MATH 819 - HW3 (MODULES, FINITENESS CONDITIONS, LOCAL
CONDITIONS)

’Background on modules. Hand in one problem below: ‘

(1) Let Rbe aring and 0 — M' — M — M" — 0 a short exact sequence of R-modules.
Let N be any R-module. Show that M@ N - M @ N - M" ® N — 0 is exact.
(We say that — ® N is a right-exact functor.)

Comment. The main mistake to avoid here is thinking that a ® b = 0 implies ¢ = 0
or b = 0. This is false! For example Z/27Z @7 7Z/37Z = 7Z/(2,3)Z = 0, s0 1 ® 1 = 0 in this
module, even though 1 # 0. O

(4) Let X be a scheme and let f € I'(X,Ox). Let Xy ={p € X : f(p) # 0}.
(a) Show: for any affine open subset U = Spec R, Xy NU = D(f|y). Conclude
that Xy is open.
(b) If X is quasicompact, show that X is quasicompact. (Hint: Intersect Xy with
an affine cover of X and use 3.6.H(a).)

Solution. (a): X;NU = {p € U : f(p) # 0}. This is equivalent to our definition
of D(fly) = {p € SpecR : f ¢ p}, because f € p < { € pR, & f =0 € k(p).
(Note that the direction { € pR, = f € p uses the fact that p is prime.)

(b): Since X is quasicompact, X is a finite union of affine open sets U;, so X is
covered by the finitely-many sets X N U;. Each of these is a distinguished open in
an affine scheme, hence is again affine, hence is quasicompact. Since a finite union
of quasicompact sets is quasicompact, X is quasicompact. O

(5) (Fitting ideals) Let R be a ring and M an R-module. A free presentation is an
exact sequence

GﬂF—>M—>O,

where G and F are free R-modules. That is, M is generated by (the images of)

the generators of F', subject to the relations ¢(g) = 0 for each generator g € G.

We say M is finitely-presented it has a presentation with G =2 R"™ and F & R™ for

some n,m € N. In this case ¢ is given by an m x n matrix of ring elements (r;;),

and ¢(g1,...,9n) = (ri;) - (g5) (matrix-vector multiplication).

(a) Assume M is finitely-presented as above. Let p € Spec(R). Tensor with k(p)
to get the right exact sequence

Gp) 22 F(p) = M(p) - 0.

1



MATH 819 - HW3 (MODULES, FINITENESS CONDITIONS, LOCAL CONDITIONS) 2

Suppose that the matrix ¢(p), of elements of k(p), has rank r as a matrix.
What is the dimension of M(p) as a k(p)-vector space?

(b) Prove that the set Fitt>,(M) := {p € Spec R : dimy,,) M(p) > r} is closed in
the Zariski topology. (Hint: consider the ideal of R generated by determinants
of minors of ¢.) Conclude there exists a nonempty open set U C Spec R such
that M|y has constant rank (i.e. dimy,,) M (p) is the same for all p € U).

(c) Let R = k[z,y, z] and let M be the cokernel of the map ¢ : R® — R? given

by the matrix [‘z z 2] Describe the subsets of A% on which M has each

possible rank.

In (b), in fact more is true: the ideal of minors from part (c), the Fitting ideal,
does not depend on the choice of presentation. Therefore, it gives not just a closed
subset but a natural scheme structure on it. See e.g. Fisenbud, Commutative
Algebra with a View Toward Algebraic Geometry, Corollary—Definition 20.4.

Solutions. (a) Note that tensor product is right-exact. This means F(p) & k(p)™ —
M (p) is surjective, with kernel equal to the image of ¢(p). If ¢(p) is given by a rank-r
matrix, then its image is r-dimensional, so the cokernel is has vector space dimension m—r.

(b) Let I, C R be the ideal generated by the k x k minors of ¢. Then:
peV(y) e Cps =0 modp

and the last version is equivalent to “the k x k& minors of ¢ are 0 mod p”, i.e. ¢(p) is given
by a matrix of rank < k — 1. By part (a), this is equivalent to M (p) being a vector space
of dimension > m — k 4 1. Solving, we find

Fittsy = V(Ln_ri1)-

This is a Zariski-closed subset since we have described it in terms of an ideal.

(¢) The matrix has rank 0 (and hence M has rank 2) at the origin x =y = z = 0. The
matrix has rank 1 (and so M does too) if (z,y,2) # (0,0,0) but 22 = yz,y> = xz and
22 = xy. This is the union of three lines through the origin (minus the origin). In fact it
is the affine cone over the three points [¢ : (71 : 1] € P? where ( is a cube root of unity.
Outside of these three lines, the matrix has rank 2 and M has rank 0. In particular M is

only supported on those three lines. O

(6) Let .# be a quasicoherent sheaf. Show that the condition “.#(U) is a finitely-
generated Ox (U)-module” satisfies the requirements of the Affine Communication
Lemma. If .% has this property and X is noetherian, .# is called a coherent sheaf.
(Adapt the proof for “locally noetherian”.)

Solution. Suppose X = Spec R and .% = M for some R-module M.

Step 1: Suppose M is finitely-generated and f € R. We show that My is finitely-
generated as an Ry-module.
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Proof: Let my, ..., my generate M over R. Then ™1, ..., =k generates My over
R;. (Diagrammatically: we have a surjection RF — M. Localizing gives R’} — My,
which preserves surjectivity since localization is exact.)

Step 2: Suppose (f1,..., fn) = (1) and My, is finitely-generated over Ry, for each

1. We show that M is finitely-generated over R.
Proof: For each i, My, is generated by a finite set of elements {;r,i—z} over Ry,.

But then {™} generates My, over Ry, also.

Now combine all m;;’s into one big finite set {m1,...,my} C R and let ¢ :
RN — M be the corresponding map. Then coker(¢)s, = coker(¢y,) = 0 for each
i since ¢y, is manifestly surjective and localization preserves cokernels. Since the
sets D(f;) cover Spec R, it follows coker(¢) = 0, that is, ¢ is surjective and M is

finitely-generated over R. U

Let 7 : X — Y be a morphism of schemes. Show that the condition “r~!(U)
is quasicompact” of open subsets U C Y satisfies the hypotheses of the Affine
Communication Lemma. We then call 7 a quasicompact morphism.

Proceed as follows. Assume Y = Spec A is affine and (f1,..., fn) = (1) in A.
(i) If 7~ 1(Y) = X is quasicompact, show that 7=1(D(f;)) is quasicompact. (Pull
fi to a global section on X and use Problem 4.)
(i) If 7= Y(D(f;)) is quasicompact for all i, show that X is quasicompact.

Solution. For step 1, let g; = 77 (f;) € T'(X,0x). From the definition of
morphism of schemes, values of regular functions pull back, i.e. if 7(p) = g we have
a map of residue fields 77 : k(q) — k(p) taking f(q) to g(p). So we have

7 D(fi) ={p € X : fi(n(p)) # 0} = {p € X : gi(p) # 0} = X,
in the notation of Problem 4. This is quasicompact by 4(b).
For step 2: the preimage of an open cover is an open cover, so the sets X, cover
X. Since X is covered by finitely-many quasicompact sets, X is quasicompact. [J

Let 7 : X — Y be a morphism of schemes. Show that the condition “r~1(U) is
affine” satisfies the conditions of the Affine Communication Lemma. We the call 7
an affine morphism, a.k.a. a family of affine varieties.

(Adapt the proof that quasicoherence is a local property. For the second condi-
tion, you should be showing the following: let Y = Spec R and let (fi,..., fn) =
(1) € R. Let g; = n7(f;) € I'(X,0x). By assumption, each open subscheme
Xy, = {z € X : g;(x) # 0} is affine. Show that for each f € R, letting g = 77 (f),
the natural map I'(X, Ox ), — I'(X,, Ox) is an isomorphism.)

Solution sketch. TI'll just explain why this is the correct reduction. (The actual
details of showing that the map I'(X,Ox), — I'(X,, Ox) is an isomorphism are
essentially identical to the proof from class.)
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First note that Step 1 is easy: if Y = Spec R is affine and 771 (Y) = X = Spec 4
is affine, and f € R, then 7~1(D(f)) = D(g) where f — g via the ring map R — A.
This is affine since it is just Spec A,.

For Step 2, we are assuming each X, is affine. We want to show that X is affine,
so in fact we want to show X = SpecI'(X, Ox). Recall that, for any affine scheme
Spec A, morphisms X — Spec A are equivalent to ring maps A — I'(X,Ox). So
the identity ring map of A := I'(X, Ox) corresponds to a morphism X — Spec A.

Restricting Spec A to each Spec Ay, in turn, we obtain the ring maps on global
sections, which (by the work shown in the problem) are

Agi — F(XS]N Ox).

Since X, is assumed to be affine, the fact that these are ring isomorphisms implies
that the corresponding scheme morphisms X, — Spec A4, are isomorphisms of
schemes.

Finally, we use the general fact that “being an isomorphism is local on the
target”: if 7 : X — Y is any morphism of schemes, and Y = (JU;, then 7 is an
isomorphism if and only if 7 =!(U;) — Uj is an isomorphism for all 4. (This is obvious
for maps of sets; almost obvious for continuous maps of topological spaces, and then
once we know 7 is a homeomorphism of spaces, it’s immediate that we have stalk
isomorphisms at every point, hence an isomorphism of structure sheaves.) O



