MATH 819 - HW2 (SHEAFIFICATION, STRUCTURE SHEAVES, BASICS OF SCHEMES)

Instructor problems:
(1) (Gluing and generic points) Recall the gluing of \mathbb{P}^{2} from HW1. In this problem, view the open sets U_{i} and $U_{i j}$ as affine schemes (i.e. including non-closed points).
(a) The following are equivalent to one of the gluing maps from HW1:

$$
\begin{aligned}
U_{2} \supset U_{21} & \stackrel{\sim}{\sim} U_{12} \subset U_{1} \\
k[x, y] \hookrightarrow k[x, y, 1 / y] & \stackrel{\phi}{\longrightarrow} k[x, z, 1 / z] \hookleftarrow k[x, z] \\
x & \mapsto x / z, \\
y & \mapsto 1 / z .
\end{aligned}
$$

Let $(f)=\left(y^{2}-x^{3}-1\right) \in \operatorname{Spec}(k[x, y])$ and $(g)=\left(z-x^{3}-z^{3}\right) \in \operatorname{Spec}(k[x, z])$. (You may assume these ideals are prime.) Show that ϕ identifies these ideals. Something similar happens in the third chart, so our gluing maps for \mathbb{P}^{2} also glue together Spec $k[x, y] /(f)$ and Spec $k[x, z] /(g)$ (and one more) to give an elliptic curve $C \subseteq \mathbb{P}^{2}$. Overall, the underlying set of the scheme \mathbb{P}^{2} has just one non-closed "generic point" corresponding to C.
(b) Which points of \mathbb{P}^{2} are not in U_{2} ? (Hint: various closed points but only one non-closed point.)
Solution to (b). The gluing isomorphism

$$
\begin{gathered}
U_{2} \supset U_{21} \stackrel{\sim}{\sim} U_{12} \subset U_{1} \\
k[x, y] \hookrightarrow k[x, y, 1 / y] \stackrel{\phi}{\longrightarrow} k[x, z, 1 / z] \hookleftarrow k[x, z]
\end{gathered}
$$

identifies the open subset $U_{12} \subset U_{1}$ with points coming from U_{2}. Since U_{12} is the distinguished open set $D(z) \subset U_{1}$, its complement is $V(z)$, which has only one non-closed point (namely $p=(z)$ itself). Similarly, from

$$
\begin{aligned}
U_{2} \supset U_{20} \stackrel{\sim}{\longleftrightarrow} U_{02} \subset U_{0} \\
k[x, y] \hookrightarrow k[x, y, 1 / x] \stackrel{\phi}{\longrightarrow} k[y, z, 1 / z] \hookleftarrow k[y, z]
\end{aligned}
$$

we see that $U_{02} \subset U_{0}$ is $D(z)$, so the only non-closed point of U_{0} not in U_{2} is $V(z)$. This represents the same non-closed point of \mathbb{P}^{2} as $V(z)$ on the U_{1} chart.

In summary, the points of P^{2} not in U_{2} are:

- The points corresponding to homogeneous coordinates $[x: y: 0]$,
- The non-closed point $V(z)$, which is the generic point of the line $[x: y: 0]$.
(2) (Pictures of nonreducedness) In this problem, for an ideal I of a ring R, by abuse of notation write $\mathbb{V}(I)$ for the scheme Spec R / I. The scheme-theoretic intersection $\mathbb{V}(I) \cap \mathbb{V}(J)$ is by definition $\mathbb{V}(I+J)=\operatorname{Spec} R /(I+J)(\operatorname{not} \operatorname{Spec} R / \sqrt{I+J}$.$) We'll$ examine these concepts further in class.

Let $X=\operatorname{Spec} \frac{k[x, y, z]}{(x, z)^{2}}$. Draw a picture of X (it looks like a tube in \mathbb{A}^{3}).
(a) Let $X^{\prime}=X \cap \mathbb{V}(x)$. Draw a picture that makes it clear that $X^{\prime} \subseteq \mathbb{V}(x)$. Does your picture suggest X^{\prime} is contained in $\mathbb{V}(x+z)$? Check: is $x+z \in(x, z)^{2}+(x)$?
(b) Let $X^{\prime \prime}=X \cap \mathbb{V}(x y-z)$. Draw a picture of $X^{\prime \prime}$ in \mathbb{A}^{3} (it may be helpful to first plot $x y-z=0$, which is a quadric surface containing the y-axis. Try https://math3d.org.)
Let $H=\mathbb{V}(a x+b z)$ be any plane containing the y-axis (assume a and b are not both 0). Show that $X^{\prime \prime}$ is not contained in H. That is, the nonreduced structure of $X^{\prime \prime}$ "twists around", following the shape of $\mathbb{V}(z-x y)$.
(c) Let $Y=\operatorname{Spec} \frac{k[x, y]}{x y}$, the union of the x and y axes. Let Z be a tangent vector at the origin pointing in any direction (figure out the equations for Z). Show that $Z \subseteq Y$. So Y contains the entire 2D "tangent space" at the origin.
This should be surprising - you might have expected Y to only contain the vertical and horizontal tangent vectors. In general for schemes we only have

$$
\left(Y_{1} \cup Y_{2}\right) \cap Z \supseteq\left(Y_{1} \cap Z\right) \cup\left(Y_{2} \cap Z\right) .
$$

Solutions.

(a) To see that $x+z \notin(x, z)^{2}+(x)$, we can write $(x, z)^{2}+(x)=\left(x^{2}, x z, z^{2}, x\right)=\left(x, z^{2}\right)$. Then it's clear that $x+z \notin\left(x, z^{2}\right)$.
(b) To see that $a x+b z \notin(x, z)^{2}+(x y-z)$, it's convenient to mod out and ask whether $a x+b z=0$ in the quotient ring

$$
\frac{k[x, y, z]}{(x, z)^{2}+(x y-z)}=\frac{k[x, y, z]}{\left(x^{2}, x z, z^{2}, x y-z\right)} \cong \frac{k[x, y]}{\left(x^{2}, x^{3} y, x^{2} y^{2}\right)}=\frac{k[x, y]}{\left(x^{2}\right)} .
$$

Under this isomorphism (where we have set $z=x y$), our element is $a x+b z=a x+b x y=$ $x(a+b y)$. This is not a multiple of x^{2} in $k[x, y]$, so it is not zero in the quotient by x^{2}.
(c) A tangent vector along the line $a x+b y=0$ would be given by the ideal $(x, y)^{2}+$ $(a x+b y)$, i.e. it would be $\operatorname{Spec} \frac{k[x, y]}{(x, y)^{2}+(a x+b y)}$. This is just $\left(x^{2}, x y, y^{2}, a x+b y\right)$ and contains the ideal $(x y)$, so it is a subscheme of $\frac{k[x, y]}{(x y)}$. Indeed we can see directly that $(x y) \subseteq(x, y)^{2}$, so the entire "fat neighborhood" Spec $\frac{k[x, y]}{(x, y)^{2}}$ is contained in the union of the two axes... despite the fact that $\frac{k[x, y]}{(x y)}$ is reduced. I don't have a good picture of this.

Pictures for (a), (b):

