MATH 819 - HW1 (GLUING, PRESHEAVES AND SHEAVES)

How much to do: You are not required to do every problem. You should aim to do *at least some* of the concrete problems and *at least some* of the formal manipulations. Modern algebraic geometry is built on many layers of *both* formalism *and* a large body of intuition-building examples.

Due date: In class Tuesday, Jan 23rd

Reading: Vakil Sections 2.1-2.5, 2.7 (equivalent to Hartshorne Section 2.1 – much more terse!). If interested in category theory, look at Vakil 1.1-1.5 only.

(1) (Gluing P²). Let V = k³ and let P² = P(V) = {lines ℓ ⊆ V through 0}. The homogeneous coordinates [A : B : C] represent the line ℓ = span([A, B, C]).
(a) Consider the subsets (coordinate charts)

 $U_0 = \{ [1:a_1:a_2] \}, \quad U_1 = \{ [b_0:1:b_2] \}, \quad U_2 = \{ [c_0:c_1:1] \}.$

Write down the transition functions $f_{01}(a_1, a_2)$, $f_{12}(b_0, b_2)$ and $f_{02}(a_1, a_2)$ and their inverses. Verify $f_{02} = f_{12} \circ f_{01}$.

(b) Let L^{*} = {(l, f) : l ∈ P² and f : l → k is linear} (the dual tautological line bundle on P²). Glue L^{*} together using sets X_i := U_i × k. (Modify the construction over P¹ done in class. For example, given (a₁, a₂, t) ∈ U_i × k, the vector [1, a₁, a₂] is a basis for the line l = [1 : a₁ : a₂], so t can correspond to the unique linear function l → k sending [1, a₁, a₂] ↦ t.) Define carefully the transition functions f₀₁, f₁₂, f₀₂ and show f₀₂ = f₁₂ ∘ f₀₁. (If can you do it nicely, show f_{jk} ∘ f_{ij} = f_{ik} for all i, j, k.)

Note: Part (a) is carried out for \mathbb{P}^n as a scheme in Vakil 4.4.9. One lesson here is to be thoughtful in how you name your coordinates; also, coordinate-free definitions (as in $\mathbb{P}(V)$ and \mathcal{L}^*) are very valuable.

(2) Let X be a topological space and let \mathscr{F} be given by $U \mapsto \{f : U \times U \to \mathbb{R}\}$, with the restriction maps $f \mapsto f|_{V \times V}$ when $V \subseteq U$.

Show that in general \mathscr{F} fails the 'identity' axiom of sheaves. (You can take X = two points with the discrete topology.)

(3) Let $X = \mathbb{R}$ and let \mathcal{O}_X be the sheaf of *all* real-valued functions on X. Let $p \in X$. Show that $\mathcal{O}_{X,p}$ is not a local ring by showing $\mathfrak{m}_p = \{(f, U) : f(p) = 0\}$ is a maximal ideal, but that there are elements of $\mathcal{O}_{X,p} - \mathfrak{m}_p$ that are not units. (4) Let X be a topological space and let $\phi : \mathscr{F} \to \mathscr{G}$ be a map of presheaves of abelian groups on X. Show that the presheaf image and presheaf cokernel are, indeed, presheaves, by defining appropriate restriction maps

 $\operatorname{im}(\phi(U)) \xrightarrow{?} \operatorname{im}(\phi(V)), \quad \operatorname{coker}(\phi(U)) \xrightarrow{?} \operatorname{coker}(\phi(V)),$

whenever $V \subseteq U$ is an inclusion of open sets.

- (5) Let X be a topological space and let $\phi : \mathscr{F} \to \mathscr{G}$ be a map of presheaves of abelian groups.
 - (a) Give a natural isomorphism $(\ker \phi)_p \xrightarrow{\sim} \ker(\phi_p : \mathscr{F}_p \to \mathscr{G}_p)$. Conclude: if \mathscr{F}, \mathscr{G} are sheaves, then $\ker \phi = 0$ if and only if the maps of stalks are injective.
 - (b) Give a natural isomorphism $(\operatorname{coker}_{pre} \phi)_p \xrightarrow{\sim} \operatorname{coker}(\phi_p : \mathscr{F}_p \to \mathscr{G}_p)$. After January 17th, conclude: if \mathscr{F} and \mathscr{G} are sheaves, $\operatorname{coker} \phi = 0$ (which has the same stalks as $\operatorname{coker}_{pre} \phi$) if and only if the maps of stalks are surjective.

Book problems (Vakil):

- 2.1.A (Stalks of the sheaf of smooth functions on \mathbb{R} are local rings.)
- 2.2.E (The constant sheaf is a sheaf)
- 2.2.G(a) (This example is historically why $f \in \mathscr{F}(U)$ is called a 'section')
- 2.2.H (The pushforward/direct image is a (pre)sheaf)
- 2.3.A (Maps $\phi : \mathscr{F} \to \mathscr{G}$ induce maps of stalks $\mathscr{F}_p \to \mathscr{G}_p$)
- 2.4.D (Injectivity is easier. For surjectivity, show that the germs of $g \in \mathscr{G}(U)$ lead to a set of compatible germs of $\mathscr{F}(U)$. Use 2.4.A in both parts (shown in class).)