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Abstract

This paper investigates the design and application of the optimal filter banks for a prediction-
compensated multiple description coding (PC-MDC) scheme, where the coefficients in each
subband are split into two descriptions. Each description also includes the prediction residuals
of the data in the other description. The optimal designs of orthogonal and biorthogonal filter
banks with multiple-level decompositions are formulated in a unified framework. The optimal
results in all cases are found to be very close to the optimal filter banks in traditional single
description coding. This allows us to apply the proposed method to existing systems with
single-description-optimized filter banks and still enjoy near-optimal performance. Image coding
results in the JPEG 2000 framework show that the proposed method achieves similar or better
performance than other methods. It also has lower complexity and is more compatible to the
JPEG 2000 standard.

I. INTRODUCTION

Multiple description coding (MDC) [1] is an attractive technique of combating trans-
mission errors. In MDC, the source signal is encoded into several coded streams called
descriptions, which are sent to the receiver via different network paths. An arbitrary
subset of descriptions can be used to reconstruct the original signal, and the reconstruction
quality improves with the number of descriptions received.

In this paper, we focus on the case with two descriptions and three decoders, where the
decoders receiving one and two descriptions are called the side decoder and the central
decoder, respectively. In particular, we study the wavelet-based MD image coding, for
which various methods have been proposed. For example, in [2], a two-stage modified
multiple description scalar quantizer (MMDSQ) is developed. Its application in wavelet-
based MD image coding yields better results than previous methods. However, the side
decoder result of the MMDSQ is not satisfactory at low redundancy. In [3], each code-
block in JPEG 2000 is coded at two bit rates, which are included into two descriptions,
respectively. The Lagrangian method is used to find the optimal data partition and bit
allocation. A feature-oriented method is proposed in [4], where the least square-based
prediction is used to identify wavelet coefficients that are difficult to predict, and these
coefficients are encoded directly. However, this requires side information to be sent to
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the decoder to identify the coding mode for each coefficient. In addition, both [3] and
[4] require complicated optimization, which increases the complexity of the algorithms.

To improve the side decoder performance, it is proposed in [5] to encode the prediction
residual of the other description in each description. However, no image coding result is
reported in [5]. Recently, a prediction-compensated MDC (PC-MDC) framework [6] is
developed. Although the method is similar to [5], the design and implementation in [6]
are much simpler, and superior image coding performance over [2] is obtained.

Most wavelet-based MDC schemes use the existing wavelet transform directly, which
may not be optimal. This prompts the study of the optimal two-band filter banks or
wavelets for multiple description coding. In [7], the output of each subband is used to
form one description. The lost description is estimated from the received one using linear
prediction. The optimal orthogonal and biorthogonal filter banks are designed. A similar
approach is developed in [8], where the correlating transform in [9] is generalized to the
frequency domain. However, their side decoder performances are also not satisfactory
at high rates. Moreover, to facilitate the prediction between the two subbands, the two
subband filters increasingly resemble each other as the increase of the redundancy, making
them quite different from the existing filter banks for single description coding (SDC). In
addition, only one-level decomposition is considered in [7], [8]. Therefore their methods
cannot be applied satisfactorily to existing wavelet-based systems.

In this paper, we generalize the prediction-compensated MDC method in [6] to two-
band filter banks and formulate the design of the optimal orthogonal and biorthogonal
prediction-compensated multiple description filter banks (PC-MDFB) with multi-level
decomposition in a unified framework. In our method, the two descriptions are formed
by the even-indexed and odd-indexed parts of all subbands, respectively, which is different
from [7], [8]. Design examples show that the optimal filter banks are very similar to their
single description counterparts. Therefore existing wavelet transforms can be applied
directly with near-optimal performance. Moreover, our method encodes the prediction
residual of the other description in each description. It resolves the problem of poor
side decoder performance at high rates, which is associated with many prediction-only
approaches, and hence yields lower side distortion than [7], [8]. The application of the
proposed scheme in JPEG 2000 based multiple description image coding demonstrates
that our method achieves similar or better performance than [2] and [3]. Our method also
has lower complexity and stays highly compatible with JPEG 2000 framework.

II. THE OPTIMAL MULTI-LEVEL FILTER BANK

A. System Overview

Fig. 1 shows the encoder block diagram of generating two descriptions in the pro-
posed prediction-compensated multiple description filter bank framework with one-level
decomposition. The input signal x(n) is processed by a two-band perfect reconstruction
filter bank with analysis and synthesis polyphase matrices H(ω) and G(ω), respectively,
where G(ω)H(ω) = I. The two subband filters of H(ω) and G(ω) are denoted as Hi(z)
and Gi(z) (i = 0, 1), respectively.

When M -level decomposition is used for two-band filter banks, M +1 subband signals
yi(n) (i = 0, ...,M ) are generated. In the proposed prediction-compensated multiple
description coding method, the output of each subband is split into the even-indexed part
and the odd-indexed part. The results are denoted as yij(n) (i = 0, . . . ,M, j = 0, 1). The
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Fig. 1. Prediction compensated MDC for filter bank outputs.

even (odd) parts of all subbands are coded into Description 1 (2), with a bit rate of Ri0

for coefficients from Subband i. In analogy to the intra-frames in video coding, we refer
to these coefficients as the intra-coded coefficients of each description. In addition, each
description also uses the reconstructed intra-coded coefficients to predict the intra-coded
coefficients of the other description via Wiener filtering, and the prediction residuals are
encoded in each description as redundant information, with a bit rate of Ri1 for the
residual of Subband i. Ri1 is usually much lower than Ri0 for correlated sources. We call
these predictively coded coefficients inter-coded coefficients, similar to the inter-coded
frames in video coding.

This partition ensures that two balanced descriptions are generated, and the bit rate
per description is

R =
1

2(M + 1)

M∑
i=0

(Ri0 + Ri1). (1)

At the decoder side, if both descriptions are received, the decoded intra-coded co-
efficients from the two descriptions are combined to obtain the reconstructed signal.
The bits for inter-coded coefficients in each description are simply discarded. If only
one description is received, the missing coefficients are first estimated from the received
intra-coded coefficients by Wiener filtering. The decoded prediction residuals are then
added to the estimation before applying the synthesis filter bank.

B. Optimal Filter Bank Design

In this part, we formulate the design of the optimal filter bank for the proposed scheme.
We first derive the details of the prediction and various distortions in the system. The
input signal is assumed to be a wide-sense stationary (WSS) correlated Gaussian random
sequence with a known power spectral density (p.s.d.) SX(ω). Its 2× 2 polyphase p.s.d.
matrix is

SXX(ω) =

[
SX0X0(ω) SX0X1(ω)
SX1X0(ω) SX1X1(ω)

]
, (2)

where SXiXj
(ω) is the p.s.d. function between polyphases xi(n) and xj(n).

We first consider one-level decomposition. Denote y(n) = [y0(n) y1(n)]T as the
analysis filter bank output and let SYY(ω) be its p.s.d. matrix. Likewise, SŶŶ(ω) and
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SX̂X̂(ω) are the p.s.d. matrices of the synthesis filter bank input and output. We have the
following relationships [10], [11]

SYY(ω) = H(ω)SXX(ω)H(ω)H ,

SX̂X̂(ω) = G(ω)SŶŶ(ω)G(ω)H .
(3)

To generate two descriptions, we downsample each subband into the even-indexed part
and the odd-indexed part. It is easy to show that after downsampling y0(n) and y1(n),
the p.s.d. functions between Yij(ω) and Ykl(ω) can be written as

SYi0Yk0
(ω) = SYi1Yk1

(ω) =
1

2

(
SYiYk

(
ω

2
) + SYiYk

(
ω

2
+ π)

)
,

SYi0Yk1
(ω) = S∗

Yk1Yi0
(ω) =

ej ω
2

2

(
SYiYk

(
ω

2
) − SYiYk

(
ω

2
+ π)

)
,

(4)

where i, k = 0, 1.
When M -level decomposition is used for two-band filter banks, M + 1 subband

signals yi(n) (i = 0, ...,M ) are generated. By the noble identity [11], the corresponding
equivalent subband filters are obtained as follows

H̄k(z) =

{∏M−k−1
n=0 H0(z

2n
), k = 0,

H1(z
2M−k

)
∏M−k−1

n=0 H0(z
2n

), k = 1, ...,M.

Ḡk(z) =

{∏M−k−1
n=0 G0(z

2n
), k = 0,

G1(z
2M−k

)
∏M−k−1

n=0 G0(z
2n

), k = 1, ...,M.

(5)

In our method, the linear minimum mean-squared error (LMMSE) filter or Wiener
filter is used to predict the missing data [7]. The Wiener filter for inter-coded coefficients
in Description 1 is given by

K0(ω) =


 SY01Y00(ω) · · · SY01YM,0

(ω)
...

. . .
...

SYM,1Y00(ω) · · · SYM,1YM,0
(ω)


×


 SY00Y00(ω) · · · SY00YM,0

(ω)
...

. . .
...

SYM,0Y00(ω) · · · SYM,0YM,0
(ω)




−1

,

(6)
where SYijYkl

(ω) is the p.s.d. function between Yij(ω) and Ykl(ω), which can be derived
from the input statistics by recursively computing the p.s.d. of each subband signal using
(3) and (4). The Wiener filter for Description 2 can be obtained similarly. As discussed
in [10], [12], the quantization noise is ignored in designing the Wiener filter.

The filter in (6) uses all data of one description to predict each coefficient in the other
description. In addition, it generally leads to IIR filter. A simplification using FIR time-
domain Wiener filter, which is more suitable for practical applications, is derived in [13],
where one block of subband outputs yB,i(n) = [y0i(n) . . . yMi(n)]T , i = 0, 1, is predicted
from its 2L neighboring reconstructed blocks ŷB,1−i,L(n) = [ŷT

B,1−i(n−L) . . . ŷT
B,1−i(n+

L−1)]T , i.e., L blocks of causal neighbors and L blocks of anti-causal neighbors, similar
to [6].

We now look at the encoding of Description 1, in which yi0(n) is intra-coded and
yi1(n) is predictively coded. Define g2

i = 1
2π

∫ π

−π
|Ḡi(ω)|2dω. For paraunitary filter banks,

g2
i = 1. Since yi0(n) is WSS Guassian, at high rates, the reconstruction error per sample
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caused by the quantization after synthesis filtering is [7], [10], [11]

Di0 = ḡ2
i 2

−2Ri0exp

(
1

2π

∫ π

−π

logSYi0Yi0
(ω)dω

)
� 2−2Ri0w2

i0, (7)

where

ḡ2
i =

{
1

2(M−i) g
2
i , i = 0,

1
2(M−i+1) g

2
i , i = 1, . . . ,M.

(8)

Each yi1(n) is predicted using all reconstructed intra coefficients ŷi0(n)’s. The p.s.d.
of the prediction errors of yi1(n) is given by

Sei1
(ω) = SYi1Yi1

(ω) − K0
i [SY00Yi1

(ω), · · · , SYM,0Yi1
(ω)]T , (9)

where K0
i is the i-th row of K0(ω).

Since yi1(n) is predictively coded, its quantization error equals that of the residual
ei1(n) [10]. Therefore the reconstruction error per sample after synthesis filtering is

Di1 = ḡ2
i 2

−2Ri1exp

(
1

2π

∫ π

−π

logSei1
(ω)dω

)
� 2−2Ri1w2

i1. (10)

In Description 2, yi1(n) is intra-coded while yi0(n) is predictively coded. The aver-
age distortions for Description 2 and 1 are equal since our method generates balanced
descriptions.

When both descriptions are received in our scheme, the intra-coded coefficients are
used in the reconstruction, and the corresponding average distortion per sample (the
central distortion) is

D0 =
M∑
i=0

Di0. (11)

If only one description is available, a half of the coefficients of yi(n) are intra-coded and
the rest are inter-coded. The average distortion (the side distortion) is

D1 =
1

2

M∑
i=0

(Di0 + Di1) . (12)

Let p be the probability of losing one description, the expected distortion is

D = p2σ2
x + 2p(1 − p)D1 + (1 − p)2D0. (13)

As in many MDC systems, our objective is to minimize the expected distortion D
subject to the bit rate constraint (1). Using Lagrangian method with high rate assumption,
we get

Ri0 = R +
1

4(M + 1)
log2

w
4(M+1)
i0

p(M+1)
∏M

j=0 w2
j0w

2
j1

,

Ri1 = R +
1

4(M + 1)
log2

p(M+1)w
4(M+1)
i1∏M

j=0 w2
j0w

2
j1

.

(14)

D = p2σ2
x + 2(1 − p)(M + 1)

√
pw0w12

−2R. (15)
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where w0 and w1 are geometric means of all w2
j0 and w2

j1, respectively.
It can be seen from (15) that to minimize the expected distortion we need to minimize

the term w0w1, which is proportional to the geometric mean of the energies of the intra-
coded signals and prediction residuals. This term only depends on the filter bank and
the input. Therefore the optimal filter bank does not depend on either the channel loss
probability or the redundancy requirement at high rates. This is a highly desired feature
since we can design one optimal filter bank and apply it to all scenarios.

Another widely used criterion is minimizing the single-channel distortion Ds = D1 −
D0

2
under a redundancy constraint ρ = 2R − R∗, where R∗ is the minimum rate to

achieve a distortion of D0 in single description coding. This criterion has been adopted
in schemes such as [7], [8]. Although in general these two optimization approaches not
necessarily lead to the same optimal filter bank, we show in [13] that they are indeed
equivalent in the proposed framework at high rates and high redundancy. This is another
attractive property of our method.

C. Design Examples with AR(1) signals

In this part, we design the optimal MD filter bank for the first order autoregressive
(AR(1)) sequence with correlation coefficient r, whose p.s.d. function is [10]

SX(ω) =
σ2

x(1 − r2)

1 − 2rcos(ω) + r2
. (16)

For a given filter bank with H(ω) and G(ω), following the previous derivation, we can
compute the expected distortion at a given bit rate. The Matlab optimization routine
fminsearch is then used to find the optimal filter bank that minimizes the distortion. Note
that although the channel loss probability is required to compute the expected distortion,
it does not affect the optimization result at high rates. In the following, two design
examples are given for AR(1) sources with correlation coefficient r = 0.95 and σ2

x = 1.
The bit rate is chosen to be R = 2 bits/sample/description.

The first example is a 2-band linear phase perfect reconstruction filter bank (LPPRFB)
with one-level decomposition using the type-II lattice in [14]. It is designed with one
vanishing moment in the analysis filter bank and two vanishing moments in the synthesis
filter bank. The FIR time domain Wiener filter [13] of size 2× 4 is used. The frequency
responses and scaling/wavelet functions of the optimal 8-tap LPPRFBs for MDC and
SDC are compared in Fig. 2 (a-b). The SDC LPPRFB is optimized for coding gain.
The coding gain of the optimal MDC and SDC LPPRFBs are 6.24 dB and 6.39 dB,
respectively.

Fig. 2 (c-d) show another design example of a 2-band 10-tap paraunitary filter bank
(PUFB) [11] with 5-level decomposition and one vanishing moment. An important ob-
servation is that in both examples the optimal filter banks for the proposed MDC scheme
resemble their counterparts in the single description coding very well. This suggests that
we can directly apply the proposed method to existing practical wavelet based image
coding systems such as the JPEG 2000 without having to change the wavelet transform.

To study the performance of the proposed method, we design a 2-band, 8-tap LPPRFB
with one-level decomposition using the frequency domain Wiener filter in (6) for AR(1)
sources with correlation coefficient r = 0.9 and compare it with the optimal IIR biorthog-
onal and orthogonal solutions in Fig. 9 and Table II of [7] (denoted as FB-MDC). The
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Fig. 2. (a-b): 8-tap optimal LPPRFB for PC-MDC (solid lines) and SDC (dashed lines). (a) Frequency responses. (b)
Scaling and wavelet functions. (c-d) The optimal 10-tap, 5-level PUFB for PC-MDC (solid lines) and SDC (dashed
lines). (c) Frequency responses. (d) Scaling and wavelet functions.

comparison is fair since the same R-D function and input signal model are used. The
results are shown in Fig. 3 (a). It can be seen that our method has similar single-channel
distortion Ds at low redundancy while achieves lower Ds at high redundancy, despite
the additional FIR and linear phase constraints. This is consistent with the performance
of the improved MD transform coding in [5]. Fig. 3 (a) also shows that Ds of FB-MDC
cannot be arbitrarily reduced due to the presence of the prediction error. For example,
the smallest Ds of the orthogonal FB-MDC in [7] is 0.0525 with a redundancy of 0.2967
nats/sample. The smallest Ds of the biorthogonal FB-MDC is 0.0374, but it can only
be achieved with infinite redundancy [7]. This problem is resolved in our method by
encoding the prediction residual.

To gain further insight of the multi-level PC-MDFB, we compare the expected dis-
tortions of a 6-tap PUFB for an AR(1) source at different decomposition levels with
that of the direct MDC method in Fig. 3 (b). In direct MDC, each subband output is
partitioned into even-indexed and odd-indexed coefficients. The even(odd) part is intra-
coded in Description 1(2). Instead of sending the prediction residual, a coarsely-quantized
version of the odd(even) part is included in Description 1(2). This method can be viewed
as a counterpart of the direct coding method in [3] under our framework. Our method
shows significant advantage, especially when the decomposition level is from 1 to 3.

In Fig. 3 (b), it is interesting to note that the performance of the proposed method does
not always increase with the number of decomposition levels. Three-level decomposition
is optimal in this example. We also observe similar behaviors for biorthogonal PC-MDFBs
and other filter banks such as Daubechies’ orthogonal wavelets, the 5/3 and 9/7 wavelets.
The best performance is usually given by three or four levels of decompositions.

To explain this, we start from (15), which shows that the optimized expected distortion
increases with w0w1. The w0 and w1 curves of our method and the direct MDC method
are given in Fig. 3 (c). The result shows that as the number of decomposition levels M
increases, the w0 of our method decreases due to improved decorrelation, whereas w1

increases, since the reduced correlation also decreases the prediction efficiency. Therefore
there is an optimal M with the minimal w0w1. The w0 curve of the direct MDC is
slightly lower than our method, but its w1 curve is much higher, leading to worse overall
performance. This illustrates the trade-off between the filter bank coding performance and
the prediction efficiency. Our method sacrifices a small amount of intra-coding efficiency
but significantly reduces the prediction error and the expected distortion.

III. APPLICATIONS IN IMAGE CODING

In this section, we implement the prediction-compensated multiple description coding
algorithm in the JPEG 2000 framework without changing the underlying wavelet trans-
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Level i Level i+1 

HL 

HH LH 

HL 
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(a) (b) (c)
Fig. 4. Subband partitions and prediction. (a) Horizontal partition. (b) Parent-children prediction. (c) Tree partition.

form. The OpenJPEG JPEG 2000 codec [15] is used. The source codes and executable
files of our modified codec can be downloaded from [16]. The performance of our method
is compared with that of two state-of-the-art wavelet methods in the literature, i.e., the
MMDSQ in [2] and the Lagrangian based RD-MDC in [3], whose codec is available at
[17].

To generate two descriptions, each subband of a wavelet transformed image in JPEG
2000 is split into two parts, which are grouped separately and partitioned into codeblocks
for the intra and inter coding.

The LL subband is split into even and odd-indexed lines and then grouped separately
as shown in Fig. 4 (a). Each inter-coded coefficient is predicted by the average of the
two nearest intra coefficient neighbors. The partition is slightly different from that in our
theoretical model, but experimental results show that it yields a better tradeoff between
the prediction performance and the adverse impact to the JPEG 2000 entropy coding.

The HL, LH and HH subbands are encoded by using the parent-children tree partition
and prediction illustrated in Fig. 4 (b). Fig. 4 (c) gives a partition example of a 32× 32
wavelet transformed image. To take advantage of the different edge capturing capabilities
of different subbands and to minimize the impact to the JPEG 2000 entropy coding, the
LH subband is split into vertical slices while the HL and HH subband are split into
horizontal slices. A parent intra coefficient (dark dot) in level i + 1 is down-scaled as
the estimate of the four children (white dots) in level i. The scaling factor is fixed for
each subband and is chosen from 1/8 to 1/256 by experiments. The only exception is that
the inter coefficients of the highest level HL, LH and HH subbands are coded directly,
because the prediction for them using the simple scaling method is not helpful.

The rate control in our method is as follows. Given the target bit rate and redundancy
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Fig. 5. Tradeoff between the central and the side PSNRs for PC-MDC, RD-MDC and MMDSQ at R = 0.5
bpp/description. (a) Barbara; (b) Goldhill; (c) Lena.

ratio ρr = (inter bit rate) / (intra bit rate), the corresponding intra and inter bit rates can
be calculated. The JPEG 2000 rate control is then used to encode all intra codeblocks at
the target bit rate. We then use the reconstructed intra coefficients to encode the residual
codeblocks at its target bit rate. Since we use symmetric coefficient-level splitting with
pre-defined patterns, balanced descriptions is achieved with very low complexity.

Our method is more preferable in terms of compatibility and complexity. The only extra
work in our method is to produce the necessary intra codeblocks and residual codeblocks.
All modules of JPEG 2000 can be reused and good performance and balanced descriptions
are easily achieved. In contrast to this, the quantization scheme in the MMDSQ is
incompatible with the JPEG 2000. Although the RD-MDC is compatible with JPEG
2000, it has very high complexity. To find the optimal data partition, the RD-MDC
exhaustively searches all possible combinations of codeblocks. For example, the total
number of codeblocks of a 256 × 256 images with 5-level wavelet transform is 25 and
therefore 225 combinations need to be tested. Fast algorithms can reduce the search time
but degrade the performance as well [3].

Some simulation results at rate R = 0.5 bpp/description are given in Fig. 5, for three
512 × 512 standard test images with different characteristics. Five levels of resolution
have been used. The codeblock size is 64× 64. Compared with the RD-MDC in [3], the
proposed PC-MDFB method can achieve similar or better performance for all three test
images. Given the same central PSNR, the side PSNR of our method is up to 3 dB and 1
dB better than that of the MMDSQ and the RD-MDC, respectively. Fig. 6 shows several
decoding results of our method (PC-MDC) and RD-MDC when one description is lost.
The two methods are compared at the same bit rate and similar central PSNRs. It can
be seen that our method yields better side PSNR and preserves more texture details, as
exemplified by the roof in Goldhill and the clothes in Barbara.

IV. CONCLUSIONS

This paper studies the optimal multi-level filter bank design for prediction-compensated
multiple description coding (PC-MDC). We formulate the problem for correlated Gaussian
sources. Orthogonal and biorthogonal design examples with the AR(1) sources show that
the optimal solutions are very close to the optimal single description filter banks, and they
do not depend on either the channel loss rate or the redundancy. These properties enable
us to apply the PC-MDC to existing single description filter banks with near-optimal
performance. Image coding results in the JPEG 2000 framework show that the proposed
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(a) (b) (c) (d)
Fig. 6. Side decoder results with 0.5 bpp/description in (a-b) and 0.125 bpp/description in (c-d). The central PSNR
and redundancy ratio ρr are listed in the parentheses. (a) Goldhill by RD-MDC: 30.30 dB (35.78 dB, ρr = 5%); (b)
Goldhill by PC-MDC: 31.05 dB (35.80 dB, ρr = 14%); (c) Barbara by RD-MDC: 19.91 dB (28.18 dB, ρr = 5%);
(d) Barbara by PC-MDC: 20.98 dB (28.19 dB, ρr = 1%).

method achieves similar or better performances than existing methods in the literature.
It also has lower complexity and is highly compatible with JPEG 2000.

The image coding performance of the proposed framework can be further improved.
For example, more advanced predictions can be used to reduce the prediction residual,
and the side information can be reduced by refining the entropy coding for the inter-coded
coefficients.
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