MATH 819 - HW4 (FIBER PRODUCTS, PROJ)

Due date: In class Thursday, March 16th
Reading: Vakil: We previously covered 8.3 and 9.1. Fiber products: 10.1-10.5. Proj: 4.5, 7.4, 16.1. (Please note that I am following the December 2022 version)
(1) Hand in only part (c). Parts (a)-(b) are essentially shown in Vakil Examples 10.2.3 and 10.3.4, so look there if you get stuck on them.
(a) Show that $\operatorname{Spec}\left(\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{2})\right)$ is the disjoint union of two points.

This shows that the product of integral schemes over a field need not be integral. However, this does not occur over algebraically closed fields (see Vakil 10.4.H).
(b) Let $T=\operatorname{Spec} \mathbb{Q}[t]$, let $S=\operatorname{Spec} \mathbb{Q}[s]$, and let $\alpha: T \rightarrow S$ be the morphism corresponding to the ring map $\mathbb{Q}[s] \rightarrow \mathbb{Q}[t]$ given by $s \mapsto t^{2}$.
Give an example of a fiber of α consisting of (i) two reduced points, (ii) one point $p \in X$, for which the corresponding map of residue fields $k(q) \hookrightarrow k(p)$ is a degree two field extension, (iii) one nonreduced point.
(c) Let $X=\operatorname{Spec} \frac{\mathbb{Q}[s][x, y]}{y^{2}-x^{3}-s}$, considered as a scheme over $S=\operatorname{Spec} \mathbb{Q}[s]$, a family of (mostly) elliptic curves. Let $\pi: X \rightarrow S$ be the corresponding structure morphism.
With $\alpha: T \rightarrow S$ from part (b), let $X_{T}:=T \times_{S} X$ and let $\pi_{T}: X_{T} \rightarrow T$ be the natural projection (called the pullback of π along α). Describe the coordinate ring of X_{T} as a $k[t]$-algebra. Observe that the fibers of X_{T} at $t=1$ and $t=-1$ are identical.
(2) Let P be a property of morphisms. We say \mathbf{P} is preserved by pullback if the following is true: let $\pi: X \rightarrow S$ be a morphism with P and let $\alpha: S^{\prime} \rightarrow S$ be any morphism. Then $\pi^{\prime}: S^{\prime} \times_{S} X \rightarrow S^{\prime}$ has P.

Show:
(a) "Locally of finite type" is preserved by pullback. (Hint: this is a local property on both $S^{\prime \prime}$ and $S^{\prime} \times_{S} X$, so reduce to S^{\prime}, S, X and therefore $S^{\prime} \times{ }_{S} X$ all affine.)
(b) "Quasicompact morphism" is preserved by pullback. (Hint: this is a local property on S^{\prime}, so reduce to S^{\prime}, S affine. Then show $S^{\prime} \times_{S} X$ is covered by finitely-many affines.)
(c) "Affine morphism" is preserved by pullback. (Hint: this is local on S^{\prime}...)

See Vakil 10.4.D for a longer list.
(3) A morphism $\pi: X \rightarrow S$ is finite if it is affine and, for each affine open $U=$ Spec $R \subset S, \mathcal{O}_{X}\left(\pi^{-1}(U)\right)$ is a finitely-generated R-module. This is an affine-local condition on S (same argument as HW3\#7) and is preserved by pullback (in the sense of Problem 2).
(a) Show that the open embedding Spec $k\left[t, t^{-1}\right] \hookrightarrow \operatorname{Spec} k[t]$ is not finite. This shows finiteness is not affine-local on the source (since the identity map Spec $k[t] \rightarrow$ Spec $k[t]$ is obviously finite.) Show that the map of problem 1(b) is finite.
(b) Let $\pi: X \rightarrow S$ be a finite morphism. Show that the fibers of π are finite sets. (Pull back to a fiber $S^{\prime}=\operatorname{Spec} k(p)$. Then look up and apply this theorem of commutative algebra: an artinian ring has finitely-many prime ideals.)
(4) (Based on NTAG Mar 2) Let $M_{n}=\mathbb{A}^{n^{2}}$ be the affine space of $n \times n$ matrices and let $C_{n}=\{(A, B): A B=B A\} \subseteq M_{n} \times M_{n}$ be the subscheme of commuting matrices. Note that the equations $A B=B A$ define C_{n} as a scheme, and as of 2023 it is not known whether this gives a radical ideal.

Let X be any scheme. Explain why a map $X \rightarrow C_{n}\left(\right.$ an X-valued point of $\left.C_{n}\right)$ is the same as a pair of commuting matrices with entries in $\Gamma\left(X, \mathcal{O}_{X}\right)$. (For example, if $X=\operatorname{Spec} R$, this means a pair of commuting matrices with entries in R.)
(5) (Proj) Let S be an \mathbb{N}-graded noetherian ring. Let M be a finitely-generated graded S-module.
(a) Let $f \in S$ be homogeneous of positive degree.

Show: $M_{f}=0$ if and only if $f^{d} M=0$ for $d \gg 0$.
(b) TFAE: (i) $M_{f}=0$ for all homogeneous $f \in S$ of positive degree, (ii) $\left(S_{+}\right)^{d} M=$ 0 for all natural numbers $d \gg 0$, (iii) $M_{d}=0$ for $d \gg 0$.
(c) Let $I, J \subseteq S$ be homogeneous ideals and let $U \subset \operatorname{Spec} S$ be the complement of the irrelevant locus. TFAE:
(i) $\operatorname{Proj} S / I=\operatorname{Proj} S / J$, (ii) $(\operatorname{Spec} S / I) \cap U=(\operatorname{Spec} S / J) \cap U$, (iii) $I_{d}=J_{d}$ for $d \gg 0$.
(Hint: Compare I to $I \cap J$ and use (b). Show (i) \Leftrightarrow (ii) directly by examining distinguished open sets.)
This shows: two homogeneous ideals I, J define the same projective scheme if and only if their affine schemes agree away from the irrelevant locus.
(d) Give a map $M_{0} \rightarrow \Gamma(\widetilde{M}, \operatorname{Proj} S)$. Show that this map need not be injective nor surjective.
(6) Consider the graded ring map $\phi^{\#}: k[X, Y, Z] \rightarrow k[S, T]$ defined by $X \mapsto S^{3}-S T^{2}$, $Y \mapsto S^{2} T, Z \mapsto T^{3}$.
(a) Check $\sqrt{\phi^{\#}((X, Y, Z))}=(S, T)$. Deduce $\phi^{\#}$ induces a morphism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ sending $[S: T]$ to $\left[S^{3}-S T^{2}: S^{2} T: T^{3}\right]$.
(b) As subsets of \mathbb{P}^{1}, what are $\phi^{-1}(\{X=0\}), \phi^{-1}(\{Y=0\}), \phi^{-1}(\{Z=0\})$? What about as subschemes?
(c) By examining ϕ on the standard affine charts of \mathbb{P}^{2}, show that ϕ is not a closed embedding. (It is enough to check one chart if you think about part (a) carefully.)

