MATH 819 – HW2 (SHEAFIFICATION, STRUCTURE SHEAVES, BASICS OF SCHEMES)

How much to do: For this assignment, please do (at a minimum) all the instructor problems. You are not required to do every Vakil problem, but you should do several.Due date: In class Thursday, Feb 9th

Reading: Vakil Sections 3.1-3.5, 4.1-4.4 (equivalent to Hartshorne Section 2.2 – much more terse!). Next week, 3.6 and 5.1-5.2.

If you want to read ahead: Basics on modules (see e.g. Atiyah-Macdonald or Dummit and Foote):

• Definitions: module, homomorphism, submodule, kernel, quotient, localization of a module $(S^{-1}M \text{ as an } S^{-1}R \text{-module})$, cyclic module, finitely-generated module

Instructor problems:

- (1) (Reducedness and stalks) Let R be a ring. Show TFAE:
 - (i) R is reduced.
 - (ii) For all maximal ideals $\mathfrak{m} \subset R$, $R_{\mathfrak{m}}$ is reduced.
 - (iii) For all prime ideals $P \subset R$, R_P is reduced.

Conclude: for a scheme X, the stalk $\mathcal{O}_{X,p}$ is reduced for all $p \in X$ if and only if, for all affine open sets $U \subseteq X$, $\mathcal{O}_X(U)$ is reduced.

- (2) (Nilpotents and gluing) Let (X, \mathcal{O}_X) be a ringed space. For each open set U, let $\mathcal{N}(U)$ be the nilradical of $\mathcal{O}_X(U)$.
 - (a) Show \mathcal{N} is a presheaf.
 - (b) Show \mathcal{N} satisfies the identity axiom, but only satisfies gluing for *finite* covers. If X is a Noetherian topological space, use Vakil 3.6.U to show \mathcal{N} is a sheaf.
 - (c) Non-Noetherian counterexample to (b) (cf. Vakil 5.2.F): Let X be the disjoint union of $X_n = \operatorname{Spec} k[x]/x^n$ for all $n \ge 1$. The global section (x, x, x, ...) is locally nilpotent but not globally nilpotent.
- (3) (Gluing and generic points) Recall the gluing of \mathbb{P}^2 from HW1. In this problem, view the open sets U_i and U_{ij} as affine schemes (i.e. including non-closed points).
 - (a) The following are equivalent to one of the gluing maps from HW1:

$$U_2 \supset U_{21} \longleftarrow U_{12} \subset U_1$$

$$k[x, y] \hookrightarrow k[x, y, 1/y] \xrightarrow{\phi} k[x, z, 1/z] \longleftrightarrow k[x, z]$$

$$x \mapsto x/z,$$

$$y \mapsto 1/z.$$

Let $(f) = (y^2 - x^3 - 1) \in \operatorname{Spec}(k[x, y])$ and $(g) = (z - x^3 - z^3) \in \operatorname{Spec}(k[x, z])$. (You may assume these ideals are prime.) Show that ϕ identifies these ideals. Something similar happens in the third chart, so our gluing maps for \mathbb{P}^2 also glue together $\operatorname{Spec} k[x, y]/(f)$ and $\operatorname{Spec} k[x, z]/(g)$ (and one more) to give an elliptic curve $C \subseteq \mathbb{P}^2$. Overall, the underlying set of the scheme \mathbb{P}^2 has just one non-closed "generic point" corresponding to C.

- (b) Which points of \mathbb{P}^2 are *not* in U_2 ? (Hint: various closed points but only *one* non-closed point.)
- (4) (Pictures of nonreducedness) In this problem, for an ideal I of a ring R, by abuse of notation write $\mathbb{V}(I)$ for the scheme Spec R/I. The scheme-theoretic intersection $\mathbb{V}(I) \cap \mathbb{V}(J)$ is by definition $\mathbb{V}(I+J) = \operatorname{Spec} R/(I+J)$ (not $\operatorname{Spec} R/\sqrt{I+J}$.) We'll examine these concepts further in class.

Let $X = \operatorname{Spec} \frac{k[x, y, z]}{(x, z)^2}$. Draw a picture of X (it looks like a tube in \mathbb{A}^3).

- (a) Let $X' = X \cap \mathbb{V}(x)$. Draw a picture that makes it clear that $X' \subseteq \mathbb{V}(x)$. Does your picture suggest X' is contained in $\mathbb{V}(x+z)$? Check: is $x+z \in (x,z)^2+(x)$?
- (b) Let $X'' = X \cap \mathbb{V}(xy z)$. Draw a picture of X'' in \mathbb{A}^3 (it may be helpful to first plot xy z = 0, which is a quadric surface containing the *y*-axis. Try https://math3d.org.)

Let $H = \mathbb{V}(ax + bz)$ be any plane containing the y-axis (assume a and b are not both 0). Show that X'' is not contained in H. That is, the nonreduced structure of X'' "twists around", following the shape of $\mathbb{V}(z - xy)$.

(c) Let $Y = \operatorname{Spec} \frac{k[x, y]}{xy}$, the union of the x and y axes. Let Z be a tangent vector at the origin pointing in any direction (figure out the equations for Z). Show that $Z \subseteq Y$. So Y contains the entire 2D "tangent space" at the origin. This should be surprising – you might have expected Y to only contain the vertical and horizontal tangent vectors. In general for schemes we only have

$$(Y_1 \cup Y_2) \cap Z \supseteq (Y_1 \cap Z) \cup (Y_2 \cap Z).$$

Vakil problems:

- 2.5.C
- 3.2.T (for fun don't hand in)
- 3.6.ABD (connectedness and irreducibility)
- 3.6.U (noetherian topological spaces)
- 5.1.C just the claim in the 'hint' (finite union of noetherian topological spaces)