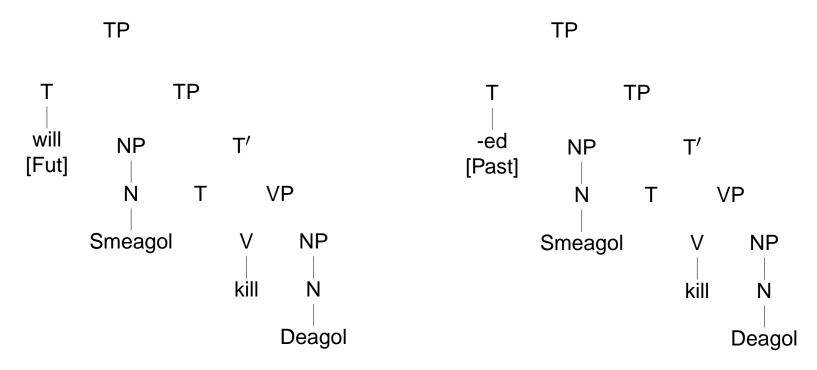

Tense

Ling 406/802; Spring 2005

Readings: Meaning and Grammar, Ch. 5.3.1

Syntax of Tense

Clause structure of simple tensed sentences



We want to apply semantics of tense in IPC to English.

But tense in IPC is a sentential operator: it operates on formulas/clauses, whereas in clause structure of English, tense takes a VP.

Syntax of Tense (cont.)

 Apply an operation at LF (Logical Form) to yield an interpretable structure: tense raising (TR).

• So, you need the following syntactic rules.

(1) a.
$$TP \rightarrow NP T'$$

b. $T' \rightarrow T VP$

c. tense raising (TR): $[_{TP} \text{ NP T VP}] \Rightarrow [\text{T } [_{TP} \text{ NP VP}]]$

Semantics of Tense

Future tense

Past tense

Syntax of a Fragment of English (F3)

1. (a) TP \rightarrow NP T'

(b) $T' \rightarrow T VP$

(c) $TP \rightarrow TP conj TP$

(d) $TP \rightarrow neg TP$

(e) $T \rightarrow Past$, Pres, Fut

(f) $VP \rightarrow V_t NP$

(g) $VP \rightarrow V_i$

(h) $VP \rightarrow V_{dt} NP PP[to]$

(i) NP \rightarrow Det N_c

(j) NP \rightarrow N_p

(k) $PP[to] \rightarrow to NP$

(I) Det \rightarrow the, a, every

(m) $N_p \rightarrow Frodo$, Smeagol, Deagol, Sam, Aragorn, ... he_1 , ..., he_n , ...

(n) $N_c \rightarrow book$, fish, man, hobbit, ...

(o) $V_i \rightarrow$ is intelligent, is hungry, is tall, ...

(p) $V_t \rightarrow$ destroy, kill, read, ...

(q) $V_{dt} \rightarrow$ give, introduce, ...

(r) conj \rightarrow and, or

(s) $neg \rightarrow it$ is not the case that

2. Rule for Quantifier Raising (QR) $[TP \times P] \Rightarrow [TP \times P_i \times P_i \times P]$

3. Rule for Tense Raising (TR) $[_{TP} \text{ NP T VP}] \Rightarrow [_{TP} \text{ T } [_{TP} \text{ NP VP}]]$

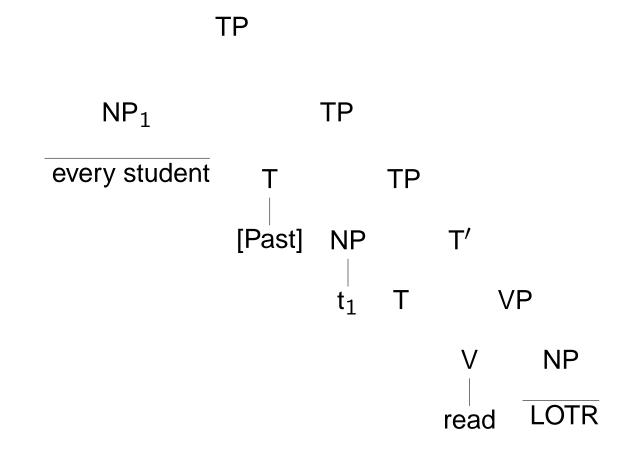
A Model for F3

An F3 model for English is a 5-tuple < W, I, <, U, V >, where:

- 1. W is a set of worlds.
- 2. *I* is a set of instants ordered by the relation <.
- 3. U is the domain of individuals.
- 4. *V* is a function that assigns an intension to the constants of F3.
 - (a) If β is a proper name, then $V(\beta)$ is a constant function from $W \times I$ to U denoting the bearer of the proper name.
 - (b) $V(\text{fish})(\langle w, i \rangle) = \{x : x \text{ is a fish in } w \text{ at time } i\}.$
 - (c) $V(\text{is tall})(\langle w, i \rangle) = \{x : x \text{ is tall in } w \text{ at time } i\}.$
 - (d) $V(kill)(< w, i >) = \{< x, y > : x kill y in w at time i\}.$
 - (e) $V(\text{give})(< w, i >) = \{< x, y, z > : x \text{ give } y \text{ to } z \text{ in } w \text{ at time } i\}.$
 - (f) V (it is not the case that) = $\begin{bmatrix} 1 \rightarrow 0 \\ 0 \rightarrow 1 \end{bmatrix}$

(g)
$$V(\text{and}) = \begin{bmatrix} <1,1> \to 1\\ <1,0> \to 0\\ <0,1> \to 0\\ <0,0> \to 0 \end{bmatrix}$$
 (h) $V(\text{or}) = \begin{bmatrix} <1,1> \to 1\\ <1,0> \to 1\\ <0,1> \to 1\\ <0,0> \to 0 \end{bmatrix}$

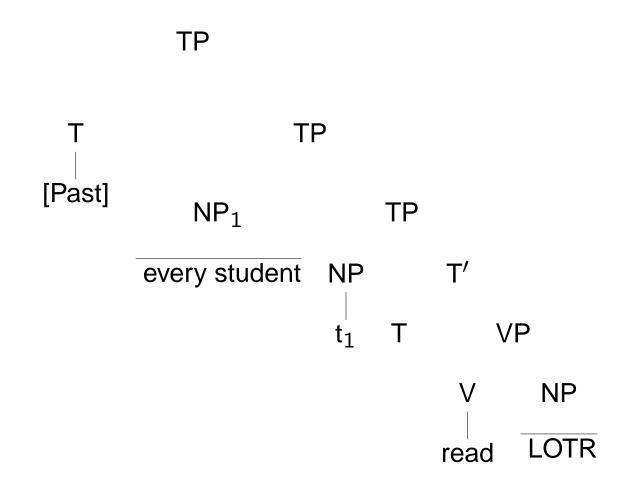
Semantics of F3


- 1. If A is a category and β is a trace or a pronoun, $[[A \beta]]^{M,w,i,g} = g(\beta)$; otherwise, $[[A \beta]]^{M,w,i,g} = V(\beta)$
- 2. If A and B are any categories, $[[A B]]^{M,w,i,g} = [B]^{M,w,i,g}$
- 3. $[[PP \text{ to NP}]]^{M,w,i,g} = [NP]]^{M,w,i,g}$
- 4. $[[T_P \ NP \ T']]^{M,g} = 1 \text{ iff } [[NP]]^{M,w,i,g} \in [T']^{M,w,i,g}$
- 5. $[[TP]]^{M,w,i,g} = [conj]^{M,w,i,g} (<[TP1]]^{M,w,i,g},[TP2]]^{M,w,i,g} >$
- 6. $[[T_P \text{ neg TP}]]^{M,w,i,g} = [neg]^{M,w,i,g} ([T_P]]^{M,w,i,g})$
- 7. $[[V_P \lor_t \mathsf{NP}]]^{M,w,i,g} = \{\mathsf{x}: <\mathsf{x}, [[\mathsf{NP}]]^{M,w,i,g} > \in [[\mathsf{V}_t]]^{M,w,i,g} \}$

- 9. $[[\text{every } \beta]_i \text{ TP}]^{M,w,i,g} = 1 \text{ iff for all } d \in U, \text{ if } d \in [\beta]^{M,w,i,g}, \text{ then } [[\text{TP}]]^{M,w,i,g}[d/e_i] = 1, \text{ where } e_i = t_i \text{ or } e_i = \text{he}_i$
- 10. $[[[a \ \beta]_i \ TP]]^{M,w,i,g} = 1$ iff for some $d \in U$, $d \in [[b]]^{M,w,i,g}$, and $[[TP]]^{M,w,i,g}[d/e_i] = 1$, where $e_i = t_i$ or $e_i = he_i$
- 11. $[[[the \ eta]_i \ TP]]^{M,w,i,g} = 1$ iff for some $d \in U$, $[[\beta]]^{M,w,i,g} = \{d\}$, and $[[TP]]^{M,w,i,g}[d/e_i] = 1$, where $e_i = t_i$ or $e_i = he_i$
- 12. $\llbracket \text{Pres TP} \rrbracket^{M,w,i,g} = \llbracket \text{TP} \rrbracket^{M,w,i,g}$
- 13. [Past TP]] $^{M,w,i,g} = 1$ iff for some $i' \in I$ such that i' < i, [TP]] $^{M,w,i',g} = 1$
- 14. [[Fut TP]] $^{M,w,i,g} = 1$ iff for some $i' \in I$ such that i' > i, [[TP]] $^{M,w,i',g} = 1$

Compositional Semantics

(2) Every student read Lord of the Rings.


LF1: every>Past

Compositional Semantics

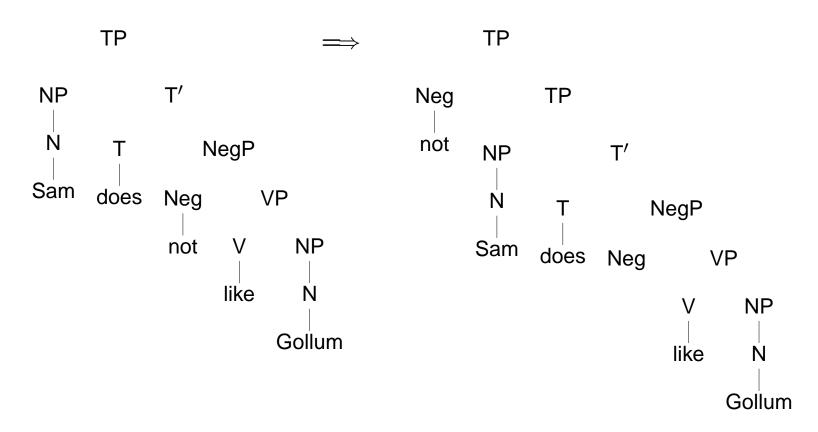
(3) Every student read Lord of the Rings.

LF2: Past>every

Problems: Scope of Tense and Quantified Nominal Phrase

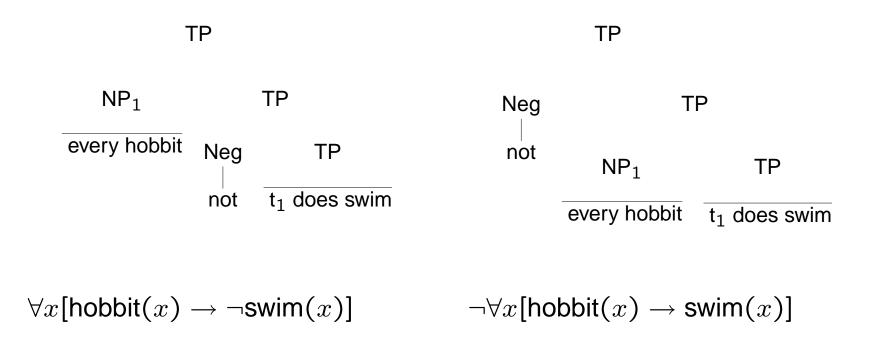
- The possible readings are too restricted.
 - (4) Every student read Lord of the Rings.

'∀ >Past' reading: "Every current student read *Lord of the Rings* at some past time (possibley at different past times)."

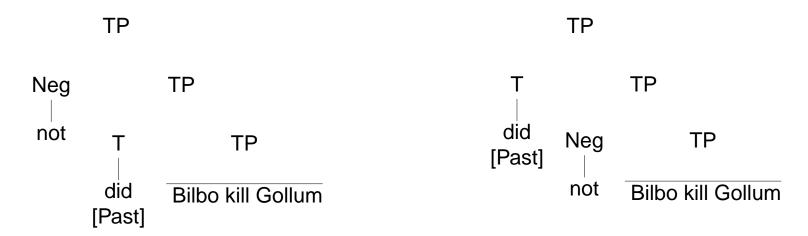

'Past>∀' reading: "There is a particular past time in which every past student read *Lord of the Rings* at that time."

Not available: "There is a particular past time in which every current student read *Lord of the Rings* at that time."

Not available: "Every past student and every current student read *Lord of the Rings* at some past time (possibly at different past times)."


Problems: Scope of Negation and Tense

- Negation
 - (5) Sam does not like Gollum.


Problems: Scope of Negation and Tense (cont.)

- Scope of negation and quantified NP
 - (6) Every hobbit does not swim.

Problems: Scope of Negation and Tense (cont.)

- Scope of negation and tense
 - (7) Bilbo did not kill Gollum.

¬Pkill(bilbo, gollum)

P¬kill(bilbo, gollum)

"There is no time that precedes the evaluation time at which Bilbo kills Gollum."

"There is a time that precedes the evaluation time at which Bilbo does not kill Gollum." (trivially true, non-sensical reading)

Problems: Scope of Negation and Tense (cont.)

- Interpretation obtained from 'neg>tense' scope is not always adequate.
 - (8) John didn't turn off the stove. (Partee 1973)

'neg>tense' reading: "There is no time that precedes the evaluation time at which John turns off the stove." = "John has never turned off the stove."

The reading we want to obtain: "There is a specific time that the speaker has in mind, R, such that R precedes the time of evaluation, and John doesn't turn off the stove at R."