MATH 819 - HW4 (FIBER PRODUCTS, PROJ)

Due date: In class Thursday, March 16th
Reading: Vakil: We previously covered 8.3 and 9.1. Fiber products: 10.1-10.5. Proj: 4.5, 7.4, 16.1. (Please note that I am following the December 2022 version)
(1) Let P be a property of morphisms. We say \mathbf{P} is preserved by pullback if the following is true: let $\pi: X \rightarrow S$ be a morphism with P and let $\alpha: S^{\prime} \rightarrow S$ be any morphism. Then $\pi^{\prime}: S^{\prime} \times_{S} X \rightarrow S^{\prime}$ has P.

Show:
(a) "Locally of finite type" is preserved by pullback. (Hint: this is a local property on both S^{\prime} and $S^{\prime} \times_{S} X$, so reduce to S^{\prime}, S, X and therefore $S^{\prime} \times_{S} X$ all affine.)
(b) "Quasicompact morphism" is preserved by pullback. (Hint: this is a local property on S^{\prime}, so reduce to S^{\prime}, S affine. Then show $S^{\prime} \times{ }_{S} X$ is covered by finitely-many affines.)
(c) "Affine morphism" is preserved by pullback. (Hint: this is local on S^{\prime}...)

See Vakil 10.4.D for a longer list.
Solutions. (a) This is local on both the domain and codomain of $\pi^{\prime}: S^{\prime} \times{ }_{S} X \rightarrow$ S^{\prime}. So, let $p^{\prime} \in S^{\prime} \times_{S} X^{\prime}$, let $s^{\prime}=\pi^{\prime}\left(p^{\prime}\right) \in S^{\prime}$. It suffices to give an affine neighborhood $U \subset S^{\prime}$ of s^{\prime}, and an affine neighborhood $V \subset \pi^{\prime-1}(U)$ of p^{\prime}, where the map is given by a finitely-generated algebra map.

Let x be the image of p^{\prime} in X and let $s=\alpha\left(s^{\prime}\right)=\pi(x)$. First, replace S by any affine neighborhood of s, shrinking X (around x) and S^{\prime} (around s^{\prime}) accordingly. Then replace X by an affine neighborhood of x and S^{\prime} by an affine neighborhood of s^{\prime} (this new S^{\prime} is our " U "). This is what we've done:

We proved in class that this new $S^{\prime} \times_{S} X$ is an open subset of the old $S^{\prime} \times_{S} X$, and it contains p^{\prime}. Also, now S^{\prime}, S, X are all affine, so $S^{\prime} \times{ }_{S} X$ is affine as well.

We claim that this is our desired neighborhood " V ". On the ring map side, the claim is that if $R \rightarrow A$ is a finitely-generated R algebra and $R \rightarrow R^{\prime}$ is arbitrary, then $R^{\prime} \rightarrow R^{\prime} \otimes_{R} A$ is finitely-generated as an R^{\prime}-algebra. This is true because $A \cong \frac{R\left[x_{1}, \ldots, x_{n}\right]}{I}$ for some n and I, and then $R^{\prime} \otimes_{R} A \cong \frac{R^{\prime}\left[x_{1}, \ldots, x_{n}\right]}{I}$, with the same (finite) generators and relations.
(b) Similar. After reducing we may assume S, S^{\prime} affine (the details are slightly simpler than in (a) since it doesn't involve X). It's enough to show $S^{\prime} \times{ }_{S} X$ is quasicompact, since "quasicompact morphism" is an affine-local property. Since π is quasicompact and S is now affine, X is quasicompact. Then X is covered by finitely-many affines, so $S^{\prime} \times S X$ is covered by finitely-many affines, hence is quasicompact.
(c) Even simpler. After reducing we may assume S, S^{\prime} are affine (again X is not involved). Again it's enough to show $S^{\prime} \times{ }_{S} X$ is affine (since "affine morphism" is an affine-local property). Since π is affine, we get X is affine, and then clearly $S^{\prime} \times{ }_{S} X$ is affine.
(2) A morphism $\pi: X \rightarrow S$ is finite if it is affine and, for each affine open $U=$ Spec $R \subset S, \mathcal{O}_{X}\left(\pi^{-1}(U)\right)$ is a finitely-generated R-module. This is an affine-local condition on S (same argument as HW3\#7) and is preserved by pullback (in the sense of Problem 2).
(a) Show that the open embedding Spec $k\left[t, t^{-1}\right] \hookrightarrow \operatorname{Spec} k[t]$ is not finite. This shows finiteness is not affine-local on the source (since the identity map Spec $k[t] \rightarrow$ Spec $k[t]$ is obviously finite.) Show that the map of problem 1(b) is finite.
(b) Let $\pi: X \rightarrow S$ be a finite morphism. Show that the fibers of π are finite sets. (Pull back to a fiber $S^{\prime}=\operatorname{Spec} k(p)$. Then look up and apply this theorem of commutative algebra: an artinian ring has finitely-many prime ideals.)
Solutions. (a) The ring map is $k[t] \rightarrow k\left[t, t^{-1}\right]$. This isn't finitely generated as a $k[t]$-module because it includes t^{-k} for arbitrarily large k. The map in problem 1 (b) was $k\left[t^{2}\right] \rightarrow k[t]$. This is finite because, as a $k\left[t^{2}\right]$-module, $k[t]$ is generated by 1 and t.
(b) Assume $\pi: X \rightarrow S$ is finite. Let $s \in S$ and by abuse of notation, let s also denote the one-point scheme Spec $k(s)$, which has an inclusion morphism $s \rightarrow S$. Since finiteness is preserved by base change, $s \times_{S} X \rightarrow s$ is finite. Since finite morphisms are affine, $s \times_{S} X$ is affine. That is, the fiber of our morphism is affine and given by a $k(s)$-algebra A that is finite-dimensional as a $k(s)$-vector space. In particular, it's obvious that A satisfies the descending chain condition on ideals, hence is an artinian ring. Hence it has only finitely-many prime ideals.
(3) (Based on NTAG Mar 2) Let $M_{n}=\mathbb{A}^{n^{2}}$ be the affine space of $n \times n$ matrices and let $C_{n}=\{(A, B): A B=B A\} \subseteq M_{n} \times M_{n}$ be the subscheme of commuting matrices. Note that the equations $A B=B A$ define C_{n} as a scheme, and as of 2023 it is not known whether this gives a radical ideal.

Let X be any scheme. Explain why a map $X \rightarrow C_{n}\left(\right.$ an X-valued point of $\left.C_{n}\right)$ is the same as a pair of commuting matrices with entries in $\Gamma\left(X, \mathcal{O}_{X}\right)$. (For example, if $X=\operatorname{Spec} R$, this means a pair of commuting matrices with entries in R.)

Solutions. Since C_{n} is affine, a map $X \rightarrow C_{n}$ is the same as a ring map of global sections $R \rightarrow \Gamma\left(X, \mathcal{O}_{X}\right)$, where R is the ring of global sections of C_{n}. This is

$$
R=\frac{k\left[a_{i j}, b_{i j}: 1 \leq i, j \leq n\right]}{(A B=B A)} .
$$

Here the equation $A B=B A$ means "the ideal generated by

$$
\text { (*) } \quad \sum_{k} a_{i k} b_{k j}-\sum_{k} b_{i k} a_{k j}
$$

for all i, j." A ring map $R \rightarrow \Gamma\left(X, \mathcal{O}_{X}\right)$ is given by a choice of where to send the generators,

$$
a_{i j} \mapsto f_{i j}, \quad b_{i j} \mapsto g_{i j}, \text { for some } f_{i j}, g_{i j} \in \Gamma\left(X, \mathcal{O}_{X}\right)
$$

such that the equations $(*)$ are satisfied. These equations precisely mean that the matrices $F=\left(f_{i j}\right)$ and $G=\left(g_{i j}\right)$ commute.
(4) (Proj) Let S be an \mathbb{N}-graded noetherian ring. Let M be a finitely-generated graded S-module.
(a) Let $f \in S$ be homogeneous of positive degree.

Show: $M_{f}=0$ if and only if $f^{d} M=0$ for $d \gg 0$.
(b) TFAE: (i) $M_{f}=0$ for all homogeneous $f \in S$ of positive degree, (ii) $\left(S_{+}\right)^{d} M=$ 0 for all natural numbers $d \gg 0$, (iii) $M_{d}=0$ for $d \gg 0$.
(c) Let $I, J \subseteq S$ be homogeneous ideals and let $U \subset \operatorname{Spec} S$ be the complement of the irrelevant locus. TFAE:
(i) $\operatorname{Proj} S / I=\operatorname{Proj} S / J$, (ii) $(\operatorname{Spec} S / I) \cap U=(\operatorname{Spec} S / J) \cap U$, (iii) $I_{d}=J_{d}$ for $d \gg 0$.
(Hint: Compare I to $I \cap J$ and use (b). Show (i) \Leftrightarrow (ii) directly by examining distinguished open sets.)
This shows: two homogeneous ideals I, J define the same projective scheme if and only if their affine schemes agree away from the irrelevant locus.
(d) Give a map $M_{0} \rightarrow \Gamma(\widetilde{M}, \operatorname{Proj} S)$. Show that this map need not be injective nor surjective.

Solutions.

(a) (\Rightarrow) Let M be generated by m_{1}, \ldots, m_{n}. Since $M_{f}=0$, for each i there exists d_{i} such that $f^{d_{i}} m_{i}=0$. Let d be the max of the d_{i}. Then $f^{d} m_{i}=0$ for all i, so $f^{d} M=0$.
(\Leftarrow) Since $f^{d} M=0, f^{d} m=0$ for all $m \in M$. Therefore $m / 1=0$ for all $m \in M$, so $M_{f}=0$.
(b) (i) \Rightarrow (ii): Let S_{+}be generated by f_{1}, \ldots, f_{k}. By part (a) and finiteness, we can choose N large enough that $f_{i}^{N} M=0$ for all i. Then $\left(S_{+}\right)^{k N}$ is generated by all products involving $k N$ of the f_{i} 's. By the pigeonhole principle, any such product has a factor f_{i}^{N}. Therefore $\left(S_{+}\right)^{k N} M=0$.
(ii) \Rightarrow (iii) : Suppose $\left(S_{+}\right)^{N} M=0$. Let M be generated by m_{1}, \ldots, m_{n}. Let S_{+} be generated by f_{1}, \ldots, f_{k}. Let $D=\max \operatorname{deg}\left(m_{j}\right)$ and let $E=\max \operatorname{deg}\left(f_{j}\right)$.

Since M is generated by elements of degree $\leq D$ and S_{+}is generated by elements of degree $\leq E$, every element of M of degree $\geq D+N E$ can be expressed as a sum of elements of the form $f \cdot m_{j}$, where f is a product of at least N of the f_{i} 's. Since $\left(S_{+}\right)^{N} M=0$, it follows $f \cdot m_{j}=0$. Thus $M_{d}=0$ for all $d \geq D+N E$.
(iii) \Rightarrow (i) : Suppose $M_{d}=0$ for all $d \gg 0$. Let f be homogeneous of positive degree. Since M is finitely-generated, $f^{e} M \subseteq \bigoplus_{d^{\prime} \geq d} M_{d^{\prime}}=0$ for $e \gg 0$. Therefore, by part (a), $M_{f}=0$.
(c) We need to assume S is generated in degree 1. I don't think the statement is true otherwise. Sorry!

For (i) \Leftrightarrow (ii), the key fact is the following. Let S be a graded ring containing a unit u that is homogeneous of degree 1 . Let I, J be homogeneous ideals of S. Then $I=J$ if and only if $I_{0}=J_{0}$. (A similar fact applies to modules.) Proof: if $I=J$, clearly $I_{0}=J_{0}$. Conversely, suppose $I_{0}=J_{0}$. It suffices to show that I and J contain the same homogeneous elements, so let f be homogeneous. Then since u is a unit,

$$
f \in I \Leftrightarrow f u^{-\operatorname{deg}(f)} \in I_{0} \Leftrightarrow f u^{-\operatorname{deg}(f)} \in J_{0} \Leftrightarrow f \in J
$$

Likewise, $S / I=S / J$ if and only if $(S / I)_{0}=(S / J)_{0}$.
In particular, comparing Proj R / I and $\operatorname{Proj} R / J$ are covered by the sets $D_{+}(f)$ where f is homogeneous of degree 1 . These are Spec of the rings $\left((R / I)_{f}\right)_{0}$ and $\left((R / J)_{f}\right)_{0}$. Similarly, Spec $R / I \cap U$ and Spec $R / J \cap U$ are covered by the sets $D(f)$, via the rings R / I and R / J. Applying the fact above, we see that the charts of Proj agree if and only if the charts of Spec agree.

For (iii), we apply part (b), equivalence $(i i i) \Longleftrightarrow(i i)$, to the modules $I /(I \cap J)$ and $J /(I \cap J)$.
(d) Given $m \in M_{0}$, we get a global section of \widetilde{M} from $\frac{m}{1} \in\left(M_{f}\right)_{0}$ over all homogeneous f 's. This clearly glues on overlaps.

Not injective: Let $M=S / S_{+}=S_{0}$. Then $M_{d}=0$ for all $d>0$, so $\widetilde{M}=0$ by part (b). But $M_{0}=S_{0} \neq 0$.

Not surjective: Also by part (b), suppose $M \subset N$ and $M_{d}=N_{d}$ for all $d \gg 0$. Then $\widetilde{M}=\widetilde{N}$. So, for example, let $M=S_{+}$. Then $\widetilde{M}=\widetilde{S}=\mathcal{O}_{\operatorname{Proj} S}$ because $M_{d}=S_{d}$ for all $d \geq 1$. So $\Gamma(\widetilde{M}, \operatorname{Proj} S) \neq 0$, but of course $M_{0}=\left(S_{+}\right)_{0}=0$.
(5) Consider the graded ring map $\phi^{\#}: k[X, Y, Z] \rightarrow k[S, T]$ defined by $X \mapsto S^{3}-S T^{2}$, $Y \mapsto S^{2} T, Z \mapsto T^{3}$.
(a) Check $\sqrt{\phi^{\#}((X, Y, Z))}=(S, T)$. Deduce $\phi^{\#}$ induces a morphism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ sending $[S: T]$ to $\left[S^{3}-S T^{2}: S^{2} T: T^{3}\right]$.
(b) As subsets of \mathbb{P}^{1}, what are $\phi^{-1}(\{X=0\}), \phi^{-1}(\{Y=0\}), \phi^{-1}(\{Z=0\})$? What about as subschemes?
(c) By examining ϕ on the standard affine charts of \mathbb{P}^{2}, show that ϕ is not a closed embedding. (It is enough to check one chart if you think about part (a) carefully.)
Solutions. (a) Since $Z \mapsto T^{3}$, the radical contains T. Since $X \mapsto S^{3}-S T^{2}$ and the radical contains T, the radical then contains $S T^{2}$, hence S^{3}, hence S.
(b) The equation $X=0$ corresponds to $S^{3}-S T^{2}=0$, or $S(S-T)(S+T)=$ 0 . This is three reduced points on \mathbb{P}^{1}. Indeed, on the chart $T=1$, it's just Spec $\frac{k[s]}{s(s-1)(s+1)}$.

The equation $Y=0$ corresponds to $S^{2} T=0$. This is one reduced point $([1: 0])$ and one double point $([0: 1])$ on \mathbb{P}^{1}. On the two standard charts it's $\frac{k[s]}{s^{2}}$ and $\frac{k[t]}{t}$.

The equation $Z=0$ corresponds to $T^{3}=0$. This is one nonreduced point ($[1: 0]$) of multiplicity 3 on \mathbb{P}^{1}. On the $S=1$ chart it's $\frac{k[t]}{t^{3}}$.
(c) The simplest way to show this is that the morphism isn't one-to-one. On the chart $Z=1$, the morphism is $\mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ via $s \mapsto\left(s^{3}-s, s^{2}\right)$, which sends $\pm 1 \mapsto(0,1)$.

On the ring map side, this chart is $k[x, y] \rightarrow k[s]$ by $x \mapsto s^{3}-s$ and $y \mapsto s^{2}$. This isn't a surjective ring map because if we mod out by $(x, y-1)$ (corresponding to the point $(0,1)$ above), we get $\frac{k[x, y]}{(x, y-1)} \rightarrow \frac{k[s]}{\left(s^{3}-s, s^{2}-1\right)}=\frac{k[s]}{\left(s^{2}-1\right)}$, which simplifies to $k \rightarrow k^{2}$, which is no longer surjective. (If $R \rightarrow S$ is surjective, so is $R / I \rightarrow S / I S$.)

Zhe's proof (thanks Zhe!): Under the ring map $k[x, y] \rightarrow k[s], x^{2}$ maps to the same thing as $y(y-1)^{2}$, namely $s^{2}\left(s^{2}-1\right)^{2}$. Therefore, given any $f(x, y)$, we can replace powers x^{k} with $k \geq 2$ by expressions in y without changing its image, and so reduce f to the form

$$
f=x g_{1}(y)+g_{2}(y)
$$

Now when we apply the ring map, the first term gives only odd powers of s and the second term gives only even powers of s. In particular, if $g_{1}(y)=a_{0}+a_{1} y+$ $\cdots+a_{n} y^{n}$, then

$$
\begin{aligned}
\phi\left(x g_{1}(y)\right) & =\left(s^{3}-s\right)\left(a_{0}+a_{1} s^{2}+\cdots+a_{n} s^{2 n}\right) \\
& =-a_{0} s+\left(a_{0}-a_{1}\right) s^{3}+\cdots+\left(a_{n-1}-a_{n}\right) s^{2 n+1}+a_{n} s^{2 n+3}
\end{aligned}
$$

If this equals s, then solving the equations gives $a_{0}=-1$, but also $a_{0}=a_{1}=a_{2}=$ $\cdots=a_{n}=0$, a contradiction.

