
Adaptive coding of DCT coe�cients by

Golomb-Rice codes

N. Memon

Imaging Technology Department

Hewlett Packard Laboratories

Abstract

In this report we apply some of the Golomb-Rice coding techniques that

emerged in JPEG-LS, a new standard for lossless image compression, and apply

them towards coding DCT coe�cients in the lossy JPEG baseline algorithm.

We show that this results in signi�cant improvements in performance with

limited impact on computational complexity. In fact, one signi�cant reduction
in complexity provided by the proposed techniques is the complete elimination

of the Hu�man tables in JPEG baseline which can be a bottleneck in hardware

implementations. We give simulation results, comparing the performance of the

proposed technique to JPEG baseline, JPEG baseline with optimal Hu�man

coding (two pass) and JPEG arithmetic.

1 Introduction

The JPEG committee of the International Standards Organization (ISO) has recently

developed a new standard for lossless and near-lossless compression of continuous-tone

(2 to 16 bits) still images. A baseline algorithm, called JPEG-LS, has already been

completed [1] and is awaiting approval by national bodies. The JPEG-LS baseline

algorithm despite being remarkably simple and computationally e�cient, provides

compression performance that is within a few percent of more sophisticated techniques

such as CALIC [10] and UCM [7].

One of the key ideas that emerged in JPEG-LS was a simple and e�ective technique

for Golomb-Rice coding using sequential parameter estimation. This technique was

part of the revised HP proposal, LOCO-I1p [9] submitted to the JPEG committee in

November 1994. Despite being extremely simple to implement both in software and

hardware, the coding performance of the Golomb-Rice coding technique proposed in

1



[9] proved to be, in practice, within a few percent of some more complex arithmetic

coding based techniques and was eventually incorporated into the standard with

minor revisions [1].

Before the development of JPEG-LS, the most popular compression standards,

like, JPEG, MPEG, H263, CCITT Group 4, have essentially used static Hu�man

codes in the entropy coding stage. This is because adaptive Hu�man coding does not

provide enough compression improvement in order justify the additional complexity.

Adaptive arithmetic coding, on the other hand, despite being used in standards like

JBIG and JPEG arithmetic, has seen little use due to concerns about intellectual

property restrictions and also perhaps due to the additional computational resources

that are needed, especially in a software implementation. JPEG-LS is the �rst inter-

national compression standard that uses an adaptive entropy coding technique that

requires only a single pass through the data and requires computational resources

that are comparable to static Hu�man coding.

In this paper we apply some of the Golomb-Rice coding techniques that emerged

in JPEG-LS towards coding DCT coe�cients in the lossy JPEG baseline algorithm.

We show that this results in signi�cant improvements in performance with limited

impact on computational complexity. In fact, one signi�cant reduction in complexity

provided by the proposed techniques is the complete elimination of the Hu�man tables

in JPEG baseline which can be a bottleneck in hardware implementations. Although

we focus our attention on still images and the JPEG baseline algorithm, it should be

noted that the techniques proposed in this paper are also potentially applicable to

video coding standards like MPEG and H263.

The rest of the paper is organized as follows: in section 2 we show how the DC

coe�cient within each 8�8 DCT block can be coded more e�ciently by simply using

JPEG-LS on the sub-image comprising of DC coe�cients. In section 3 we develop

a context based technique for Golomb-Rice coding of AC coe�cients. In section

4 we present a technique for run length coding of zero valued AC coe�cients that

is very similar to the the runlength coding employed in JPEG-LS. We also show

how an adaptive reordering of coe�cients prior to run length coding can lead to

improved performance. Finally in section 5 we give simulation results, comparing

the performance of the proposed technique to JPEG baseline, JPEG baseline with

optimal Hu�man coding (two pass) and JPEG arithmetic.

2



Image JPEG-LS JPEG-HUFF
balloon 3289 4559
barb2 3807 4930
barb 4131 5282
board 2948 4091
boats 3605 4576
girl 3993 4754
hotel 4172 4933
zelda 3613 5010

Table 1: Bytes needed for coding DC coe�cients with JPEG-LS and baseline JPEG
Hu�man coding technique using default quantization table.

2 Coding the DC coe�cient by JPEG-LS

In the baseline JPEG algorithm the quantized DC coe�cients are di�erentially en-

coded. In other words, the quantized DC coe�cient of the previous block is used

as the predicted value for the current quantized coe�cient. The prediction error is

then encoded using a Hu�man code. Although the Hu�man code can be speci�ed by

the user, this requires two passes through the image which may not possible in some

applications. Hence often the default static Hu�man tables are used resulting in poor

performance.

One way to achieve better compression performance while coding the DC coe�-

cients in a single pass is to use JPEG-LS. Speci�cally, the DC coe�cients of an image

can be treated as a smaller image that essentially has the same smoothness proper-

ties encountered in real images. Hence such a sub-image can be e�ciently encoded

using JPEG-LS which uses adaptive coding and requires only one pass through the

data. Furthermore the additional memory requirements for doing this are limited as

JPEG-LS requires less than 2K of memory and only the past N
8
DC samples need to

be bu�ered, where N is the number of columns in the image. In Table 1 we show the

number of bytes needed to encode the DC coe�cients using JPEG-LS and estimated

baseline JPEG bytes using the default quantization step size. The test images are

the luminance planes of a standard set of 576� 720 JPEG test images.

3



3 Golomb-Rice coding of AC coe�cients

In JPEG-LS, prediction errors are encoded using a special case of Golomb codes [2]

also known as Rice codes [4]. Golomb codes of parameter m encode a positive integer

n by encoding n mod m in binary followed by an encoding of n div m in unary. When

m = 2k the encoding procedure has a very simple realization and has been referred

to as Rice coding in the literature, but following [8] we refer to them as Golomb-Rice

codes. The key factor behind the e�ective use of Golomb-Rice codes is the estimation

of the coding parameter k to be used for a given sample or block of samples. Rice's

algorithm exhaustively [4] tries codes with each parameter on a block of samples and

selects the one which results in the shortest code length. This parameter is sent

to the decoder as side information. However, in JPEG-LS the coding parameter k is

estimated on the y for each prediction error using techniques proposed by Weinberger

et. al, [8]. Despite the simplicity of the coding and estimation procedures, the

compression performance achieved is surprisingly close to that obtained by arithmetic

coding. In their technique, each prediction error is mapped in an interleaved manner

to a positive number and then encoded by using a Golomb-Rice code of parameter

m = 2k. The parameter k is estimated by maintaining in each context C, the count

NC of the number of times the context C has been encountered so far and AC , the

accumulated sum of magnitudes of prediction errors within this context C. The

coding parameter k is then computed as

k = minfk
0

j 2k
0

�NC � ACg: (1)

The strategy employed is an approximation to optimal parameter selection for this

entropy coder. For details the reader is referred to [8].

Essentially the above procedure is using the fact (proven in [8]), that for a discrete

Laplacian distribution L�;� with a probability mass function of the form

P (e) = p0 � exp(��)
jej; ��=2 � e � �=2� 1

a good approximation of the Golomb-Rice parameter k that yields the minimal code

length for this distribution is

k = dlog2 (a�;�)e

where a�;� is the expected value of the magnitude of a random sample drawn from

L�;�.

4



Now, it has been established empirically by several researchers that the AC co-

e�cients of an 8 � 8 DCT block are well modeled by a Laplacian distribution (for

example, see [11] or [5]). Hence in order to compute the appropriate Golomb-Rice

encoding parameter we need a good estimate of the expected magnitude of each AC

coe�cient. In JPEG-LS, good estimates of the expected magnitudes of prediction

errors are obtained by using a large number of contexts. Using large number of con-

texts for coding AC coe�cients within a DCT block can be potentially expensive

as we would need a di�erent set of contexts for each of the 63 coe�cients. This is

because although the distribution of each AC coe�cient is Laplacian, the variance

of this distribution varies with the coe�cient position in the DCT block. Hence we

would require separate contexts for each of AC coe�cients. Not only would this re-

quire an enormous amount of memory, but estimation would be ine�ective due to the

sparse context problem or high model cost. Hence the challenge is to design a small

number of contexts that are able to capture the essential structure within a DCT

block and further adapt the estimation procedure within each context.

The distribution of a speci�c AC coe�cient depends on the quantizer step size

being used for that coe�cient. Hence, clearly the entropy coding of AC coe�cients

needs to be adapted to the speci�c quantization table being employed. In addition

it is known that DCT blocks containing an edge of the same orientation would have

a similar structure. For example, DCT blocks containing a vertical (horizontal) edge

have most of their energy in the �rst row (column) of the block. One way to detect

the presence of an edge in the current DCT block is to examine the di�erence between

the DC values of adjacent blocks. Hence, we compute the di�erences

dv = DCi;j �DCi�1;j

dl = DCi;j �DCi�1;j�1

dh = DCi;j �DCi;j�1

dr = DCi;j �DCi�1;j+1

where i; j are block indices. These di�erences, multiplied by the DC quantization

step size can then be quantized into two levels (low, high), yielding 42 = 16 contexts.

In addition the DC value of the current block is quantized into t levels yielding

16t contexts. Within each context we, like in JPEG-LS, keep track of the average

magnitude of each of the 63 AC coe�cients. This can be done by maintaining a

count NC of the number of occurrence of each context C and the accumulated sum

5



of magnitudes AC within this context. Doing this requires 63 � 16t + 16t words of

additional memory. The Golomb-Rice parameter for coding an AC coe�cient can

then be computed as in JPEG-LS, by the procedure given in (1).

3.1 Scaling the expected magnitude

The memory requirement of the above technique is still prohibitive as the number of

contexts is unacceptably large. One way to get good estimates for the Golomb-Rice

parameter with a smaller number of contexts is to adaptively compute, a scale factor s

for each DCT block based on the sum of the actual magnitudes of the AC coe�cients

seen so far in the block and the sum of the corresponding expected magnitudes. The

expected magnitude of the current AC coe�cient can then be scaled by this factor s

before computing the Golomb-Rice parameter k for encoding the coe�cient. Using

this scaling technique along with very few contexts was observed to give results better

than those obtained by using signi�cantly larger number of contexts. For example,

the best results were obtained by using only dh and dv and t = 2, that is a total

of 8 contexts. The disadvantage of the scaling technique, of course is the division

operation needed to compute the scaling factor. It should be noted however, that

a majority of AC coe�cients would have an expected magnitude of zero, thereby

obviating the need for this division operation, as they would be encoded using the

runlength coding technique described in the next section.

3.2 Bias cancelation and sign ipping

Although the AC coe�cients are modeled well by a zero mean Laplacian distribution,

when they are conditioned to a su�ciently large number of contexts, it is seen that the

distributions of speci�c coe�cients are not zero mean but reveal systematic biases. In

JPEG-LS, these biases are removed by keeping track of the average prediction error

in each context and subtracting this from the error prior to coding. We adopt the

same technique. Further, small additional improvements are obtained by ipping the

sign of the AC coe�cient prior to encoding, if the average value is negative. This is a

form of sign prediction used in CALIC [10]. Finally, further additional improvements

can be obtained by adopting the AC prediction techniques used in MPEG.

6



4 Coding zero runs

Golomb-Rice codes can be ine�cient when coding low entropy distributions because

the best coding rate achievable is 1 bit per symbol. Obviously for entropy values of

less than 1 bit per symbol, such as would be found in high frequency coe�cients,

this can be very wasteful and lead to signi�cant deterioration in performance. This

redundancy can be eliminated by using alphabet extension, wherein blocks of symbols

rather than individual symbols are coded, thus spreading the excess coding length over

many symbols. This process of clubbing several symbols prior to coding produces less

skewed distributions, which is desirable ih this particular situation. In baseline JPEG,

alphabet extension is done by the usage of what has been called a 2-D Hu�man table

that jointly codes an AC coe�cient and the number of zero coe�cients that follow.

In addition a special end-of-block code is used which indicates that the remaining

coe�cients along the zig-zag scan are all zero.

The techniques used by baseline JPEG are static and do not exploit the fact

that the probability of seeing a zero coe�cient or a long run of zero coe�cients

varies in di�erent regions of the image. Smooth regions would contain an abundance

of zero coe�ceints whereas active regions would not. Hence we use adaptive run

length coding to handle the situation more e�ectively. Speci�cally, run length mode

is triggered when the expected magnitude of an AC coe�cient in the current context

is less than a certain threshold. The speci�c run length coding scheme used is the

MELCODE described in [6]. MELCODE is a binary coding scheme where target

sequences contain a Most Probable Symbol (MPS) and a Least Probable Symbol

(LPS). In JPEG-LS, if the current symbol is the same as the previous, an MPS is

encoded else a LPS is encoded. Runs of the MPS of length n are encoded using a 1 bit.

If the run is of length less than n (including 0) it is encoded by a zero bit followed by

the binary value of the run length encoded using logn bits. The parameter n is of the

form 2k and is adaptively updated while encoding a run. For details of the adaptation

procedure and other details pertaining to the run-mode the reader is referred to the

draft standard [1].

4.1 Adaptive reordering of coe�cients

The problem with the runlength coding described above is that often very short

runs are coded since a DCT block scanned in zig-zag order still contains many zero

7



coe�cients interspersed with non-zero coe�cients. Runlength coding can be made

more e�ective by scanning all the non-zero coe�cients and then the zero coe�cients.

But the coder does not know in advance where the zero coe�cients are located.

Of course, the probability of a speci�c coe�cient depends in a global sense on the

quantization step size being used for the coe�cient. However, the probability of a

coe�cient being zero also depends on the essential structure of the DCT block which

is determined by the presence and the type of edges passing through the block. A

good deal of this structure is already captured by the contexts used in the previous

section for estimating the magnitude of AC coe�cients. Hence, we maintain within

each context an ordering that enables us to encode the AC coe�cients in increasing

(or decreasing) order of magnitude. This is done by maintaining an index array of size

63 for each context. With eight contexts, the additional memory needed is 63�8 = 504

bytes. In addition after encoding each block, this ordering has to be updated, which

in the worst case would require sorting the entire index array. However, since the

coding of each block only perturbs the current ordering a little bit, it is observed

in practice that restoring the ascending or descending ordering requires only a few

passes through the index array.

5 Simulation results

In Tables 2 and 3 we show bit rates achieved with the proposed coding scheme and

by an implementation of baseline JPEG (the IJPEG distribution) at various quality

factors. It is seen that the proposed scheme appears to give signi�cant improvements

over baseline JPEG. Further more the improvement is often more than 30% for low

bit rates and drop downs to about 10% for higher bit rates. This is because the

static Hu�man code being used by JPEG baseline is better suited for moderate to

high bit rates. For further comparison we list in Table 4, bit rates for the same test

set achieved with the two-pass JPEG baseline that optimizes the Hu�man code for

the image under consideration. Still we see that the proposed technique consistently

performs better over the entire range of bit rates. The di�erence however, is only

about 5% on the average. Finally, in Table 5, we show results obtained with JPEG

arithmetic. It is seen that JPEG arithmetic is about 3% better on the average.

8



10 30 50 70
baloony 5639 12350 17375 25347
barb2y 14196 31184 42780 59928
barby 13896 31934 43710 59994
boardy 7635 15645 22186 32004
boatsy 10176 22555 31158 43580
girly 10507 23624 32460 44982
goldy 10199 25796 36565 51678
hotely 13094 27477 37332 51950
zelday 7484 16733 23307 33514

Table 2: File size at various quality levels using proposed Golomb-Rice coding tech-
niques for AC coe�cients and JPEG-LS for DC coe�cient.

10 30 50 70
baloony 8981 14823 19727 26926
barb2y 17017 34051 46702 64100
barby 16979 34910 46935 62625
boardy 11574 20092 26925 36438
boatsy 13188 25445 34337 46378
girly 12937 25640 34864 47122
goldy 12876 28346 39937 55251
hotely 15965 29989 40257 54311
zelday 10239 18278 25207 35429

Table 3: File sizes obtained by baseline JPEG that uses a �xed static Hu�man code.

9



10 30 50 70
baloony 6064 12995 18167 25794
barb2y 14265 32727 45750 63188
barby 14316 33144 45828 61668
boardy 8898 17911 24989 34653
boatsy 10700 24014 33451 45777
girly 10322 24134 33939 46631
goldy 10177 26504 38688 54629
hotely 13669 28943 39625 53838
zelday 7414 16511 23861 34289

Table 4: File sizes obtained by two pass baseline JPEG using an optimal Hu�man
code.

10 30 50 70
baloony 5411 11908 17016 24416
barb2y 12956 29751 41854 58382
barby 13125 30605 42709 58295
boardy 7713 16406 23348 32704
boatsy 9296 21740 30559 42162
girly 9536 22346 31474 43403
goldy 9127 24209 35359 49841
hotely 12514 26987 37545 51671
zelday 6870 15487 22438 32282

Table 5: File sizes obtained by JPEG arithmetic.

10



References

[1] ISO/IEC JTC 1/SC 29/WG 1. JPEG LS image coding system. ISO Working

Document ISO/IEC JTC1/SC29/WG1 N399 - WD14495,, July 1996.

[2] S. W. Golomb (1966). Run-length codings. IEEE Transactions on Information

Theory, 12(7):399-401.

[3] S. A. Martucci. Reversible compression of HDTV images using median adaptive

prediction and arithmetic coding. In IEEE International Symposium on Circuits

and Systems, pages 1310{1313. IEEE Press, 1990.

[4] R. F. Rice (1979). Some practical universal noiseless coding techniques. Techni-

cal Report 79-22, Jet Propulsion Laboratory, California Institute of Technology,

Pasadena.

[5] S. R. Smoot and .L. A. Rowe. Study of DCT coe�cient distributions Human

Vision and Electronic Imaging, Proceedings of the SPIE, vol.2657, pp 403-11,

1996.

[6] S. Ono, S. Kino, M. Yoshida, and T. Kimura. Bi-level image coding with MEL-

CODE - comparison of block type code and arithmetic type code. Proceedings

Globecomm 89, 1989.

[7] M. Weinberger, J. Rissanen and R. Arps, \On universal context modeling for

lossless compression of gray-scale images", IEEE Trans.Image Proc., 5(4):575{

586, 1996.

[8] M. Weinberger, G. Seroussi, and G. Sapiro LOCO-I: A low complexity context-

based lossless image compression al gorithm, Proc. 1996 Data Comp. Conf.,

pp140-149, 1996.

[9] M. J. Weinberger, G. Seroussi, and G. Sapiro. LOCO-I: new developments. ISO

Working Document ISO/IEC JTC1/SC29/WG1 N245, November, 1994.

[10] X. Wu and N.D. Memon. Context-based adaptive lossless image coding. IEEE

Trans. Comm., 45(4):437{444, April 1997.

11



[11] G. S. Yovanof and S. Liu. Statistical analysis of the DCT coe�cients and their

quantization error Proceedings, 13th Asilomar Conference on Signals, Systems

and Computers pp 601-5 vol.1, 1997

12


