Introduction to Lean

Jake Levinson Simon Fraser University Computational Math Day

May 4, 2023

What is Lean?

Lean is an interactive proof assistant: you type in a proof and it verifies it

example (p g r : Prop) :	▼ Tactic state	
$(p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow p \rightarrow r :=$ begin	1 goal	▼jl2023.lean:127:0
<pre>intros hpq hqr hp, apply hqr, apply hqq, exact hp, erd</pre>	$p q r : Prop$ $hpq : p \rightarrow q$ $hqr : q \rightarrow r$ $hp : p$	hap ha has type p but is expected to have type r
end	⊢ r	

What is Lean?

Lean is an interactive proof assistant: you type in a proof and it verifies it

example (p g r : Prop) :	Tactic state	
$(p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow p \rightarrow r :=$ begin	1 goal	▼jl2023.lean:127:0
intros hpq hqr hp, apply hqr, apply hqq, exact hp,	p q r : Prop hpq : p → q hqr : q → r hp : p	hap ha has type p but is expected to have type r
end	⊢ r	

Lean is tactic-based: it has some limited (but essential) ability to fill in boring details of proofs

Why formalize?

Objectives of formalization:

- Verify correctness of theorems
- Generate proofs automatically (especially boring, rote computations)
- State results precisely (and look them up)

Formalization has a long history prior to Lean (Coq, Isabelle, ...).

mathlib: the mathematics library

- Lean is a strictly-typed programming language, designed by Leonardo de Moura (Microsoft Research)
- Open-source mathematics library: mathlib https://github.com/leanprover-community/mathlib/
 - 1M+ lines of code, covering most of undergrad math, lots of grad math, some research-level math

mathlib: the mathematics library

- Lean is a strictly-typed programming language, designed by Leonardo de Moura (Microsoft Research)
- Open-source mathematics library: mathlib https://github.com/leanprover-community/mathlib/
 - 1M+ lines of code, covering most of undergrad math, lots of grad math, some research-level math
 - ► Overview of mathlib: here . Check out: intermediate value theorem , implicit function theorem , insolvability of the quintic , Haar measure , Hilbert's nullstellensatz ...
 - ► Liquid Tensor Experiment I (Commelin et al. 2022) : a lemma on perfectoid spaces, proposed as a challenge by Fields medalist Peter Scholze and his collaborator Dustin Clausen
- Discussion forum: https://leanprover.zulipchat.com/ Very active and responsive on the new members channel!

Quick primer on type theory

Every object in Lean has a type:

object	:	Туре	"object is of the stated type"
п	:	\mathbb{N}	n is a natural number
sin	:	$\mathbb{R} \to \mathbb{R}$	sin is a function from $\mathbb R$ to $\mathbb R$
<i>x</i> > 0	:	Prop	" $x > 0$ " is a proposition
h	:	<i>x</i> > 0	<i>h</i> is a proof of the proposition $x > 0$
$\mathbb{R}, \operatorname{Prop}$:	Type	"real" and "proposition" are Types

Quick primer on type theory

Every object in Lean has a type:

object	:	Туре	"object is of the stated type"
п	:	\mathbb{N}	n is a natural number
sin	:	$\mathbb{R} \to \mathbb{R}$	sin is a function from $\mathbb R$ to $\mathbb R$
<i>x</i> > 0	:	Prop	" $x > 0$ " is a proposition
h	:	<i>x</i> > 0	<i>h</i> is a proof of the proposition $x > 0$
$\mathbb{R}, \operatorname{Prop}$:	Type	"real" and "proposition" are Types

Some examples:

def x : ℝ := 5

def seq_limit (a : $\mathbb{N} \to \mathbb{R}$) (l : \mathbb{R}) : Prop := $\forall \epsilon > 0, \exists N, \forall n \ge N, |a n - l| < \epsilon$

 x is the real number 5

"lim $a_n = \ell$ " is defined as the proposition that $\forall \epsilon > 0, \ldots$

Fermat's proof that $a^n + b^n \neq c^n$ for n > 2 goes as follows: (*omitted for lack of space*)

Trying this out!

Let's do some basics first.

Learning resources

- The Natural Number Game: all about induction! https://www.ma.imperial.ac.uk/-buzzard/xena/natural_number_game/ Runs in the browser – easiest to get started!
- Patrick Massot's Lean tutorial: basic real analysis, culminating in the Intermediate Value Theorem: Run leanproject get tutorials (command line) or follow download instructions at https://github.com/leanprover-community/tutorials
 - Start with the file src/exercises/01_equality_rewriting.lean.
- Exercises from Lean for the Curious Mathematician 2020: broader overview, organized by topic (analysis, algebra, etc). https://github.com/leanprover-community/lftcm2020 or leanproject get lftcm2020 (command line)

Trouble installing Lean?

- You can use Gitpod gitpod.io C to run Lean and other mathlib-based projects in a browser.
 You get 10 hours a month for free.
- The Lean Zulip chat is very friendly and very helpful! https://leanprover.zulipchat.com/