
MATH 819 – HW3 (MODULES, FINITENESS CONDITIONS, LOCAL

CONDITIONS)

Background on modules. Hand in one problem below:

(1) Let R be a ring and 0 → M ′ → M → M ′′ → 0 a short exact sequence of R-modules.
Let N be any R-module. Show that M ′ ⊗N → M ⊗N → M ′′ ⊗N → 0 is exact.
(We say that −⊗N is a right-exact functor.)

Comment. The main mistake to avoid here is thinking that a ⊗ b = 0 implies a = 0
or b = 0. This is false! For example Z/2Z ⊗Z Z/3Z = Z/(2, 3)Z = 0, so 1 ⊗ 1 = 0 in this
module, even though 1 ̸= 0. □

(4) Let X be a scheme and let f ∈ Γ(X,OX). Let Xf = {p ∈ X : f(p) ̸= 0}.
(a) Show: for any affine open subset U = SpecR, Xf ∩ U = D(f |U ). Conclude

that Xf is open.
(b) If X is quasicompact, show that Xf is quasicompact. (Hint: Intersect Xf with

an affine cover of X and use 3.6.H(a).)

Solution. (a): Xf ∩U = {p ∈ U : f(p) ̸= 0}. This is equivalent to our definition

of D(f |U ) = {p ∈ SpecR : f /∈ p}, because f ∈ p ⇔ f
1 ∈ pRp ⇔ f = 0 ∈ k(p).

(Note that the direction f
1 ∈ pRp ⇒ f ∈ p uses the fact that p is prime.)

(b): Since X is quasicompact, X is a finite union of affine open sets Ui, so Xf is
covered by the finitely-many sets Xf ∩Ui. Each of these is a distinguished open in
an affine scheme, hence is again affine, hence is quasicompact. Since a finite union
of quasicompact sets is quasicompact, Xf is quasicompact. □

(5) (Fitting ideals) Let R be a ring and M an R-module. A free presentation is an
exact sequence

G
ϕ−→ F → M → 0,

where G and F are free R-modules. That is, M is generated by (the images of)
the generators of F , subject to the relations ϕ(g) = 0 for each generator g ∈ G.
We say M is finitely-presented it has a presentation with G ∼= Rn and F ∼= Rm for
some n,m ∈ N. In this case ϕ is given by an m × n matrix of ring elements (rij),
and ϕ(g1, . . . , gn) = (rij) · (gj) (matrix-vector multiplication).
(a) Assume M is finitely-presented as above. Let p ∈ Spec(R). Tensor with k(p)

to get the right exact sequence

G(p)
ϕ(p)−−→ F (p) → M(p) → 0.
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Suppose that the matrix ϕ(p), of elements of k(p), has rank r as a matrix.
What is the dimension of M(p) as a k(p)-vector space?

(b) Prove that the set Fitt≥r(M) := {p ∈ SpecR : dimk(p)M(p) ≥ r} is closed in
the Zariski topology. (Hint: consider the ideal of R generated by determinants
of minors of ϕ.) Conclude there exists a nonempty open set U ⊆ SpecR such

that M̃ |U has constant rank (i.e. dimk(p)M(p) is the same for all p ∈ U).

(c) Let R = k[x, y, z] and let M be the cokernel of the map ϕ : R3 → R2 given

by the matrix

[
x y z
z x y

]
. Describe the subsets of A3 on which M has each

possible rank.
In (b), in fact more is true: the ideal of minors from part (c), the Fitting ideal,

does not depend on the choice of presentation. Therefore, it gives not just a closed
subset but a natural scheme structure on it. See e.g. Eisenbud, Commutative
Algebra with a View Toward Algebraic Geometry, Corollary–Definition 20.4.

Solutions. (a) Note that tensor product is right-exact. This means F (p) ∼= k(p)m →
M(p) is surjective, with kernel equal to the image of ϕ(p). If ϕ(p) is given by a rank-r
matrix, then its image is r-dimensional, so the cokernel is has vector space dimension m−r.

(b) Let Ik ⊂ R be the ideal generated by the k × k minors of ϕ. Then:

p ∈ V (Ik) ⇔ Ik ⊆ p ⇔ Ik = 0 mod p

and the last version is equivalent to “the k× k minors of ϕ are 0 mod p”, i.e. ϕ(p) is given
by a matrix of rank ≤ k − 1. By part (a), this is equivalent to M(p) being a vector space
of dimension ≥ m− k + 1. Solving, we find

Fitt≥r = V (Im−r+1).

This is a Zariski-closed subset since we have described it in terms of an ideal.
(c) The matrix has rank 0 (and hence M has rank 2) at the origin x = y = z = 0. The

matrix has rank 1 (and so M does too) if (x, y, z) ̸= (0, 0, 0) but x2 = yz, y2 = xz and
z2 = xy. This is the union of three lines through the origin (minus the origin). In fact it
is the affine cone over the three points [ζ : ζ−1 : 1] ∈ P2 where ζ is a cube root of unity.
Outside of these three lines, the matrix has rank 2 and M has rank 0. In particular M is
only supported on those three lines. □

(6) Let F be a quasicoherent sheaf. Show that the condition “F (U) is a finitely-
generated OX(U)-module” satisfies the requirements of the Affine Communication
Lemma. If F has this property and X is noetherian, F is called a coherent sheaf.
(Adapt the proof for “locally noetherian”.)

Solution. Suppose X = SpecR and F = M̃ for some R-module M .

Step 1: Suppose M is finitely-generated and f ∈ R. We show that Mf is finitely-
generated as an Rf -module.
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Proof: Let m1, . . . ,mk generate M over R. Then m1
1 , . . . , mk

1 generates Mf over

Rf . (Diagrammatically: we have a surjection Rk ↠ M . Localizing gives Rk
f ↠ Mf ,

which preserves surjectivity since localization is exact.)

Step 2: Suppose (f1, . . . , fn) = (1) and Mfi is finitely-generated over Rfi for each
i. We show that M is finitely-generated over R.

Proof: For each i, Mfi is generated by a finite set of elements
{mij

f
kij
i

} over Rfi .

But then
{mij

1 } generates Mfi over Rfi also.
Now combine all mij ’s into one big finite set {m1, . . . ,mN} ⊂ R and let ϕ :

RN → M be the corresponding map. Then coker(ϕ)fi = coker(ϕfi) = 0 for each
i since ϕfi is manifestly surjective and localization preserves cokernels. Since the
sets D(fi) cover SpecR, it follows coker(ϕ) = 0, that is, ϕ is surjective and M is
finitely-generated over R. □

(7) Let π : X → Y be a morphism of schemes. Show that the condition “π−1(U)
is quasicompact” of open subsets U ⊆ Y satisfies the hypotheses of the Affine
Communication Lemma. We then call π a quasicompact morphism.

Proceed as follows. Assume Y = SpecA is affine and (f1, . . . , fn) = (1) in A.
(i) If π−1(Y ) = X is quasicompact, show that π−1(D(fi)) is quasicompact. (Pull

fi to a global section on X and use Problem 4.)
(ii) If π−1(D(fi)) is quasicompact for all i, show that X is quasicompact.

Solution. For step 1, let gi = π#(fi) ∈ Γ(X,OX). From the definition of
morphism of schemes, values of regular functions pull back, i.e. if π(p) = q we have
a map of residue fields π# : k(q) → k(p) taking f(q) to g(p). So we have

π−1D(fi) = {p ∈ X : fi(π(p)) ̸= 0} = {p ∈ X : gi(p) ̸= 0} = Xgi

in the notation of Problem 4. This is quasicompact by 4(b).
For step 2: the preimage of an open cover is an open cover, so the sets Xgi cover

X. Since X is covered by finitely-many quasicompact sets, X is quasicompact. □

(8) Let π : X → Y be a morphism of schemes. Show that the condition “π−1(U) is
affine” satisfies the conditions of the Affine Communication Lemma. We the call π
an affine morphism, a.k.a. a family of affine varieties.

(Adapt the proof that quasicoherence is a local property. For the second condi-
tion, you should be showing the following: let Y = SpecR and let (f1, . . . , fn) =
(1) ∈ R. Let gi = π#(fi) ∈ Γ(X,OX). By assumption, each open subscheme
Xgi = {x ∈ X : gi(x) ̸= 0} is affine. Show that for each f ∈ R, letting g = π#(f),
the natural map Γ(X,OX)g → Γ(Xg,OX) is an isomorphism.)

Solution sketch. I’ll just explain why this is the correct reduction. (The actual
details of showing that the map Γ(X,OX)g → Γ(Xg,OX) is an isomorphism are
essentially identical to the proof from class.)
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First note that Step 1 is easy: if Y = SpecR is affine and π−1(Y ) = X = SpecA
is affine, and f ∈ R, then π−1(D(f)) = D(g) where f 7→ g via the ring map R → A.
This is affine since it is just SpecAg.

For Step 2, we are assuming each Xgi is affine. We want to show that X is affine,
so in fact we want to show X ∼= SpecΓ(X,OX). Recall that, for any affine scheme
SpecA, morphisms X → SpecA are equivalent to ring maps A → Γ(X,OX). So
the identity ring map of A := Γ(X,OX) corresponds to a morphism X → SpecA.

Restricting SpecA to each SpecAgi in turn, we obtain the ring maps on global
sections, which (by the work shown in the problem) are

Agi
∼−−→ Γ(Xgi ,OX).

Since Xgi is assumed to be affine, the fact that these are ring isomorphisms implies
that the corresponding scheme morphisms Xgi → SpecAgi are isomorphisms of
schemes.

Finally, we use the general fact that “being an isomorphism is local on the
target”: if π : X → Y is any morphism of schemes, and Y =

⋃
Ui, then π is an

isomorphism if and only if π−1(Ui) → Ui is an isomorphism for all i. (This is obvious
for maps of sets; almost obvious for continuous maps of topological spaces, and then
once we know π is a homeomorphism of spaces, it’s immediate that we have stalk
isomorphisms at every point, hence an isomorphism of structure sheaves.) □


