MATH 819 - HW4 (FIBER PRODUCTS, PROJ)

Due date: In class Thursday, March 16th

Reading: Vakil: We previously covered 8.3 and 9.1. Fiber products: 10.1-10.5. Proj: 4.5, 7.4, 16.1. (Please note that I am following the December 2022 version)

- (1) Hand in only part (c). Parts (a)-(b) are essentially shown in Vakil Examples 10.2.3 and 10.3.4, so look there if you get stuck on them.
 - (a) Show that Spec(Q(√2) ⊗_Q Q(√2)) is the disjoint union of two points. This shows that the product of integral schemes over a field need not be integral. However, this does not occur over algebraically closed fields (see Vakil 10.4.H).
 - (b) Let $T = \operatorname{Spec} \mathbb{Q}[t]$, let $S = \operatorname{Spec} \mathbb{Q}[s]$, and let $\alpha : T \to S$ be the morphism corresponding to the ring map $\mathbb{Q}[s] \to \mathbb{Q}[t]$ given by $s \mapsto t^2$. Give an example of a fiber of α consisting of (i) two reduced points, (ii) one point $p \in X$, for which the corresponding map of residue fields $k(q) \hookrightarrow k(p)$ is a degree two field extension, (iii) one nonreduced point.
 - (c) Let $X = \operatorname{Spec} \frac{\mathbb{Q}[s][x,y]}{y^2 x^3 s}$, considered as a scheme over $S = \operatorname{Spec} \mathbb{Q}[s]$, a family of (mostly) elliptic curves. Let $\pi : X \to S$ be the corresponding structure morphism. With $\alpha : T \to S$ from part (b), let $X_T := T \times_S X$ and let $\pi_T : X_T \to T$ be the natural projection (called the **pullback of** π **along** α). Describe the coordinate ring of X_T as a k[t]-algebra. Observe that the fibers of X_T at t = 1and t = -1 are identical.
- (2) Let P be a property of morphisms. We say **P** is preserved by pullback if the following is true: let $\pi : X \to S$ be a morphism with P and let $\alpha : S' \to S$ be any morphism. Then $\pi' : S' \times_S X \to S'$ has P. Show:
 - (a) "Locally of finite type" is preserved by pullback. (Hint: this is a local property on both S' and $S' \times_S X$, so reduce to S', S, X and therefore $S' \times_S X$ all affine.)
 - (b) "Quasicompact morphism" is preserved by pullback. (Hint: this is a local property on S', so reduce to S', S affine. Then show $S' \times_S X$ is covered by finitely-many affines.)

(c) "Affine morphism" is preserved by pullback. (Hint: this is local on S'...) See Vakil 10.4.D for a longer list.

- (3) A morphism $\pi : X \to S$ is **finite** if it is affine and, for each affine open U =Spec $R \subset S$, $\mathcal{O}_X(\pi^{-1}(U))$ is a finitely-generated *R*-module. This is an affine-local condition on *S* (same argument as HW3#7) and is preserved by pullback (in the sense of Problem 2).
 - (a) Show that the open embedding $\operatorname{Spec} k[t, t^{-1}] \hookrightarrow \operatorname{Spec} k[t]$ is **not** finite. This shows finiteness is not affine-local on the source (since the identity map $\operatorname{Spec} k[t] \to \operatorname{Spec} k[t]$ is obviously finite.) Show that the map of problem 1(b) is finite.
 - (b) Let $\pi : X \to S$ be a finite morphism. Show that the fibers of π are finite sets. (Pull back to a fiber $S' = \operatorname{Spec} k(p)$. Then look up and apply this theorem of commutative algebra: an artinian ring has finitely-many prime ideals.)
- (4) (Based on NTAG Mar 2) Let $M_n = \mathbb{A}^{n^2}$ be the affine space of $n \times n$ matrices and let $C_n = \{(A, B) : AB = BA\} \subseteq M_n \times M_n$ be the subscheme of commuting matrices. Note that the equations AB = BA define C_n as a *scheme*, and as of 2023 it is not known whether this gives a radical ideal.

Let X be any scheme. Explain why a map $X \to C_n$ (an X-valued point of C_n) is the same as a pair of commuting matrices with entries in $\Gamma(X, \mathcal{O}_X)$. (For example, if $X = \operatorname{Spec} R$, this means a pair of commuting matrices with entries in R.)

- (5) (Proj) Let S be an \mathbb{N} -graded noetherian ring. Let M be a finitely-generated graded S-module.
 - (a) Let $f \in S$ be homogeneous of positive degree.

Show: $M_f = 0$ if and only if $f^d M = 0$ for $d \gg 0$.

- (b) TFAE: (i) $M_f = 0$ for all homogeneous $f \in S$ of positive degree, (ii) $(S_+)^d M = 0$ for all natural numbers $d \gg 0$, (iii) $M_d = 0$ for $d \gg 0$.
- (c) Let I, J ⊆ S be homogeneous ideals and let U ⊂ Spec S be the complement of the irrelevant locus. TFAE:
 (i) Proj S/I = Proj S/J, (ii) (Spec S/I) ∩ U = (Spec S/J) ∩ U, (iii) I_d = J_d for d ≫ 0.
 (Hint: Compare I to I ∩ I and use (b) Show (i) ⇔ (ii) ⇔ (iii) directly by examining

(Hint: Compare I to $I \cap J$ and use (b). Show (i) \Leftrightarrow (ii) directly by examining distinguished open sets.)

This shows: two homogeneous ideals I, J define the same projective scheme if and only if their affine schemes agree away from the irrelevant locus.

- (d) Give a map $M_0 \to \Gamma(M, \operatorname{Proj} S)$. Show that this map need not be injective nor surjective.
- (6) Consider the graded ring map $\phi^{\#}: k[X, Y, Z] \to k[S, T]$ defined by $X \mapsto S^3 ST^2$, $Y \mapsto S^2T, Z \mapsto T^3$.
 - (a) Check $\sqrt{\phi^{\#}((X,Y,Z))} = (S,T)$. Deduce $\phi^{\#}$ induces a morphism $\phi: \mathbb{P}^1 \to \mathbb{P}^2$ sending [S:T] to $[S^3 ST^2: S^2T: T^3]$.
 - (b) As subsets of \mathbb{P}^1 , what are $\phi^{-1}(\{X = 0\}), \phi^{-1}(\{Y = 0\}), \phi^{-1}(\{Z = 0\})$? What about as subschemes?

(c) By examining ϕ on the standard affine charts of \mathbb{P}^2 , show that ϕ is not a closed embedding. (It is enough to check one chart if you think about part (a) carefully.)