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Abstract—In this paper, a prediction-compensated multiple de-
scription (MD) coding framework for two-band filter banks is pro-
posed, in which the coefficients in each subband are split into two
descriptions. Each description also includes the prediction resid-
uals of the data in the other description. The designs of the optimal
orthogonal and biorthogonal filter banks are formulated in a uni-
fied framework, and both one-level and multiple-level decomposi-
tions are analyzed. Contrary to the existing MD filter banks in the
literature, the optimal filter banks in the proposed scheme are quite
similar to those in single description coding. Therefore, the method
can be applied to systems with single-description-optimized filter
banks and still attain near-optimal performance. Image coding re-
sults show that this method achieves better performance and lower
complexity than the latest JPEG 2000 based MDC.

Index Terms—Filter bank, image coding, linear prediction, mul-
tiple description coding, wavelet transform.

I. INTRODUCTION

M ULTIPLE description coding (MDC) [1] is an attractive
technique of combating transmission errors. In MDC,

the source signal is encoded into several coded streams called
descriptions, which are sent to the receiver via different network
paths. Judiciously designed redundancies are introduced in all
descriptions such that the reconstruction quality degrades grace-
fully when some of them are lost. In this paper, we focus on
MDC with two descriptions and three decoders, where the de-
coder receiving one and two descriptions is called the side de-
coder and the central decoder, respectively. In particular, we are
interested in wavelet transform based MDC and its application
in image coding.

Many transform coding based MDC schemes have been de-
veloped, which can be classified into two categories. In the first
category, each description contains the same number of coeffi-
cients as the transform outputs, whereas in the second category,
a description only has half of transform outputs.

Some schemes of the first category are based on the mul-
tiple description scalar quantizer (MDSQ) [2], [3], which in-
troduces redundancy implicitly via a central quantizer and an
index assignment. The index assignment creates two side quan-
tizers such that each can produce an acceptable side distortion,
and their combination yields the finer central quantizer. The
MDSQ is asymptotically near optimal at high rates [4], [5], and
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has been used in wavelet image coding in [6]. However, the de-
sign and implementation of the index assignment are quite chal-
lenging, and the redundancy is not easy to adjust. A two-stage
modified MDSQ (MMDSQ) with the same asymptotical per-
formance as the MDSQ is developed in [5], which only in-
volves scalar quantizers and avoids the index assignment. To-
gether with the wavelet transform and Tarp filter, the MMDSQ
achieves one of the best MD image coding results.

In [7], the theoretical performance of the MDSQ-based mul-
tiple description transform coding (MDTC) is studied by high
resolution analysis, which shows that the Karhunen–Loève
transform (KLT) is still the optimal MD block transform for
stationary sources. An information-theoretic scheme is recently
developed in [8], where a vector MD quantizer is used after the
block transform instead of MDSQs. The analysis in it confirms
that the KLT is indeed rate-distortion optimal.

Although the MDTC approach is asymptotically optimal for
stationary signals, in practice it may not always have the best
performance. Hence, it is worthwhile to investigate alternative
approaches. One reason is that the KLT is only optimal when the
block size goes to infinite. For finite block sizes, practical fast
approximations of the KLT such as the DCT cannot decorrelate
the signals perfectly, and filter banks (FBs) with longer filters
are needed to get better coding efficiency, making it necessary
to study the optimal filter bank for a particular MDC scheme.
In addition, when a finite block size is used, the correlation be-
tween neighboring blocks is not utilized by the MDTC. Better
results can be achieved by taking full advantage of the source
correlation. Moreover, different technologies from the MDTC
might be more suitable when the source is nonstationary, such
as natural images.

Other methods in the first MDC category that work well in
practice include the direct coding method in [9] and [10], where
the redundancy is introduced explicitly by grouping the wavelet
transform outputs into two parts, and each description includes
one part with a fine quantization and another part with a coarse
quantization. The low rate part is the redundant information,
which is discarded when two descriptions are received. If one
description is lost, all data in the description are used in the
reconstruction. Recently this method is applied to JPEG 2000
under the name of RD-MDC [11], where the Lagrangian method
is used to find the optimal data partition and bit allocation. How-
ever, to get balanced descriptions, the RD-MDC needs to clas-
sify all JPEG 2000 codeblocks into two subsets, such that any
codeblock in one subset has similar characteristics to another
codeblock in the other subset. This procedure is quite time con-
suming. The complexity can be reduced by searching a small
subset of all codeblocks, but at the price of lower performance.
In addition, the side distortion of this approach at low redundan-
cies is not satisfactory.
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In the second MDC category, each description only includes
half of the transform outputs. Interdescription prediction is usu-
ally used in the side decoder. This splitting approach was first
developed in [12]. However, the performance of its side de-
coder suffers from the inherent prediction residual, especially
at high rates [1], [12]. To mitigate this problem, a pairwise cor-
relating transform (PCT) is developed in [13] to introduce a con-
trolled amount of redundancy between two DCT coefficients
before splitting. This can reduce the prediction error when one
of them is lost. Nevertheless, in [14], it is shown that the PCT
at high redundancies is still not satisfactory, and a generalized
PCT (GPCT) is proposed. At low redundancies it is the same as
the PCT. At high redundancies, in addition to the PCT, each de-
scription also encodes the prediction residual of the other half
of PCT outputs to reduce the side distortion. Note that by en-
coding the prediction residual, each description of the GPCT
essentially has the same number of coefficients as the transform
outputs. Therefore, it becomes a member of the first MDC cat-
egory.

Some drawbacks still exist in the PCT and GPCT systems.
First, the PCT can only be applied to coefficients with large
variances relative to the quantization error [13]. Other coeffi-
cients are directly split and are estimated as zero in the side
decoder, which limits the low redundancy performance of the
system. Second, the PCT only uses the correlation it inserts be-
tween the two parts of a block, but does not exploit the corre-
lation among neighboring blocks. Finally, the implementation
of the system is not easy. In [13], all image blocks are classi-
fied into four classes. Coefficient variances of each class need
to be calculated and sorted to find the PCT parameters. Also,
existing entropy coding cannot be used for the PCT outputs due
to different statistics and block sizes. The GPCT further com-
plicates the system, because new transform and entropy coding
are needed to code the residual.

In [15] and [16], the lapped orthogonal transform is used to in-
troduce redundancy between neighboring blocks, and the trans-
formed coefficients are split at the block level. In [17], the time-
domain lapped transform [18] is used, which simplifies the de-
sign and also enables more efficient prediction. The Wiener filter
is applied in [19] to improve the estimation of missing blocks. In
[20], a prediction-compensated MDC (PC-MDC) framework is
developed by encoding the prediction residual in [19]. Superior
image coding performance over the MMDSQ, RD-MDC, and
PCT is achieved in [20], especially at low redundancies. Note
that the PC-MDC in [20] also becomes a special case of the first
MDC category due to the prediction compensation.

Although the prediction compensation method achieves good
performance in [20] under the block transform framework, this
approach has not been well studied in wavelet based MDC.
Therefore, one of the motivations of this paper is to develop a
prediction-compensated MDC framework for two-band filter
banks, denoted as PC-MDFB. Such a generalization is not
straightforward, because the tree structure of the wavelet trans-
form poses many challenges to the design of the optimal MD
filter bank (MDFB), the design of interdescription prediction,
and the partition of the wavelet outputs.

The problem of optimal MDFB design has been studied in
[21] and [22] for other MD frameworks. In [21], the output of
each subband is used to form one description. The lost descrip-
tion is estimated from the received one using linear prediction.

In [22], the pairwise correlating transform in [13] is applied to
each frequency in the Fourier domain before splitting. Clearly,
both schemes belong to the second MDC category. Since they
rely solely on the interdescription prediction in the side decoder,
their side distortions are not satisfactory, as in the PCT. In ad-
dition, by creating one description from each subband, the two
subband filters increasingly resemble each other as the increase
of the redundancy, making them quite different from the ex-
isting FBs for single description coding (SDC). Therefore, the
methods in [21] and [22] cannot be applied satisfactorily to ex-
isting wavelet-based systems.

Given that the prediction compensated MDC essentially be-
longs to the first MDC category, we expect that the optimal
MDFBs in our case would be closer to the optimal filter banks
in SDC, compared to those in [21] and [22]. The results in this
paper verify that our optimal FBs are indeed very similar to their
SDC counterparts, although not identical. This is because the
filter bank and prediction compensation in our scheme are dif-
ferent from the block transform and MD quantizer in the MDTC.
Nevertheless, these results suggest that our method can be ap-
plied to systems with single-description-optimized filter banks
and attain near-optimal performance.

In Section II, we formulate the design of one-level
PC-MDFBs. Section III generalizes the results to multiple
levels, which are not considered in [21], [22]. Various design
examples are given in Section IV. The application of our
method in JPEG 2000 based MD image coding is reported
in Section V, which shows that our method achieves better
performance than the RD-MDC, MMDSQ, and PCT, especially
at low redundancies. Our method also has lower complexity
than the RD-MDC.

II. DESIGN OF ONE-LEVEL MD FILTER BANKS

A. System Overview

Fig. 1 shows the block diagram of generating two descrip-
tions in the proposed prediction-compensated multiple descrip-
tion filter bank framework (PC-MDFB). Only one-level decom-
position is considered in this section. Multiple levels are studied
in Section III. The input signal is processed by a two-band
perfect reconstruction filter bank. The subband outputs are de-
noted as and , which are further split into even-in-
dexed and odd-indexed parts, denoted as . The
even (odd) parts of the two subbands are coded together to form
the base layer of Description 1 (2), with a bit rate of and
for coefficients from Subband 0 and Subband 1, respectively.

In addition, each description also uses the reconstructed base
layer to predict the base layer coefficients of the other descrip-
tion, and the prediction residuals are encoded in each descrip-
tion as an enhancement layer, with bit rate and for the
residuals of Subband 0 and Subband 1, respectively. is usu-
ally much lower than for correlated sources.

This scheme creates two balanced descriptions, i.e., the bit
rate of each description is

(1)

Unbalanced descriptions can be generated by allowing the two
descriptions to have different bit rates.
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Fig. 1. Encoders of filter bank-based prediction-compensated MDC.

At the decoder, if both descriptions are received, the decoded
base layer coefficients from the two descriptions are combined
to obtain the reconstructed signal. The enhancement layer in
each description is discarded. If only one description is received,
the missing coefficients are first estimated from the received
base layer coefficients by linear filtering. The decoded predic-
tion residuals are then added to the estimation before applying
the synthesis filter bank. Since a strong correlation usually exists
between neighboring subband coefficients (especially in low-
frequency subbands), good MDC performance can be expected
by exploiting this correlation.

Our method represents a different MDFB paradigm from [21]
and [22]. First, encoding the prediction residual improves the
side decoder performance. Second, the data in each descrip-
tion in [21] and [22] come from only one subband. Therefore,
the filter banks in them are drastically different from the ex-
isting ones in, e.g., JPEG 2000. In contrast, each description in
our method includes transform coefficients from both subbands.
Moreover, our data partition is designed such that the predic-
tion between the two descriptions reduces largely to the pre-
diction of neighboring coefficients within each subband. Thus,
the two subbands can still be highly uncorrelated. As shown in
Section IV, the optimal filter banks in our method are quite sim-
ilar to their SDC counterparts. Hence, our method can be applied
to existing systems such as JPEG 2000 without having to change
the filter bank.

A feature-oriented method is developed recently in [23],
which is a hybrid of the prediction-only method and the direct
coding method. In [23], the wavelet transform coefficients
in the other description that can be easily predicted are not
encoded in each description, and other coefficients are encoded
directly at a lower rate. However, prediction compensation is
not used in this method. Also, the method requires side infor-
mation to be sent to the decoder to identify the coding mode for
each coefficient. The bit allocation also involves complicated
optimization.

Our method also has various advantages over the PCT and
GPCT. First, it can have better performance at very low redun-
dancy, where the prediction compensation can still be applied,
especially in the low-frequency subband, as shown by the exam-
ples in Section V. Second, the source correlation is fully utilized
in our method by more general linear prediction, as detailed in

Section II-B and Section II-E, whereas in PCT the prediction
is limited between two coefficients in a block. In addition, at
high redundancy, the theoretical performance of our scheme is
as good as the GPCT, as shown in [20]. Moreover, our scheme
can be easily implemented, and existing entropy coding can be
used directly.

The optimization of the MDFB in our scheme needs two
steps. We first fix the MDFB, and find the closed-form ex-
pressions of the corresponding optimal predictor, bit allocation
and objective function. An unconstrained numerical opti-
mization program, such as the simplex-based Matlab function
fminsearch, is then used to search the optimal MDFB that
minimizes the objective function among all possible MDFBs,
by treating the filter bank parameters as unknown variables.
Numerical optimization is needed because the objective func-
tion is a complicated nonlinear function of the filter bank
parameters. Such an approach has been widely used in filter
bank optimizations [24].

B. Optimal Interdescription Prediction

We now derive the optimal interdescription prediction. First,
assuming the input signal is a wide-sense stationary (WSS) cor-
related Gaussian random sequence with a known power spectral
density (p.s.d.) , its 2 2 polyphase p.s.d. matrix can be
written as

(2)

where is the p.s.d. function between its polyphases
and in Fig. 1.

Let the analysis and synthesis filters be [24]

(3)

It can be seen from Fig. 1 that

(4)

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on April 15, 2009 at 16:38 from IEEE Xplore.  Restrictions apply.



WANG AND LIANG: FILTER BANKS FOR PREDICTION-COMPENSATED MD CODING 1759

Similarly, the synthesis filter bank yields

(5)

where the hat symbol denotes the reconstruction of a signal at
the synthesis side, and . Denote as the
p.s.d. matrix of the analysis filter bank output, and and

as the p.s.d. matrices of the synthesis filter bank input
and output, respectively. We have from (4) and (5)

(6)

Given these relationships, the optimal linear prediction for the
missing coefficients in Description 1 is the following Wiener
filter [21] (due to space limitation, we not always show the pa-
rameter in the p.s.d. function)

(7)

where is the p.s.d. function between and
. In this paper, as discussed in [19], [20], and [25], the

quantization noise is ignored in the Wiener filter.
To find , define the autocorrelation function of a

WSS sequence as . It is
easy to show that after downsampling and in Fig. 1,
we have

or
(8)

where . Therefore, the needed by the
Wiener filter can be written as

(9)

C. Various Distortions of the System

Given the expression of interdescription prediction, the var-
ious distortions in the scheme can be obtained. In Description
1, is coded at the base layer and is coded in the

enhancement layer. Since is WSS Gaussian, its distor-
tion-rate (D-R) function at high rates is [21], [25]

(10)

Let

(11)

and define . For paraunitary filter
banks, in (11). Thus, . After syn-
thesis filtering, the reconstruction error per sample caused by
the quantization of is [24]

(12)

To find the reconstruction error caused by the enhancement
layer, we start from the prediction error

(13)

from which we can get the p.s.d. of the prediction error

(14)

Since is predictively coded, its quantization error equals
that of the residual [25]. Therefore, the reconstruction
error per sample after synthesis filtering is

(15)

In Description 2, is coded in the base layer, while
is coded in the enhancement layer. The average distor-

tions for Description 2 and 1 are equal since our method gener-
ates balanced descriptions.

When both descriptions are received, only the base layer co-
efficients are used in the reconstruction, and the corresponding
average distortion per sample (the central distortion) is

(16)

If only one description is available, half of and are
in the base layer and the rest are in the enhancement layer. The
average distortion (the side distortion) is

(17)

Let be the probability of losing one description, the expected
distortion is thus

(18)
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In [21], a single-channel distortion is also defined by ignoring
the base layer error in , i.e.,

(19)

D. Optimal Bit Allocation and Distortions

We now derive the optimal bit allocation and distortions for a
given filter bank. Two approaches can be used: minimizing the
expected distortion under a bit rate constraint, or minimizing
the single-channel distortion under a redundancy constraint. At
high rates, the two approaches lead to the same optimal solution.
In this paper, both methods are adopted to facilitate comparison
with different schemes.

1) Approach I: In this method, we minimize the expected
distortion , subject to the bit rate constraint (1). Using La-
grangian method with high rate assumption, we get

(20)

(21)

(22)

2) Approach II: In the SDC of correlated Gaussian sources,
the minimum required bit rate to achieve the distortion is
given by [25]

(23)

where . To get the same
central distortion, i.e., , a MDC scheme
needs more bits. The redundancy is

. This leads to the optimization approach that min-
imizes in (19) for given and . The corresponding La-
grangian objective function is .

At high rate, for a fixed , the bit allocation for and
is independent of that of and . Therefore, the optimiza-
tion can be decoupled into two steps. The first yields

(24)

(25)

The redundancy becomes

(26)

and the objective function reduces to
. As in [21], we assume high redundancy, and the solution to

this part can be found to be

(27)

(28)

The optimal single-channel distortion is

(29)

Another measure of redundancy is the redundancy ratio

(30)

From (1) and (26), we can get the following relationship be-
tween and :

(31)

As shown by (22) and (29), both approaches need to minimize
, which depends only on the filter bank and the

input. Therefore, they lead to the same optimal filter bank. In
addition, the optimal solution remains unchanged for different
channel loss probabilities and redundancies, under the assump-
tions of high rate and high redundancy.

E. Simplified Interdescription Predictions

The ideal interdescription predictor in (7) is given in fre-
quency domain, and it uses all available data to predict each
coefficient in the other description. Two simplifications can be
used. The first one predicts a missing coefficient using only the
data available in the same subband. The Wiener filter in (7) is
then simplified to be

(32)

In the second simplification, the FIR Wiener filter can be
applied to the FB output coefficients directly, which is more
suitable for practical applications. In this case, let

. Define the blocks of neighboring ’s
as

(33)

In Description 1, we use the reconstructed to predict
. The optimal Wiener filter is

(34)

where is the autocorrelation of , and
is the cross-correlation between and
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. The corresponding autocorrelation of the residual
for is

(35)

All matrices involved above can be expressed in terms of the
input correlation matrix and the FIR analysis filter bank. Finally,
let

(36)

With these expressions of , the various distortions needed
by (16) and (17) can be found to be [24]

(37)

where is given in (Section II-C). For Gaussian inputs, is
a constant that depends on the input statistics and quantization
scheme. The value of does not affect the optimized FB and
it is chosen as 1 here. Equation (37) has the same format as
(12) and (15). Therefore, the optimization in Section II-D is still
applicable.

III. DESIGN OF MULTILEVEL MD FILTER BANKS

In this section, we study the optimal filter bank for the pro-
posed MDC when -level FB decompositions are used. In this
case, there are subband signals . By
the noble identity [24], the equivalent subband filters are
obtained as follows:

(38)

(39)

To get two descriptions, we split each subband into the
even-indexed part and the odd-indexed part

. is coded in the base layer in
Description 1 (2) with bit rate . The prediction residual of

is also encoded as the enhancement layer in
Description 1 (2) with bit rate , where each is pre-
dicted using all reconstructed base layer coefficients ’s.
Similarly, is predicted using all ’s.

The Wiener filter in Description 1 is given by

...
. . .

...

...
. . .

... (40)

where can be derived from the input statistics by
recursively computing the p.s.d. of a subband using (6) and (9).
The Wiener filter for Description 2 can be obtained similarly.

The p.s.d. of the prediction errors of is

(41)

where is the th row of . Define
. As in Section II-B, we can derive the D-R

function of each part of Description 1, which is the same as that
in Description 2 since we have balanced descriptions:

(42)

where is the reconstruction error per sample contributed by
the quantization of or , and

(43)

where are defined in (10) and (12). The central distortion
and side distortion are

(44)

Here, we use the criterion of minimizing the expected distortion
in (18) under the bit rate constraint (1). Using Lagrangian

method, the optimal bit allocation is found to be

(45)

The corresponding distortions are

(46)

Given the probability and rate , the minimal expected dis-
tortion becomes

(47)

where and are geometric means of all and , re-
spectively. For , this reduces to (22).

IV. DESIGN EXAMPLES

In this section, we design various optimal PC-MDFBs for
a first-order autoregressive [AR(1)] sequence with correlation
coefficient . The bit rate is chosen to be
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Fig. 2. (a)–(b) Example 1: 6-tap PUFB for PC-MDFB (solid lines) and D6 wavelet (dashed lines). (a) Frequency responses. (b) Top: analysis scaling and wavelet
functions. Bottom: zero and pole distributions of� and� . (c)–(d) Example 2: 8-tap LPPRFB for PC-MDFB (solid) and SDC (dashed). (c) Frequency responses.
(d) Scaling and wavelet functions. (e)–(f) Example 3: 9/7-tap PC-MDFB (solid) and JPEG 2000 9/7 wavelet (dashed). (e) Frequency responses. (f) Scaling and
wavelet functions.

bits/sample/description. As described in Section II-A, a numer-
ical optimization routine is used to search the optimal filter bank
that minimizes the objective function.

The p.s.d. function of AR(1) signals with correlation coeffi-
cient is [25]

(48)

The downsampled signal is still an AR(1) signal with correlation
, so its p.s.d. function is given by

(49)

Let , the 2 2 polyphase p.s.d. matrix of the
input sequence can be shown to be

(50)

A. One-Level Filter Banks

1) Two-Band 6-Tap Paraunitary Filter Banks: In this ex-
ample, we use the lattice structure of two-band paraunitary filter
banks (PUFB) in [24]. In this case, and

(51)

Fig. 3. Redundancy ��� versus single-channel distortion �� � curves of
PC-MDFB and the two solutions in [21].

where

and

The frequency domain Wiener filter (7) is used. To enhance the
smoothness of reconstructed signals, two vanishing moments
[25] are imposed on the filter bank. The frequency responses
and scaling/wavelet functions of the optimized 6-tap PUFB for
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Fig. 4. (a)–(b) Optimal 10-tap, five-level PUFB for PC-MDFB (solid lines) and SDC (dashed lines). (a) Frequency responses. (b) Scaling and wavelet functions.
(c)–(d) The optimal 8-tap, four-level LPPRFB for PC-MDFB (solid) and SDC (dashed). (c) Frequency responses. (d) Scaling and wavelet functions.

the PC-MDFB and Daubechies D6 wavelet are compared in
Fig. 2(a)–(b). The coding gain (a measure of the compression ef-
ficiency of the filter bank [24]) of the 6-tap PUFB for PC-MDFB
is 5.7367 dB, which is very close to the 5.7505 dB of the D6
wavelet.

2) Two-Band 8-Tap Linear Phase Perfect Reconstruction
Filter Banks: In this biorthogonal FB example, we design
the optimal linear phase perfect reconstruction filter bank
(LPPRFB) using the type-II lattice in [26] for the PC-MDFB
framework. The filter bank has one vanishing moment in the
analysis filter bank and two vanishing moments in the synthesis
filter bank. The FIR Wiener filter (34) is used with .
The frequency responses and scaling/wavelet functions of the
optimal 8-tap LPPRFBs for PC-MDFB and SDC are compared
in Fig. 2(c)–(d). The coding gain of the optimal LPPRFB for
PC-MDFB is 6.24 dB, and the coding gain of the optimal
LPPRFB for SDC is 6.39 dB.

3) Two-Band 9/7-Tap Biorthogonal Filter Banks: This ex-
ample uses the lifting structure of two-band biorthogonal filter
banks with four lifting steps such that the analysis low-pass and
high-pass filters have nine taps and seven taps, respectively, as
in the 9/7 wavelet in JPEG 2000 [25]. The FIR Wiener filter
(34) with is used. The frequency responses and scaling/
wavelet functions are given in Fig. 2(e)–(f). The coding gain of
our 9/7-tap PC-MDFB is 5.913 dB, which is also close to the
5.916 dB of the 9/7 wavelet in JPEG 2000.

4) Comparison With [21]: To further study the performance
of the proposed method, we redesign the two-band, 8-tap LP-
PRFB in example II using the general Wiener filter in (7) for
AR(1) sources with correlation coefficient , and com-
pare it with the optimal IIR orthogonal and biorthogonal solu-

tions in Fig. 9 and Table II of [21], denoted as FB-MDC ON
and FB-MDC BO, respectively. The comparison is fair since the
same R-D function and input signal model are used. The results
are shown in Fig. 3. It can be seen that our result has similar
single-channel distortion at low redundancy while achieves
lower at high redundancy, despite the FIR and linear phase
constraints in our method. As shown in [21], the of their
method cannot be arbitrarily reduced due to the presence of the
prediction error. For example, the smallest of the orthog-
onal solution in [21] is 0.0525, with a redundancy of 0.2967
nats/sample. The smallest of the biorthogonal solution in
[21] is 0.0374, but it can only be achieved at infinite redun-
dancy [21]. This problem is resolved in our method by encoding
the prediction residual. Finally, although our method has similar
performance to that in [21] at low redundancy for this strongly
correlated signal, the coding of the prediction residual in our
method is more helpful for nonstationary signals, as shown in
the image coding results in Section V.

B. Multiple-Level Filter Banks

Two design examples of the optimal -level orthogonal and
biorthogonal filter banks for AR(1) signals with the FIR Wiener
filter are given in Fig. 4. The PC-MDFB in Fig. 4(a)–(b) is a
10-tap PUFB optimized for five-level decomposition and the
one in Fig. 4(c)–(d) is a 8-tap LPPRFB optimized for four-level
decomposition. Each has one vanishing moment. As in the one-
level case, the optimal filter banks for the proposed MDC are
still very close to the optimal SDC filter banks. This suggests
that the proposed method can be applied to practical wavelet
based image coding systems such as the JPEG 2000 without
having to change the wavelet transform.
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Fig. 5. (a) � versus � curves of the 6-tap PUFB for PC-MDFB with multiple levels. (b) � and � curves. (c) Expected distortions when � � � bits/sample/
description and � � ���.

To gain further insights, we compare the performance of a
6-tap PUFB for the PC-MDFB with different levels in Fig. 5(a).
An important observation is that the performance does not al-
ways increase with the levels of decomposition. In this example,
the optimal performance is achieved by three levels. Similar be-
haviors can also be observed using optimized biorthogonal FBs
and FBs from SDC.

To explain this, we start from (47), which shows that the opti-
mized expected distortion increases with . The and
curves of our method are given in Fig. 5(b), which shows that as
the number of decomposition levels increases, the of our
method decreases due to improved decorrelation, whereas
increases, since the reduced correlation also decreases the pre-
diction efficiency. Therefore, the product does not neces-
sarily decrease as the increase of .

In Fig. 5(b), our method is also compared with the direct
MDC, where each subband is split into even/odd-indexed co-
efficients. The even (odd) part is coded at high rate in Descrip-
tion 1 (2). A low rate version of the odd (even) part is also in-
cluded in Description 1 (2). This method can be viewed as an
application of the methods in [9]–[11] to our framework. The

curve of the direct MDC is slightly better than our method,
but its curve is much worse, leading to worse overall per-
formance. This illustrates the tradeoff between the filter bank
coding performance and the prediction efficiency.

Fig. 5(c) shows the expected distortions for an AR(1)
source with different levels. The direct MDC, the PC-MDFB,
and a simplified PC-MDFB are compared. In the simplified
PC-MDFB, a suboptimal Wiener filter is used, where only
reconstructed base layer coefficients of the same subband are
used to predict a lost coefficient, similar to (32). The figure
shows that our method has significant advantage over the direct
MDC when the decomposition level is from 1 to 3. Above
that the difference becomes very small. Note that this result
is only for AR(1) sequences. For nonstationary signals such
as natural images, the advantages of our method will be more
pronounced, as verified in the next section.

V. APPLICATIONS IN IMAGE CODING

In this section, we apply the proposed prediction-compen-
sated multiple description coding scheme to JPEG 2000 without
changing its wavelet transform. The JPEG 2000 codec Open-
JPEG [27] is used. Our source codes are available at [28]. We
compare our method with the RD-MDC in [11], whose codes

Fig. 6. Subband partitions: (a) LL subband and (b) Other subbands.

are at [29]. The comparison is fair, since both methods use the
same OpenJPEG codec. We also include as reference the results
of the MMDSQ in [5], which is another state-of-the-art method,
but it uses different quantization and entropy coding from the
JPEG 2000.

In source splitting based MDCs with block transforms, there
are mainly two ways of splitting and prediction, i.e., coefficient-
level or block-level approach, as in [13] and [20], respectively,
and the latter has been shown to give better results [20]. How-
ever, the splitting and interdescription prediction in the wavelet
framework is more challenging, because the tree structure en-
ables a lot more choices, and it is not clear which one is the
optimal in practical applications. In our preliminary method in
[30], the HL, LH, and HH subbands are encoded via a scaling
based prediction in a parent-children subtree, but such a simple
linear prediction is not effective enough, and adaptive prediction
is needed to take full advantage of the parent–children depen-
dency, as in SPIHT.

In this paper, we develop another low complexity scheme,
where the prediction compensation is only applied to the LL
subband. Image coding results show that this is sufficient to
yield favorable performance over other methods, because the
prediction residual in the LL subband can benefit the entire
image. Since the basic unit of the JPEG 2000 entropy coding
is a four-row stripe [25], the LL subband is split into even and
odd-indexed rows. The two parts are then grouped together, par-
titioned into JPEG 2000 codeblocks, and encoded into the base
layer of each description, as shown in Fig. 6(a). To generate the
enhancement layer, a simple linear prediction is used between
the two parts, where each coefficient is predicted by the average
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Fig. 7. Performances of PC-MDFB, RD-MDC, and MMDSQ at � � ��� bit/
pixel/description. (a) Barbara. (b) Boat. (c) Goldhill. (d) Lena.

of the two nearest reconstructed base layer coefficients, and the
prediction residual is encoded in the enhancement layer. Such a
partition provides a good tradeoff between the prediction perfor-
mance and the adverse impact to the JPEG 2000 entropy coding.

Since the correlations between a pair of parent–child sub-
bands and within a high-frequency subband are not as strong
as in the LL subband, no prediction is used in the HL, LH and
HH subbands, i.e., each codeblock in them is coded at two rates
directly, one for each description. Different from the RD-MDC
approach that dynamically determines the codeblocks and their
rates for a description, we use a deterministic alternating parti-
tion as illustrated in Fig. 6(b), where codeblocks in white slices
are coded at high rate in one description, and low rate in another
description, and vice versa for gray slices. Moreover, if a slice is
coded in base (enhancement) layer, its immediate children slice
in the next subband will be coded in enhancement (base) layer.
This partition generates two descriptions with roughly the same
amount of information about each region of the image. Balanced
descriptions are then ensured by the JPEG 2000 rate control. The
slice height in each subband is chosen to be the same as the code-
block size of each subband. If the subband size is smaller than
the predetermined codeblock size, the subband is split into two
horizontal slices and each of them forms a small codeblock. Al-
though this scheme does not have the inter-subband prediction
in [30], the partition in Fig. 6(b) is more friendly to the JPEG
2000 entropy coding.

The rate control in our method is as follows. Given the bit
rate and redundancy ratio, the corresponding base layer and en-
hancement layer bit rates are first calculated. The JPEG 2000
rate control scheme is then used to encode all base layer code-
blocks at the target rate, and then the reconstructed base layer
coefficients in LL subband are used to encode the residual code-
blocks at its target bit rate. The codeblocks in other subbands
are encoded directly into the corresponding enhancement layer.
Since we use symmetric splitting with predefined patterns, bal-
anced descriptions are achieved with very low complexity.

Fig. 8. Performances of PC-MDFB, RD-MDC and MMDSQ at � � �����

bit/pixel/description. (a) Barbara. (b) Boat. (c) Goldhill. (d) Lena.

Compare with the RD-MDC, our method has lower com-
plexity. The only extra work in our method is to partition and
produce the necessary base layer codeblocks and residual code-
blocks. All modules of JPEG 2000 can be reused, and good per-
formance and balanced descriptions are easily achieved. As a re-
sult, our encoder only needs 0.70 s to generate two descriptions
from an 512 512 image on a PC with 2.13-GHz Intel Core
2 Duo CPU and 2-GB memory. The MMDSQ also takes less
than one second. In contrast, to find the optimal partition, the
RD-MDC needs to exhaustively search all possible codeblock
combinations. A suboptimal algorithm is suggested in [11] to
reduce the complexity by searching a smaller group of code-
blocks, but the performance is reduced as the decrease of the
group size. A similar method is proposed in [31], where the
search is constrained over sets with periodically repeating code-
block partition pattern. With a codeblock group size of 25, the
suboptimal RD-MDC in [11] needs 34 s to create two descrip-
tions. When the group size is 20, it still takes 2.85 s, which is
four times of our method. In this paper, the results of RD-MDC
are obtained using the group size 25.

The tradeoffs between the central PSNR and the av-
erage side PSNR of the three methods at rate 0.5 and
0.125 bits per pixel (bpp) per description are given in Figs. 7
and 8, respectively. Four 512 512 test images with different
characteristics are used. The average MSE of the two side de-
coder output is used to calculate the average side PSNR in the
figures. Four levels of wavelet transform are used [i.e.,
in (38)], and the codeblock size is 64 64. At low redundan-
cies, our method achieves better results than the RD-MDC and
the MMDSQ in most cases, where the enhancement layer of
our method still contains the most important edge information
of the image, which improves the side decoder PSNR and vi-
sual quality. As the increase of redundancy, the three methods
become very close to each others.

Fig. 9 shows the side decoder result of our PC-MDFB method
and the RD-MDC. The two methods are compared at the same

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on April 15, 2009 at 16:38 from IEEE Xplore.  Restrictions apply.



1766 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Fig. 9. Results of one side PSNR � with � � ��� bpp per description. The other side PSNR � and the central PSNR � are listed in the parentheses. (a)
Goldhill by RD-MDC: 30.25 dB (� � 31.00 dB, � � 35.78 dB); (b) Goldhill by PC-MDFB: 31.26 dB (� � 30.81 dB, � � 35.77 dB); (c) Lena by
RD-MDC: 33.15 dB (� � 33.17 dB, � � 39.49 dB); (d) Lena by PC-MDFB: 34.12 dB (� � 34.36 dB, � � 39.49 dB).

bit rate and same central PSNRs. It can be seen that our method
yields better PSNR and visual quality.

Finally, we give a brief comparison with the PCT. In Fig. 9
of [13], the of image Lena is kept at 35.78 dB. At this ,
the JPEG-based single description coder in [13] needs a rate
of 0.60 bpp, whereas the JPEG 2000 codec in [27] only needs
0.36 bpp. For a fair comparison, we focus on the redundancy
ratio instead of the actual value of the rate. The lowest PCT re-
dundancy ratio in Fig. 9 of [13] is about 10% over 0.60 bpp,
with 25 dB. In our method, when , the lowest re-
dundancy is 3.8%, with 22.90 dB. Therefore, our method
reaches a lower redundancy range than the PCT. In addition,
when the rate is 10% over 0.36 bpp, the side PSNR of our
method is 27.95 dB, which is higher than that of the PCT
at the same redundancy ratio.

VI. CONCLUSION

This paper studies the optimal filter bank for a predic-
tion-compensated MDC scheme. We formulate the problem
for both one-level and multiple-level decompositions for cor-
related Gaussian sources. Orthogonal and biorthogonal design
examples show that the optimal solutions are very close to the
optimal single description filter banks. Image coding results
in the JPEG 2000 framework show that our method achieves
similar or better performances than existing methods in the
literature with very low complexity.

The image coding performance of our method can be further
improved by refining the data partition and using adaptive in-
trasubband and intersubband predictions. Finally, although only
balanced MDC is studied in this paper, unbalanced MDC can be
easily generated by our scheme. In the theory, we can allow the
two descriptions to have different base and enhancement layer
rates, as mentioned in Section II-A, then the closed-form op-
timal bit allocations similar to (20) and (27) can still be obtained
by the Lagrangian method. In JPEG 2000, this can be achieved
by assign different target bit rates when encoding codeblocks
of different descriptions. Alternatively, unbalanced descriptions
can be created by partitioning the subbands unevenly.
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