s exactly when s− u is odd), and a
binary sequence satisfying (1.4) became known as a Barker sequence.
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Using the symbols + and − to represent the sequence elements 1 and −1
respectively, the following are examples of Barker sequences of length s > 1:

s = 2 : [+ +]

s = 3 : [+ + −]

s = 4 : [+ + + −]

s = 5 : [+ + + − +]

s = 7 : [+ + + − − + −]

s = 11 : [+ + + − − − + − − + −]

s = 13 : [+ + + + + − − + + − + − +].

No Barker sequence of length greater than 13 is known, and Turyn and Storer
established in 1961 by elementary methods that such a sequence cannot occur for
odd length:

Theorem 1.2 ([TS61]). There is no Barker sequence of odd length s > 13.

Theorem 1.2 was proved by showing that any odd-length Barker sequence has some
repeating structure, and therefore that it must be short. The material in [TS61]
was contained in the earlier report [Tur60], produced by Turyn in 1960 under
contract to the U.S. Air Force. This report also includes nonexistence results for
Barker sequences for some even lengths, leading the author to remark [Tur60, p. II-
2] that “The existence of a [Barker sequence with length greater than 13] is thus
not completely resolved, though, of course, in view of the results stated above, it
seems extremely improbable.” We formalise this statement as:

Conjecture 1.3 (Barker Sequence Conjecture). There is no Barker sequence
of length s > 13.

(It is not entirely clear to whom the Barker Sequence Conjecture should be at-
tributed. To my knowledge, it was first suggested in print in the statement from
[Tur60] quoted above, although R. Turyn reports [personal communication, Oc-
tober 2007] that he intended this remark not as a conjecture in the mathematical
sense, but as the likely conclusion of known facts, in particular his joint work with
J. Storer.)

The Barker Sequence Conjecture remains unproven, although a great deal of
evidence has been accumulated in its favour, as we now review. The Conjecture
holds for odd s, by Theorem 1.2, so suppose that A = (A[i]) is a Barker sequence
of even length s > 13. Turyn and Storer [TS61] pointed out that this implies the
periodic autocorrelation function CA(u) + CA(u− s) of A satisfies

(1.5) CA(u) + CA(u− s) = 0 for each u satisfying 0 < u < s,

in other words that A is a perfect binary sequence. In 1965, Turyn proved:

Theorem 1.4 ([Tur65]). If there exists a perfect binary sequence of length
s > 4 then s = 4S2 for some odd integer S ≥ 55 that is not a prime power.

Turyn’s method was to show that (1.5) is equivalent to the set D := {i ∈ Zs |
A[i] = −1} forming a (4S2, 2S2 − S, S2 − S)-difference set in the cyclic group Zs,
where s = 4S2 for some integer S (see for example [BJL99] for background on
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difference sets); and that the existence of this difference set is in turn equivalent to
the character sum χ(D) :=

∑
i∈D ηi, where η is any s-th root of unity, satisfying

(1.6) |χ(D)| = S.

Application of algebraic number theory to (1.6), taking advantage of the fact that
S must be integer, then gives the constraints on S of Theorem 1.4. In particular
there is no perfect binary, and therefore no Barker, sequence of length s for 13 <
s < 4 · 552 = 12, 100. This result saw no improvement for the next 25 years.

In 1990, Eliahou, Kervaire and Saffari found a new constraint on the possible
lengths of a Barker sequence, as a corollary to Theorem 8.4:

Theorem 1.5 ([EKS90]). If there exists a Barker sequence of even length s
then s has no prime factor congruent to 3 modulo 4.

By combining Theorem 1.5 with the algebraic number theoretic constraints of Tu-
ryn’s method, it follows [JL92], [EK92] that there is no Barker sequence of length
4S2 for 1 < S < 689. We cannot reach the same conclusion for a perfect bi-
nary sequence (defined via the periodic autocorrelation function) because the proof
of Theorem 1.5, in contrast to that of Theorem 1.4, relies crucially on aperiodic
properties.

The next improvement was due to Schmidt [Sch99], who in 1999 introduced
the method of field descent to restrict the possible solutions of equations of the
form

XX = n and X ∈ Z[exp(2π
√
−1/m)],

where bar represents complex conjugation and n, m are positive integers; (1.6) has
this form for 4n = m = s. This allowed an increase in the size of the smallest open
case for a perfect binary sequence from S = 55 to S = 165, and an increase in the
corresponding size for a Barker sequence (after combining with constraints from
Theorem 1.5) from S = 689 to S = 106. Refinements to the field descent method
[Sch02], [LS05] gave a further increase in the size of the smallest open case for a
perfect binary sequence to S = 11715, and (after combination with Theorem 1.5)
a dramatic increase in the corresponding size for a Barker sequence to S = 5 · 1010:

Theorem 1.6 ([LS05]). There is no Barker sequence of length s for 13 < s <
1022.

2. Responses to the presumed nonexistence of long Barker sequences

To a mathematician, the verification of the Barker Sequence Conjecture up to
length 1022 in Theorem 1.6, while suggestive, is far from conclusive. Indeed, a
proof of the Conjecture remains both elusive and highly desirable. But to a digital
systems engineer, the matter was effectively settled decades ago: even if a Barker
sequence of enormous length were to exist, it is most unlikely that it could ever be
implemented in a practical system. This naturally prompts the question:

What can be used instead of a Barker sequence to solve Problem 1.1?

I argue that a historical reading of the literature would class many combinato-
rial objects, that have been studied for their favourable aperiodic autocorrelation
properties, as responses to this question.

A first group of responses addresses Problem 1.1 directly, by specifying an in-
terpretation for “collectively as small as possible” that relaxes the Barker sequence
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condition (1.4) for an ideal binary sequence. The two most well-studied inter-
pretations involve minimising the maximum, or the sum of squares, of the values
|CA(u)|:

• Minimise max0<u<s|CA(u)| over all length s binary sequences A.
This is the obvious modification of Barker’s original design problem (1.2).
The quantity max0<u<s|CA(u)| is called the peak sidelobe level of the
sequence A (see Section 5).

• Minimise
∑

0<u<s[CA(u)]2 over all length s binary sequences A.
This places more emphasis on the collective smallness of the values |CA(u)|.
The quantity s2/(2

∑
0<u<s[CA(u)]2) is called the merit factor of the se-

quence A (see Section 6).
A second group of responses modifies Problem 1.1 to allow more general objects

than binary sequences, and then seeks an ideal solution. Responses in this group
include:

• Two or more dimensions.
The sequence A is replaced by a multi-dimensional array, and the def-
inition of aperiodic autocorrelation is suitably modified (see Sections 3
and 4).

• A sequence pair.
The sequence A is replaced by a sequence pair A and B with the property
that CA(u) + CB(u) = 0 for all u 6= 0, known as a Golay complementary
sequence pair (see Section 8).

• Non-binary alphabet.
The alphabet {1,−1} of the sequence elements is replaced by a larger
alphabet, often a set of complex roots of unity, and the definition of ape-
riodic autocorrelation is suitably modified. The ideal condition on the
modified problem can then be relaxed in order to generate further exam-
ples (see Sections 3 and 7).

These responses can be combined in various ways, for example by studying
Golay complementary array pairs over a non-binary alphabet. Sections 4 to 8 of
this survey examine responses of each of the above five types, together with some
combinations. Section 3 introduces some definitions and notation, and Section 9 is
the conclusion.

3. Definitions and notation

We define an s1×. . .×sr array to be an r-dimensional matrixA = (A[i1, . . . , ir])
of complex-valued entries, where i1, . . . , ir are integer, for which

A[i1, . . . , ir] = 0 if, for any k ∈ {1, . . . , r}, ik < 0 or ik ≥ sk.

In the case r = 1, A = (A[i1]) reduces to a length s1 sequence. The array is defined
over an alphabet W ⊆ C if each array element A[i1, . . . , ir], where 0 ≤ ik < sk for
each k, takes values in W . The alphabet is unimodular if |w| = 1 for all w ∈ W .
Write ξ := exp(2π

√
−1/H) for some integer H. A unimodular alphabet is H-phase

if W = {1, ξ, ξ2, . . . , ξH−1}. A 2-phase array has W = {1,−1} and is called binary ;
a 4-phase array has W = {1,

√
−1,−1,−

√
−1}) and is called quaternary. The

usage of ternary is ambiguous: in some contexts it is used to mean the 3-phase
alphabet W = {1, (−1 +

√
−3)/2, (−1−

√
−3)/2}, but in others it is reserved for

the non-unimodular alphabet W = {1, 0,−1}.
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The aperiodic autocorrelation function of an s1×· · ·×sr arrayA = (A[i1, . . . , ir])
is given by

CA(u1, . . . , ur) :=
∑
i1

· · ·
∑
ir

A[i1, . . . , ir]A[i1 + u1, . . . , ir + ur] for integer u1, . . . , ur,

where bar represents complex conjugation. This definition reduces to (1.1) when A
is a binary sequence.

We will examine three infinite families of binary sequences with specific struc-
ture. A maximal length shift register sequence (often abbreviated to m-sequence,
and also known as an ML-sequence or pseudonoise sequence) is a binary sequence
(Y [i]) of length 2m − 1 defined by

Y [i] := (−1)tr(βαi) for 0 ≤ i < 2m − 1,

where α is a primitive element of the field GF(2m), β is a fixed non-zero element
of the same field, and tr() is the trace function from GF(2m) to GF (2). For each
primitive element α we can choose 2m − 1 different values of β, each of which
corresponds to a cyclic shift of the m-sequence for which β = 1; in particular,
any cyclic shift of an m-sequence is also an m-sequence. (The k-th cyclic shift of a
length s sequence (A[i]) is the length s sequence whose i-th entry is A[(i+k) mod s]
for 0 ≤ i < s.) The name “maximal-length shift register sequence” arises from an
alternative definition, involving a linear recurrence relation of period 2m − 1, that
can be physically implemented using a shift register with m stages (see for example
[GG05] for background on m-sequences).

A Legendre sequence is a binary sequence (X[i]) of prime length s defined by

X[i] :=
(

i

s

)
for 0 ≤ i < s,

where
(

i
s

)
is the Legendre symbol (which takes the value 1 if i is a quadratic residue

modulo s and the value −1 if not; we choose the convention that
(

i
s

)
:= 1 if i = 0).

Given sequences A = (A[i]) of length s and B = (B[i]) of length s′ we write
A;B for the sequence (C[i]) of length s + s′ given by concatenating A and B:

C[i] :=
{

A[i] for 0 ≤ i < s
B[i− s] for s ≤ i < s + s′.

The Rudin-Shapiro sequence pair A(m), B(m) of length 2m is defined recursively
[Sha51], [Rud59] by:

(3.1)

{
A(m) := A(m−1);B(m−1),

B(m) := A(m−1);−B(m−1).

where A(0) = B(0) := [+]. Rudin-Shapiro sequence pairs are a special case of binary
Golay complementary sequence pairs (see Section 8). A Rudin-Shapiro sequence is
a sequence that is a member of some Rudin-Shapiro sequence pair.

We use the notation o, O, Ω and Θ to compare the growth rates of functions
f(n) and g(n) from N to R+ in the following standard way: f is o(g) means that
f(n)/g(n) → 0 as n →∞; f is O(g) means that there is a constant c, independent
of n, for which f(n) ≤ cg(n) for all sufficiently large n; f is Ω(g) means that g is
O(f); and f is Θ(g) means that f is O(g) and Ω(g).
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4. Multi-dimensional Barker arrays

In this section we examine the generalisation of the Barker sequence condition
to two or more dimensions. An s1 × · · · × sr Barker array is defined to be an
s1 × · · · × sr binary array for which

|CA(u1, . . . , ur)| = 0 or 1 for all (u1, . . . , ur) 6= (0, . . . , 0).

In the case r = 1, this condition reduces to the Barker sequence condition (1.4).
Alquaddoomi and Scholtz introduced two-dimensional Barker arrays in 1989, de-
scribing how large examples could be used as an alternative to long Barker sequences
for high resolution radar applications [AS89]. However, apart from the size 2 × 2

(for example the array
[

+ +
+ −

]
), they could find no examples of s1 × s2 Barker

arrays having s1, s2 > 1. Their conjecture that no such arrays exist was proved in
2007 by Davis, Jedwab and Smith:

Theorem 4.1 ([DJS07]). There are no s1×s2 Barker arrays having s1, s2 > 1
except when s1 = s2 = 2.

We now outline the proof of Theorem 4.1 which, like that of Theorem 1.5,
depends crucially on aperiodic properties. By adapting the method of proof of (1.5),
we find that the two-dimensional periodic autocorrelation function

(4.1) CA(u1, u2) + CA(u1, u2 − s2) + CA(u1 − s1, u2) + CA(u1 − s1, u2 − s2)

takes the constant value −1, 0 or 1 for all (u1, u2) 6= (0, 0) satisfying 0 ≤ u1 < s1,
0 ≤ u2 < s2 (where the constant is determined by the value of s1s2 modulo 4).
However Alquaddoomi and Scholtz [AS89] recognised that a stronger condition
holds, namely that the “hybrid” autocorrelation function

(4.2) CA(u1, u2) + CA(u1, u2 − s2)

(aperiodic in the first index but periodic in the second) also takes the constant value
−1, 0 or 1 for all (u1, u2) 6= (0, 0) satisfying −s1 < u1 < s1, 0 ≤ u2 < s2. This
is sufficient to determine the aperiodic autocorrelation function of the length s1

sequence R = (R[i1]) defined by R[i1] :=
∑

i2
A[i1, i2]ξi2 , where ξ is a primitive

s2-th root of unity, from which Theorem 4.1 can then be derived. Knowledge of the
aperiodic, rather than the periodic, autocorrelation function of the sequence R is a
consequence of working with the hybrid autocorrelation function (4.2) rather than
the full periodic autocorrelation function (4.1). We can visualise this distinction as
corresponding to whether the array A is written on the surface of a cylinder or on
the surface of a torus.

In 1992, Dymond [Dym92] investigated the existence of r-dimensional Barker
arrays for r > 2, and conjectured that no such arrays (whose representation requires
all r dimensions) exist. Her conjecture was proved in 2007 by Jedwab and Parker:

Theorem 4.2 ([JP07b]). There are no s1×· · ·×sr Barker arrays having r > 2
and each sk > 1.

A key auxiliary result in the proof of Theorem 4.2 is given by applying a “projection
mapping” (see Section 8) to a Barker array in order to obtain a Barker array with
one dimension fewer:

Theorem 4.3 ([JP07b]). If there exists an s× t× s1 × . . .× sr Barker array,
where r ≥ 0, then there exists an st× s1 × . . .× sr Barker array.
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Theorem 4.2 is a straightforward corollary of Theorem 4.3: we apply Theorem 4.3
repeatedly to reduce the number of dimensions to 2, and then use Theorem 4.1.
(Theorem 4.3 can also be applied in the case r = 0 to show that the existence of a
two-dimensional Barker array implies the existence of a Barker sequence with the
same number of elements. However this result is not as strong as Theorem 4.1,
because Conjecture 1.3 remains unproved.)

Theorems 4.1 and 4.2 show that the generalisation of Barker sequences to two or
more dimensions, while giving a mathematically satisfying result, does not provide
practically useful examples having large numbers of elements.

5. The peak sidelobe level of binary sequences

In this section we examine a first relaxation of the Barker sequence crite-
rion (1.4) for an ideal binary sequence. The peak sidelobe level (PSL) of a binary
sequence A of length s > 1 is

(5.1) M(A) := max
0<u<s

|CA(u)|.

The maximum value of the PSL of a length s binary sequence is s − 1, which is
attained by the sequence [+ + · · · +] . The optimal value of the PSL over
the set Ls of all 2s binary sequences of length s is

Ms := min
A∈Ls

M(A),

and our objective is to understand the behaviour of Ms as s →∞. In my opinion,
this is the most natural modification of Barker’s original design problem (1.2) and
should be described before the merit factor modification (see Section 6), even though
the historical order of study has often been the reverse. Indeed, when binary
sequences are used as pulse compression codes for radar scenarios in which the
target must be distinguished from a few large objects rather than many smaller
objects, the peak sidelobe level is a more important criterion than the merit factor
[Nun05], [SLX07].

No technique is currently known for studying the asymptotic behaviour of Ms

directly; instead we rely on indirect approaches and experimental results. The value
of Ms has been calculated by exhaustive search for s ≤ 61 [CFB90], [EBSB97]
and s = 64 [CR05], using a branch-and-bound algorithm with an apparent time
complexity of approximately Θ(1.4s). The plot of these calculated values in Figure 1
shows that the function Ms is broadly, though not monotonically, increasing for s
in the range s ≤ 61. Figure 1 also shows the best known, though not necessarily
optimal, values of M for 61 < s ≤ 105, s 6= 64 [CR05], [NC08a]. (Note that the
PSL values for 61 < s ≤ 70, s 6= 64 given in [CR05] are not necessarily optimal,
because the possibility that Ms = 2 in that range has not been ruled out and
because [KMB86] was mistakenly cited as establishing that Ms 6= 3 for s > 51.)

An indirect approach, and the only proven PSL result for general binary se-
quences, is to examine the growth rate of the peak sidelobe level of almost all binary
sequences. Moon and Moser used elementary counting arguments in 1968 to show
that this growth rate lies between order

√
s and order

√
s log s:
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Figure 1. The optimal PSL (for s ≤ 61 and s = 64) and the best
known PSL (for 61 < s ≤ 105, s 6= 64) for binary sequences of
length s.

Theorem 5.1 ([MM68]).
(i) If K(s) is any function of s such that K(s) = o(

√
s), then the proportion

of sequences A ∈ Ls for which M(A) > K(s) approaches 1 as s →∞.
(ii) For any fixed ε > 0, the proportion of sequences A ∈ Ls such that M(A) ≤

(2 + ε)
√

s log s approaches 1 as s →∞.

In 2007, Dmitriev and Jedwab presented experimental evidence that the “upper
bound”

√
s log s on the order of the growth rate of the PSL in Theorem 5.1 is

attained by almost all binary sequences:

Experimental Result 5.2 ([DJ07]). The PSL of almost all binary sequences
of length s appears to grow like Θ(

√
s log s).

Assuming Experimental Result 5.2 to be correct, the challenge is then to find
binary sequences (necessarily forming a set of density zero) whose PSL grows more
slowly than order

√
s log s. Three candidate families of binary sequences and all

their cyclic shifts have been investigated, each (by Corollary 6.7) having a PSL
growth rate of at least order

√
s: Rudin-Shapiro sequences, Legendre sequences,

and m-sequences. We have the following theoretical result due to Høholdt, Jensen
and Justesen for Rudin-Shapiro sequences, and experimental results due to Jedwab
and Yoshida for Legendre sequences and m-sequences:

Theorem 5.3 ([HJJ85]). The PSL of a Rudin-Shapiro sequence of length s =
2m grows like O(s0.9).

Experimental Result 5.4 ([JY06]). The PSL of an optimal cyclic shift of
a Legendre sequence of prime length s appears to grow like Θ(

√
s log s).
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Experimental Result 5.5 ([JY06]). The mean value of the PSL of all m-
sequences of length s = 2m − 1 appears to grow like O(

√
s log s).

The upper bounding function s0.9 for the PSL of a Rudin-Shapiro sequence
in Theorem 5.3 is weak compared with

√
s log s, but data (summarised in [JY06,

Figure 10]) suggest that the actual PSL grows like Ω(
√

s log s). Furthermore, as-
suming Experimental Results 5.2 and 5.4 to be correct, the growth rate of the PSL
of an optimal cyclic shift of a Legendre sequence is no different from that of almost
all binary sequences. This leaves m-sequences as the most promising candidate of
the three families, as we now examine in detail.

In 1980 McEliece [McE80] showed that the PSL of m-sequences grows like
O(
√

s · log s), and Sarwate later improved the growth constant:

Theorem 5.6 ([Sar84]). The PSL of an m-sequence of length s is at most
1 + (2/π)

√
s + 1 log(4s/π).

The method of [McE80] and [Sar84] involved estimation of the maximum absolute
value of an incomplete exponential sum, using results obtained in 1918 by Vino-
gradov and by Pólya (see Tietäväinen [Tie99] for an overview of this method). It
is an indication of the difficulty of analysing the peak sidelobe level that we have
known for nearly 40 years (via Theorem 5.1) that the PSL of almost all binary
sequences grows like O(

√
s log s), and yet the strongest known result on the growth

rate of the PSL of any specific family of binary sequences is O(
√

s · log s) (via
Theorem 5.6)!

On the other hand, the radar literature from the 1960s onwards tells a different
story, with repeated statements that the PSL of some or all m-sequences of length
s = 2m − 1 grows like O(

√
s) (and therefore like Θ(

√
s), by Corollary 6.7). Jedwab

and Yoshida [JY06] were unable to trace any published theoretical basis for these
claims, and could not reach a stronger conclusion than Experimental Result 5.5 from
exhaustive calculation for m ≤ 15. But Dmitriev and Jedwab showed in 2007 that
these claims, while previously unsupported both theoretically and experimentally,
appear to be correct for almost all m-sequences:

Experimental Result 5.7 ([DJ07]). The PSL of almost all m-sequences of
length s appears to grow like Θ(

√
s).

Experimental Result 5.7 is the first numerical evidence of Θ(
√

s) growth in the
PSL of any family of binary sequences. It relies on an algorithm for calculating the
maximum PSL over all cyclic shifts of an m-sequence generated by a given primitive
element α of GF(s + 1) (see Section 3), that requires only Θ(s) operations instead
of the previous Θ(s2). This reduction in time complexity extends the range of
exhaustive calculation to m ≤ 25, revealing behaviour that would not otherwise be
apparent. In particular, the mean (taken over all primitive elements α of GF(s+1))
of the maximum PSL over all cyclic shifts appears to be approximately 1.31

√
s for

large s. Data from the new algorithm also imply the following improvement on
Experimental Result 5.5:

Experimental Result 5.8 ([DJ07]). The PSL of all m-sequences of length s
appears to grow like O(

√
s · log log s)

Figure 2 is a schematic summary of the strongest known theoretical and ex-
perimental results on the peak sidelobe level of binary sequences. Experimental
Results 5.2, 5.7 and 5.8 provide clear directions for future research.
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Figure 2. Growth rate of the peak sidelobe level of binary se-
quences (dashed box around text indicates an experimental result)

6. The merit factor of binary sequences

In this section we examine a second relaxation of the Barker sequence crite-
rion (1.4) for an ideal binary sequence (see [Jed05] for a more detailed exploration).
The merit factor of a binary sequence A of length s > 1 is defined to be

(6.1) F (A) :=
s2

2
∑

0<u<s[CA(u)]2
,

which places more emphasis on the collective smallness of the values |CA(u)| than
the peak sidelobe level (5.1) does. The name “merit factor” was coined in 1972 by
Golay [Gol72], although equivalent quantities had been studied several years earlier
by communications engineers such as Lunelli [Lun65] and by complex analysts such
as Littlewood [Lit68]. The optimal value of the merit factor over the set Ls of all
2s binary sequences of length s is

Fs := max
A∈Ls

F (A),

and our objective is to understand the behaviour of Fs as s →∞. Since the mean
value of 1/F (A), taken over all binary sequences A ∈ Ls, is (s− 1)/s [NB90], we
immediately have Fs > 1 for all s.

The merit factor is a natural measure of the energy efficiency of a binary se-
quence used to transmit information by modulating a carrier signal, which is of par-
ticular importance in spread-spectrum communication [BCH85]. The larger the
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merit factor of the sequence, the more uniformly the signal energy is distributed over
the frequency range. The merit factor occurs in equivalent guise in complex analy-
sis, as the study of the L4 norm of complex-valued polynomials with ±1 coefficients
on the unit circle (see [Bor02] for background on this and other norms), although
the connection seems not to have been recognised until 1988 [HJ88]. Maximisation
of the merit factor is also studied in statistical mechanics, in terms of finding the
minimum energy states (ground states) of a quantum Ising spin model [Ber87].
Within theoretical physics and theoretical chemistry, maximisation of the merit
factor is recognised as a notoriously difficult combinatorial optimisation problem
[MZB98]. The merit factor is a useful sequence design criterion for radar scenar-
ios in which the target must be distinguished from a large number of comparably
sized smaller objects (although it has recently been argued [SLX07] that a more
complex criterion is preferable for this scenario).

The value of Fs has been calculated by exhaustive search for s ≤ 60 by Mertens
and Bauke [MB07], using a branch-and-bound algorithm with an apparent time
complexity of approximately Θ(1.85s). Several authors have used stochastic algo-
rithms to find large, though not necessarily optimal, values of F for sequences of
length s > 60. Figure 3 shows the current best known value of F for 60 < s ≤ 200
[BFK07], together with the value of Fs for s ≤ 60.

50 100 150 200
s

2

4

6

8

10

12

14

F

Optimal Best known

Figure 3. The optimal merit factor (for s ≤ 60) and the best
known merit factor (for 60 < s ≤ 200) for binary sequences of
length s.

The asymptotic merit factor has been calculated for the following families of
binary sequences: Rudin-Shapiro sequences and their generalisations; Legendre
sequences and their generalisations; and m-sequences. In each case the asymptotic
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merit factor is an integer, although we do not yet have a good explanation as to
why. The earliest of these calculations was given by Littlewood in 1968:

Theorem 6.1 ([Lit68]). The asymptotic merit factor of a Rudin-Shapiro se-
quence is 3.

Theorem 6.1 was generalised to two other recursively defined families of binary
sequences whose asymptotic merit factor is also 3 [HJJ85], [BM00]. Høholdt and
Jensen, building on a numerical investigation by Turyn and a heuristic derivation
due to Golay [Gol83], showed in 1988:

Theorem 6.2 ([HJ88]). The asymptotic merit factor of any cyclic shift of a
Legendre sequence is at most 6, and equality is attained when the cyclic shift is 1/4
and 3/4 of the sequence length.

Several generalisations of Legendre sequences also attain an asymptotic merit factor
of 6 under optimal cyclic shifts [JJH91], [BC01], [XH08]. Jensen and Høholdt
showed in 1989:

Theorem 6.3 ([JH89]). The asymptotic merit factor of an m-sequence is 3.

Legendre sequences and m-sequences, unlike Rudin-Shapiro sequences, are known
to have a highly structured periodic autocorrelation function. This periodic struc-
ture was used crucially in the proof of Theorems 6.2 and 6.3, whereas Theorem 6.1
was proved directly from the recurrence relation (3.1).

Theorem 6.2 implies that lim sups→∞ Fs ≥ 6, and after nearly 20 years this
remains the strongest proven result on the asymptotic behaviour of Fs. Nonethe-
less, in 2004 Borwein, Choi and Jedwab, building on a numerical investigation by
Kirilusha and Narayanaswamy [KN99], showed experimentally that a merit factor
greater than 6.34 seems to be achievable:

Experimental Result 6.4 ([BCJ04]). A merit factor greater than 6.34 ap-
pears to be obtainable consistently, by concatenating a long Legendre sequence and
a suitable initial portion of a suitable cyclic shift of itself.

The appropriate amount of cyclic shift and length of initial portion were derived
exactly in [BCJ04], subject to a conjecture on the asymptotic merit factor of
any truncation of any cyclic shift of a Legendre sequence. The value 6.34. . . then
arises as a function of a solution to a cubic equation. Certain generalisations of
the construction of [BCJ04] also appear to attain a merit factor greater than 6.34
[YG07].

The value of lim sups→∞ Fs has been variously conjectured to be: 6 [HJ88],
based on numerical data available in the late 1980s for s < 200; greater than 7, and
perhaps greater than 8 or 9 [BFK07], based on recent numerical data for s ≤ 200;
12.32. . . [Gol82], based on heuristic arguments and the “Postulate of Mathematical
Ergodicity” (see [Jed05, Section 4.7] for discussion of this unproven assumption);
and ∞, conjectured by Littlewood in 1966:

Conjecture 6.5 ([Lit66, §6]). lim sups→∞ Fs = ∞.

The conjectured value 6 no longer seems plausible, in view of Experimental Re-
sult 6.4. At the other extreme, the value ∞ in Conjecture 6.5 was based on the
calculation of Fs in the very limited range s ≤ 19 in 1966. The much more extensive
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data now available, shown in Figure 3, do not suggest that the merit factor can
grow without bound.

Some directions for future research are:

1. Investigate Experimental Result 6.4 theoretically.
2. Seek a family of binary sequences which reduces or eliminates the gap

between the apparent limiting merit factor of at least 8 suggested by
Figure 3, and the largest merit factor value 6.34. . . so far shown experi-
mentally to be obtainable consistently for long sequences. In view of the
known asymptotic results of Theorems 6.1, 6.2 and 6.3, one might hope
that the asymptotic merit factor of such a family would take an integer
value, namely 7 or larger.

3. Settle the fundamental question as to whether Conjecture 6.5 is correct,
which relates to several other conjectures (see [Jed05, Section 2.2]).

We conclude this section by examining the relationship between the peak side-
lobe level and the merit factor. We know that if the peak sidelobe level of a family
of binary sequences were to grow more slowly than order

√
s, then the merit factor

of that family would grow without bound and so Conjecture 6.5 would be true:

Proposition 6.6 (Jedwab and Yoshida 2006 [JY06]). Let B be a family of
binary sequences and let each As ∈ B have length s. If lim infs→∞(M(As)/

√
s) = 0

then lim sups→∞ F (As) = ∞.

Assuming that Conjecture 6.5 is false (which most researchers appear to believe),
Proposition 6.6 demonstrates the strength of Experimental Result 5.7, because the
apparent growth rate Θ(

√
s) of that result is then the optimal growth rate for

the peak sidelobe level of all binary sequences. Application of Proposition 6.6 to
Theorems 6.1, 6.2 and 6.3 gives:

Corollary 6.7. The PSL of a length s sequence that is a Rudin-Shapiro se-
quence, any cyclic shift of a Legendre sequence, or an m-sequence, grows like Ω(

√
s).

Proposition 6.6 is an extreme instance of a more general phenomenon, whereby
small values of the peak sidelobe level M are often associated with large values
of the merit factor F . Indeed, for the three binary sequence families discussed in
this section (Rudin-Shapiro sequences, Legendre sequences, and m-sequences), the
graphs of the variation of M and of 1/F over all cyclic shifts of the sequence appear
to have broadly similar shape [JY06]. Since this similarity of graphs includes
Rudin-Shapiro sequences, it is not restricted to sequences having a highly structured
periodic autocorrelation function. However the association between small M and
large F is not perfect: whereas suitable cyclic shifts of Legendre sequences perform
better than m-sequences with respect to the merit factor (compare Theorems 6.2
and 6.3), all cyclic shifts of Legendre sequences appear to perform worse than m-
sequences with respect to the peak sidelobe level (compare Experimental Results 5.4
and 5.8).

7. Barker sequences over a non-binary alphabet

This section deals with the modification of Problem 1.1 in which the binary
alphabet is replaced by an H-phase or unimodular alphabet (see Section 3 for the
definition of these alphabets and the associated aperiodic autocorrelation function).
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We are interested firstly in an ideal solution to the modified Problem 1.1, and
secondly in relaxations of the ideal condition that produce further examples.

What property should an H-phase sequence A of length s possess to be called
Barker? In the binary case H = 2, we saw in Section 1 that it should be an ideal
solution of Problem 1.1 in the sense that

(7.1) for each u 6= 0 independently, |CA(u)| takes its smallest possible value,

which for H = 2 implies that

(7.2) |CA(u)| = 0 or 1 for all u 6= 0.

In the case H > 2, the same reasoning applied to the H-phase version of Problem 1.1
indicates that the sequence should likewise be ideal according to (7.1). While I
believe that (7.1) is the natural criterion for an H-phase Barker sequence, it is
not the generally accepted one. Instead, Golomb and Scholtz [GS65] defined a
generalised Barker sequence to be a unimodular sequence A for which

(7.3) |CA(u)| ≤ 1 for all u 6= 0.

(An alternative name is a polyphase Barker sequence, although the literature is
inconsistent about whether and how “generalised” and “polyphase” should distin-
guish the unimodular case from the more constrained H-phase case.)

The relationship between the criteria (7.1), (7.2), and (7.3) for an H-phase
sequence depends on the value of H, as we now examine. We shall see that, as
a definition for an H-phase (or unimodular) generalised Barker sequence: (7.1) is
of theoretical interest but apparently too restrictive for practical purposes; (7.2)
is inappropriate except for specific small values of H; and (7.3) is too relaxed to
identify the best sequences, and should be used in conjunction with some other
condition.

• H = 2, 3 and 4.
In this case the three conditions (7.1), (7.2), and (7.3) coincide: for u
satisfying 0 < u < s, they are equivalent in the cases H = 2 and 4 to

|CA(u)| =
{

1 for s− u odd
0 for s− u even,

and in the case H = 3 to

|CA(u)| =
{

1 for s− u ≡ 1 or 2 (mod 3)
0 for s− u ≡ 0 (mod 3).

In particular, for these values of H we can regard (7.3) as a convenient
shorthand for (7.2), which is possibly why (7.3) was chosen in [GS65] as
the definition of an H-phase generalised Barker sequence.

• H = 6.
In this case (7.2) and (7.3) are again equivalent, and (7.1) implies (7.3),
but (7.3) does not imply (7.1). For example, consider the 6-phase length 9
sequences B = (exp(b[i]π

√
−1/3)) and C = (exp(c[i]π

√
−1/3)), where

(b[i]) = [0, 0, 1, 1, 5, 4, 1, 3, 0] and (c[i]) = [0, 0, 0, 2, 5, 1, 4, 3, 1]. The
aperiodic autocorrelations of these sequences have magnitude

(|CB(u)| : 0 ≤ u < 9) = (9, 0, 0, 0, 1, 0, 0, 0, 1)
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and

(|CC(u)| : 0 ≤ u < 9) = (9, 1, 1, 1, 1, 1, 1, 1, 1),

so although B and C are both 6-phase generalised Barker sequences, B is
a better sequence than C. This suggests the use of the sum of squares∑

0<u<s|CA(u)|2 as an additional criterion to (7.3) for evaluating the fit-
ness of an H-phase generalised Barker sequence A of length s.

• H = 5 and H > 6.
For H = 5 and H > 6, (7.3) does not imply (7.2) because |CA(u)| can
take non-zero values strictly less than 1. For example, up to equivalence
transformations, the unique 8-phase length 16 generalised Barker sequence
is [Mow93]

B = [1, 1, 1, −i, −i, 1, i, i, −i, −1, i, −i, 1, −1, 1, e3π
√
−1/4],

and for u satisfying 0 < u < 16 we have

|CB(u)| =
{

1 for u odd√
2−

√
2 for u even.

Since
√

2−
√

2 < 1, (7.2) is not an appropriate criterion for an H-phase
generalised Barker sequence, for general H. Furthermore, the generalised
Barker sequence B does not achieve the smallest possible value of |CA(u)|
for each u 6= 0. Indeed, no 8-phase length 16 sequence A can do so,
otherwise for u satisfying 0 < u < 16 we would have

|CA(u)| =
{

1 for u odd
0 for u even,

and B would not be unique. Apparently (7.1) is too restrictive a criterion
for practical purposes, although I believe it is of theoretical interest to
classify the H-phase sequences satisfying this criterion.

Table 1 shows existence results for H-phase generalised Barker sequences up
to length 19 for H ∈ {2, 3, 4, 6, 8}, taken from exhaustive searches reported in
[BF07]. (Some of the table entries imply others, because an H-phase generalised
Barker sequence can be considered as a kH-phase generalised Barker sequence of
the same length, for any integer k. The entries for H = 2 were discussed in
Section 1.) The suggestive existence pattern for H = 6 up to length 13 was known
to Golomb and Scholtz in 1965 [GS65], motivating their conjecture that a 6-phase
generalised Barker sequence exists for every length; however the length 16 provides
a counterexample. (Chang and Golomb [CG94], [CG96] stated the nonexistence
of 6-phase length 16 generalised Barker sequences earlier than [BF07], but gave
other nonexistence results which disagree with those in [BF07]. In particular,
they claimed there is no 6-phase length 18 generalised Barker sequence, whereas
P. Borwein and R. Ferguson [personal communication, November 2007] provided
the sequence (exp(a[i]π

√
−1/3)) to verify their statement to the contrary in [BF07],

where
(a[i]) = [0, 0, 1, 1, 4, 5, 5, 0, 4, 1, 5, 2, 2, 0, 1, 4, 4, 2].

I have therefore quoted the results in [BF07], in preference to those in [CG94] and
[CG96].)
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No H-phase generalised Barker sequence of length s > 18 has been found for
H ∈ {3, 4, 6, 8}, and by exhaustive search P. Borwein and R. Ferguson [personal
communication, February 2008] have established nonexistence for H = 3 and 20 ≤
s ≤ 76, for H = 4 and 20 ≤ s ≤ 60, for H = 6 and 20 ≤ s ≤ 29, and for H = 8
and 20 ≤ s ≤ 25. This suggests an extension of Conjecture 1.3 to these values of H
and lengths s > 18. The only theoretical support for this conjecture of which I am
aware is due to Turyn [Tur74a], for the cases H = 3 and 4.

For fixed H, numerical studies (including those described above) suggest that
H-phase generalised Barker sequences become more scarce as the length s grows.
In view of this, many authors have sought examples by instead fixing s, and either
allowing the number of phases H to grow or else allowing the sequence alphabet to
be unimodular. Extensive computational work by a succession of authors, ranging
from a 1974 study for s ≤ 18 [SA74] to recent work for s ≤ 63 [BF05], s = 64
[Nun05], and s ≥ 65 [NC08b], has established:

Proposition 7.1. There exists a unimodular generalised Barker sequence for
all lengths s ≤ 70 and for s ∈ {72, 76, 77}.

The method of these authors was either to restrict in advance to an H-phase alpha-
bet for some large value of H and search stochastically, or else to perform numerical
optimisation on continuous-valued phase variables followed by quantisation to a fi-
nite alphabet. The work leading to Proposition 7.1 is motivated by the question:

Question 7.2. Does a unimodular generalised Barker sequence of length s exist
for all s?

Some authors, for example [ZG93] and [Fri96], concluded from computational
studies that the answer to Question 7.2 is negative, but these conclusions were
shown to be premature by later work, and it remains the case that “There is
currently no evidence against a positive answer” [Mow96]. Ein-Dor, Kanter and
Kinzel [EDKK02] argue that an H-phase generalised Barker sequence of length s
exists for all H ≥ s and sufficiently large s, under the assumption of Golay’s
unproven “Postulate of Mathematical Ergodicity” (mentioned in Section 6; see also
[Jed05, Section 4.7]).

We have seen that the generalised Barker sequence condition (7.3) is too relaxed
to identify the best unimodular sequences A of length s, and that it should be used
in conjunction with some other distinguishing condition. One alternative for this
condition is to minimise the number of phases H required to represent the sequence.

s
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 � � � � × � × × × � × � × × × × × ×
3 � � � � × � × � × × × × × × × × × ×

H 4 � � � � × � × × × � × � × � × × × ×
6 � � � � � � � � � � � � � � × × � ×
8 � � � � × � � � � � � � × � � × × ×

Table 1. Existence pattern for H-phase generalised Barker se-
quences of length s (where � indicates existence and × nonexis-
tence)
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This has the significant advantage of simplifying the practical implementation: with
each increase in H, the phase resolution required from the digital signalling becomes
physically more difficult, and for very large values of H or for unimodular sequences
the signalling becomes effectively analogue. A second alternative is to minimise the
sum of squares

∑
0<u<s|CA(u)|2 (see the earlier discussion of the case H = 6), or

equivalently to maximise the merit factor

(7.4) F (A) :=
s2

2
∑

0<u<s|CA(u)|2
,

which reduces to (6.1) in the binary case. A third alternative is to minimise the peak
sidelobe level; since |CA(s−1)| = 1 for any unimodular sequence A of length s > 1,
we exclude the value u = s− 1 by writing (for s > 2)

(7.5) M(A) := max
0<u<s−1

|CA(u)|,

which reduces to (5.1) in the binary case. A sequence that is optimal according to
one condition is not necessarily optimal according to another, although good perfor-
mance as measured by different conditions is often associated (as noted at the end
of Section 6 in the case of binary sequences). Borwein and Ferguson [BF05] used a
stochastic algorithm to search for H-phase generalised Barker sequences of length
up to 63 that are optimal with respect to each of these three conditions (smallest
number of phases H, smallest sum of squares

∑
0<u<s|CA(u)|2, and smallest peak

sidelobe level) in turn. Although they argued on statistical grounds that the best
values found in [BF05] for the smallest sum of squares are “good candidates for
global minima . . . up to length 45,” the value found for length 43 (and for several
lengths greater than 45) was improved in [NC08b].

Some directions for future research are:

1. Find theoretical nonexistence results for H-phase generalised Barker se-
quences with small values of H, for example by developing arguments in
[Tur74a].

2. Approach Question 7.2 theoretically, perhaps by weakening or removing
the statistical assumptions used in [EDKK02] (rather than seeking to
extend Proposition 7.1 to larger values of s numerically).

3. Classify the H-phase sequences satisfying the ideal criterion (7.1). The
classification is known when H is a multiple of 6, because (7.1) then
requires

(7.6) CA(u) = 0 for each u satisfying 0 < u < s− 1,

and no unimodular sequence of length s > 3 satisfies (7.6) [WHD77].

Finally, we mention that the merit factor (7.4) of H-phase sequences with H > 2
appears to exhibit very different behaviour from that of binary sequences, as the
length s grows. For example, a Frank sequence is a

√
s-phase sequence of square

length s whose merit factor appears to grow like O(
√

s) [AB90], whereas no binary
sequence family is known whose merit factor grows without bound (see Section 6).
Furthermore, the peak sidelobe level (7.5) of Frank sequences has been proved to
grow like O(

√
s) [Tur67] (and appears to grow like Θ(

√
s) [AB90]), whereas a

growth rate of Θ(
√

s) is apparently achievable but has not yet been proved for any
binary sequence family (see Section 5).
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8. Pairs of Golay complementary sequences and arrays

In this section we deal with the modification of Problem 1.1 in which a binary
sequence is replaced by a pair of binary sequences whose aperiodic autocorrelation
functions sum to zero at all non-zero shifts. Unlike the case of non-binary Barker
sequences (see Section 7), it is clear how to extend this modification to a com-
plex alphabet, as well as to multi-dimensional arrays. The resulting objects are of
interest both practically and theoretically.

A Golay (complementary) sequence pair is a pair of length s sequences A and B
over some alphabet W ⊆ C, for which

(8.1) CA(u) + CB(u) = 0 for all u 6= 0.

In higher dimensions, an s1 × · · · × sr Golay (complementary) array pair is a pair
of s1 × · · · × sr arrays A and B over W ⊆ C, for which

CA(u1, . . . , ur) + CB(u1, . . . , ur) = 0 for all (u1, . . . , ur) 6= (0, . . . , 0).

We call an array A a Golay array if it forms a Golay array pair with some array B;
and similarly for sequences. Golay sequences and arrays are particularly useful in
digital information processing because their summed autocorrelations are precisely
zero, rather than just having small magnitude, and their defining property (8.1)
resides in the aperiodic domain that is the natural setting for many physical pro-
cesses. They have been applied in such diverse areas as infrared multislit spectrome-
try [Gol51], X-ray and gamma-ray coded aperture imaging [OHT78], optical time
domain reflectometry [NNG+89], power control for multicarrier wireless transmis-
sion [DJ99], and medical ultrasound [NSL+03]. The central theoretical questions
are: for what sizes s1×· · ·×sr does a Golay array pair exist, and how many distinct
Golay array pairs of a given size are there?

The earliest results are for binary Golay sequence pairs, as introduced in 1951
by Golay [Gol51]. (Although the paper [Gol51] predates Barker’s [Bar53], to my
knowledge all other research on Golay sequence pairs occurred in 1960 [Wel60] or
1961 [Gol61] or later, and so can be considered a response to the presumed nonex-
istence of long Barker sequences as suggested in Section 2.) Binary Golay sequence
pairs (A,B) exist for lengths 2 and 10 [Gol51] and 26 [Gol62], for example:

s = 2 : A = [+ +]

B = [+ −]

s = 10 : A = [+ + + + + − + − − +]

B = [+ + − − + + + − + −]

s = 26 : A = [+ + + + − + + − − + − + − + − − + − + + + − − + + +]

B = [+ + + + − + + − − + − + + + + + − + − − − + + − − −].

Binary Golay sequence pairs therefore exist for infinitely many lengths, by Turyn’s
1974 composition construction:

Theorem 8.1 ([Tur74b]). If there exist binary Golay sequence pairs of length
s1 and s2 then there exists a binary Golay sequence pair of length s1s2.

Corollary 8.2. There exists a binary Golay sequence pair of length 2a10b26c

for all integer a, b, c ≥ 0.
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The following results, discovered nearly 40 years apart, together contain all known
general nonexistence results for binary Golay sequence pairs:

Proposition 8.3 ([Gol51], proved in [Gol61]). If there exists a binary Golay
sequence pair of length s > 1 then s is even.

Theorem 8.4 ([EKS90]). If there exists a binary Golay sequence pair of length
s > 1 then s has no prime factor congruent to 3 modulo 4.

Theorem 8.4 was re-proved elegantly by Eliahou, Kervaire and Saffari in [EKS91],
by representing the sequences of the Golay pair as polynomials and analysing the
possible divisors of the polynomial version of (8.1). Theorem 8.4 implies The-
orem 1.5, because if (A[i]) is a Barker sequence of even length then (A[i]) and
((−1)iA[i]) form a Golay sequence pair. The number of distinct binary Golay se-
quence pairs has been determined by exhaustive search for all lengths less than 100;
the smallest length for which existence is open is 106 [BF03].

Golay sequence pairs have been studied over many non-binary alphabets, in-
cluding: ternary [GL94], [CK01] (meaning the alphabet {1, 0,−1} rather than
the 3-phase alphabet); quaternary [CHK02]; 2h-phase [DJ99]; H-phase [Pat00]
(where H must be even for s > 1, otherwise (8.1) fails for u = s− 1); unimodular
[Bud90]; and QAM (quadrature amplitude modulation) [CVT03]. The richest
known structure for H-phase Golay sequences occurs at lengths 2m, which are also
usually the most convenient lengths for implementation. In 1999 Davis and Jed-
wab gave an explicit construction, using algebraic normal form, for 2h-phase Golay
sequence pairs of length 2m:

Theorem 8.5. [DJ99] For any integers m,h ≥ 1, there are at least 2h(m+1) ·
m!/2 distinct 2h-phase Golay sequences of length 2m (and at least twice as many
for m = 1), which form at least 2h(m+2)m! ordered Golay sequence pairs.

In the binary case h = 1, the Golay sequences described in Theorem 8.5 occur
as m!/2 complete cosets of the first-order Reed-Muller code RM(1,m) within the
second-order Reed-Muller code RM(2,m); the same is true for the non-binary cases
h > 1 under suitable generalisation of the Reed-Muller code. These Golay sequences
can therefore be used in multicarrier wireless transmission, where the Golay prop-
erty allows tight control of variations in power output, the Reed-Muller code prop-
erty allows strong error correction, and the required modulation and demodulation
is carried out using Fourier transform processing [DJ99]. Paterson [Pat00] showed
that the algebraic normal forms of the construction described in Theorem 8.5 hold
without modification when 2h is replaced by any even H.

For six years after Theorem 8.5 was known, it appeared that the underlying
construction might account for all 2h-phase Golay sequences of length 2m. But in
2005, Li and Chu [LC05] discovered 1024 additional quaternary Golay sequences
of length 16 by computer search, lying in the (quaternary generalisation of the)
third-order Reed-Muller code. The origin of these additional 1024 Golay sequences
was shown to be the quaternary length 8 Golay sequences

(8.2) [1, 1, 1, −1, 1, 1, −1, 1] and [1,
√
−1, −

√
−1, 1, 1, −

√
−1,

√
−1, 1],

which share the same autocorrelation function even though they do not lie in the
same equivalence class under standard equivalence transformations [FJ06]. Li and
Chu’s discovery prompted the question as to which further Golay sequences of
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length greater than 16 (not described in Theorem 8.5) can be derived, under known
recursive constructions such as concatenation and interleaving, from the 1024 addi-
tional length 16 Golay sequences. This question was answered from the viewpoint
of Golay array pairs, as we now describe.

In 2007, Jedwab and Parker proposed that a Golay array pair, constructed in
as many dimensions as possible, is a fundamental object of study, and that Golay
sequence pairs should be viewed as derived objects under repeated reduction of the
number of dimensions by one:

Theorem 8.6 ([JP07a]). If there exists an s × t × s1 × · · · × sr Golay array
pair over an alphabet W ⊆ C, where r ≥ 0, then there exists an st × s1 × · · · × sr

Golay array pair over W .

Theorem 8.6 is proved by applying a “projection mapping” to each array of the
higher-dimensional Golay pair, replacing each s × t “slice” formed from the first
two dimensions of the array by the sequence obtained when the elements of the
slice are listed column by column. (Projection mappings, combined with a parity
argument, were also used to establish Theorem 4.3.) In 2008, Fiedler, Jedwab and
Parker showed [FJP08] that the array viewpoint leads to a three-stage process for
constructing and enumerating Golay sequence and array pairs:

1. construct suitable Golay array pairs from lower-dimensional Golay array
pairs, using a generalisation of Theorem 8.1;

2. apply transformations to these Golay array pairs to generate a larger set
of Golay array pairs; and

3. take all possible images of the resulting Golay array pairs under successive
projection mappings.

This process simplifies previous approaches, by separating the construction of Golay
arrays in Steps 1 and 2 from the enumeration of all possible projections of these
arrays to lower dimensions in Step 3. In particular, it constructs all 2h-phase Golay
sequences of length 2m obtainable under any known method. In the quaternary
case, it constructs all Golay sequences of length 2m derivable from Li and Chu’s
examples [LC05], leading to the following counts:

Theorem 8.7 ([FJP08]). Let m > 3 be an integer. There are at least
b(m+1)/4c∑

c=0

22m−c+1

(
m− 3c + 1

c

)
(m− 2c)!

quaternary Golay sequences of length 2m, and at least 8 times this number of qua-
ternary Golay sequence pairs of length 2m.

By combining Theorem 8.6, a generalisation of Theorem 8.1, and computer
search results from [BF03], the sizes for which there exists a binary Golay array
pair with fewer than 100 elements can be determined:

Proposition 8.8 ([JP07a]). Up to reordering of dimensions, an s1 × · · · × sr

binary Golay array pair with 1 <
∏r

k=1 sk < 100 exists for precisely the following
sizes, together with the derived sizes arising from Theorem 8.6:

2, 2× 2, 2× 2× 2, 2× 2× 2× 2, 2× 2× 2× 2× 2, 2× 2× 2× 2× 2× 2,
10, 2× 10, 2× 2× 10, 2× 2× 2× 10, 26, 2× 26.
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The introduction of the Golay array viewpoint suggests some questions for
future research:

1. Only two ingredients are needed in the three-stage construction process
to construct all known 2h-phase Golay sequences of length 2m [FJP08]:
trivial Golay sequence pairs ([1], [1]), together with 512 ordered quater-
nary length 8 “cross-over” Golay sequence pairs resulting from the shared
autocorrelation function of the sequences (8.2). Can we find other in-
gredients for the construction process that produce new 2h-phase Golay
sequences of length 2m?

2. How can the three-stage construction process be used to simplify or extend
known results on the construction of Golay sequences in other contexts,
such as QAM alphabets, the ternary alphabet {1, 0,−1}, or quaternary
sequences whose length is not a power of 2?

9. Conclusion

There is overwhelming numerical evidence in favour of the Barker Sequence
Conjecture (see Theorem 1.6), though still no proof despite nearly 50 years of
effort. In this survey, I argue that many of the combinatorial objects that have been
studied for their favourable aperiodic autocorrelation properties can be viewed as
responses to the presumed nonexistence of long Barker sequences, including: multi-
dimensional Barker arrays; binary sequences with small peak sidelobe level; binary
sequences with large merit factor; Barker sequences over a non-binary alphabet;
and pairs of Golay complementary sequences and arrays. The existence question
for Barker arrays in two or more dimensions has now been completely solved. Recent
results have opened up new research directions for each of the other listed responses.

Further combinations of responses are possible, apart from those considered
here. Some of these, with illustrative references, are: the merit factor of binary
arrays [BA93]; the peak sidelobe level of binary arrays [AS89], [SL05]; and sets
of more than two sequences whose autocorrelations sum to zero [Gol51], [Pat00],
[Sch07].

The aperiodic autocorrelation function arises naturally in many physical set-
tings, and so is more practically useful than its periodic counterpart. At the same
time, the aperiodic autocorrelation function is often thought to possess little intrin-
sic structure. I believe there is much evidence to the contrary, both classical and
modern, including:

• Theorem 5.1 on the asymptotic behaviour of the peak sidelobe level of
almost all binary sequences.

• Theorems 6.1, 6.2 and 6.3 on the integer-valued asymptotic merit factor of
Rudin-Shapiro sequences, the optimal cyclic shift of Legendre sequences,
and m-sequences, and similar results on generalisations of these families.

• Theorem 8.5, whose proof links Golay sequence pairs of length 2m to
Reed-Muller codes.

• The three-stage construction process for Golay sequence and array pairs
described in Section 8, showing that some operations that appear to be-
have differently on Golay sequences can be viewed as the same operation
on a Golay array but followed by different projections.
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Note added in proof

Litsyn and Shpunt have recently proved the conclusion of Experimental Re-
sult 5.2:

Theorem 9.1 ([LS08]). The PSL of almost all binary sequences of length s

grows like Θ(
√

s log s), and the growth constant lies in the interval [1,
√

2].

Acknowledgements

I am grateful to R. Turyn for generously providing many insights into the
early history of the subject, and to Kai-Uwe Schmidt for pointing out the reference
[WHD77]. P. Borwein and R. Ferguson kindly supplied the data corresponding to
Figure 5 of [BFK07], which are displayed in Figure 3 of this paper.

References
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