MATH 819 - HW5 (SEPARATED AND PROPER; LOCALLY FREE SHEAVES)

Due date: In class Tuesday, April 4th
Reading: Vakil: Separated and proper (Chapter 11) - see also Hartshorne II.3. Vector bundles and locally free sheaves: Chapter 14.1-14.3 and 15. Global Spec and Global Proj: 18.1-18.2
(1) (Separatedness)
(a) If $\pi: X \rightarrow S$ is separated, $S=\operatorname{Spec}(R)$ is affine, and $U, V \in X$ are affine open sets, then $U \cap V$ is affine. (Examine $\Delta^{-1}\left(U \times_{S} V\right)$.)
Taking $X=S$ and $\pi=$ id, conclude: in an affine scheme, intersections of arbitrary affine open subschemes are affine. Then show \mathbb{A}^{2} with two origins (over any base scheme) is not affine.
(b) Show that separatedness is preserved by pullback, and properness is preserved by composition. (Use the definition, or assume X, S are locally noetherian and π is finite type and then use the valuative criterion).

Solutions. (a) We have $\Delta^{-1}\left(U \times_{S} V\right)=U \cap V$ as a set. Since S is affine, so is $U \times_{S} V$. Since π is separated, Δ is a closed embedding, in particular an affine morphism, so $\Delta^{-1}\left(U \times_{S} V\right)=U \cap V$ is again affine.

In the indicated special case, this shows that intersections of affines of $\operatorname{Spec} R$ are affine. (In fact, if $U=\operatorname{Spec} A$ and $V=\operatorname{Spec} B$, then unwinding the formula, and using that $\Delta: S \rightarrow S \times_{S} S$ is an now an isomorphism, gives $U \cap V \cong \operatorname{Spec}\left(A \otimes_{R} B\right)$. I don't think it would have been obvious otherwise that this would represent an open subscheme of Spec R.) Finally, if X is \mathbb{A}^{2} with two origins, then $X=U \cup V$ where $U, V \cong \mathbb{A}^{2}$ are affine open sets, but $U \cap V=\mathbb{A}^{2} \backslash\{(0,0)\}$, which is not affine. Therefore X is not affine.
(b) Proof (sketch) via valuative criterion: For "separated is preserved by pullback", suppose we're given

with π separated. Composing f and g with α^{\prime} gives two arrows $C \rightarrow X$. Since π is separated, $\alpha^{\prime} \circ f=\alpha^{\prime} \circ g$. But then by the universal property of fiber products,
there is a unique map $C \rightarrow S^{\prime} \times{ }_{S} X$ making the diagram commute. Since both f and g work there, $f=g$.

For "properness is preserved by composition": first note that "finite type" is preserved by composition because it is a local property on source and target, so (reducing to the affine case) the point is that if $A \rightarrow B \rightarrow C$ are rings, B is a finitely-generated A-algebra, and C is a finitely-generated B-algebra, then C is a finitely-generated A-algebra (by the elements $b_{i} c_{j}$ ranging over the generators of C over B (including 1) and those of B over A (including 1)). Next, suppose we're given

with α, β proper. Since β is proper, there's a unique map $C \rightarrow Y$ making the diagram commute. Then since α is proper, there's a unique map $C \rightarrow X$ making the diagram commute.

For the proofs directly from the definition: for separatedness, suppose we're given

with π separated, i.e. $\Delta_{X / S}: X \rightarrow X \times_{S} X$ is a closed embedding. Let $X^{\prime}:=$ $S^{\prime} \times{ }_{S} X$. Ravi suggests proving that

is Cartesian. Then $\Delta_{X^{\prime} / S^{\prime}}$ is the pullback of a closed embedding, hence again a closed embedding. For "composition of universally closed is universally closed", the proof is that pullback commutes with composition.
(2) Let R be a noetherian ring and M a finitely-generated R-module.
(a) Let S be a multiplicative set and suppose $S^{-1} M=0$. Show that there exists $f \in S$ such that $M_{f}=0$.
(b) Let $p \in \operatorname{Spec}(R)$ and suppose M_{p} is a free R_{p}-module of rank n. Show that there exists $f \in R-p$ such that M_{f} is a free R_{f}-module of rank n.
(Hint: First find a map $R^{n} \rightarrow M$ such that $R_{p}^{n} \rightarrow M_{p}$ is an isomorphism. Then use (a).)
(c) Let X be a noetherian scheme and \mathscr{F} a coherent sheaf on X. Show: \mathscr{F} is locally free of $\operatorname{rank} n \Leftrightarrow$ for all $p \in X, \mathscr{F}_{p}$ is a free $\mathcal{O}_{X, p}$-module of rank n.

Solution. (a) Let M have generators m_{1}, \ldots, m_{k}. Since $S^{-1} M=0$, there exist f_{1}, \ldots, f_{k} such that $f_{i} m_{i}=0$ for each i. Let $f=\prod_{i} f_{i}$. Then $f m_{i}=0$ for all i, so $M_{f}=0$.
(b) Since M_{p} is free over R_{p} of rank n, M_{p} has a free basis $\left\{\frac{m_{1}}{s_{1}}, \ldots, \frac{m_{n}}{s_{n}}\right\}$ for some $m_{i} \in M$ and $s_{i} \in R \backslash P$. Since the s_{i} are units in $R_{p},\left\{\frac{m_{1}}{1}, \ldots, \frac{m_{n}}{1}\right\}$ is again a basis. Let $\psi: R^{n} \rightarrow M$ be defined by $\psi\left(r_{1}, \ldots, r_{n}\right)=\sum r_{i} m_{i}$. We have an exact sequence

$$
0 \rightarrow \operatorname{ker} \psi \rightarrow R^{n} \rightarrow M \rightarrow \operatorname{coker} \psi \rightarrow 0
$$

Localizing to R_{p}, the middle map becomes an isomorphism. Since localization is exact, this shows $(\operatorname{ker} \psi)_{p}=0=(\operatorname{coker} \psi)_{p}$. By part (a), there exist $f, g \in R \backslash p$ such that $(\operatorname{ker} \psi)_{f}=0=(\operatorname{coker} \psi)_{g}$. Then over $R_{f g}$, both the cokernel and kernel vanish, so $\psi_{f g}$ is an isomorphism.
$(\mathrm{c})(\Rightarrow)$: Let $p \in X$. Since \mathscr{F}_{p} is locally free of rank n, there is some affine neighborhood U of p such that $\left.\mathscr{F}\right|_{U} \cong \mathcal{O}_{U}^{\oplus n}$. Then $\mathscr{F}_{p} \cong \mathcal{O}_{X, p}^{\oplus}$ by localizing.
(\Leftarrow) : By part (b), for each p we can find U_{p} an open neighborhood of p on which $\left.\mathscr{F}\right|_{U_{p}}$ is free of rank n. Therefore \mathscr{F} is locally free of rank n.
(3) Let \mathscr{E}, \mathscr{F} be locally free sheaves of ranks e and f on a noetherian scheme X.
(a) Show that $\mathscr{E} \otimes \mathscr{F}, \mathscr{E} \oplus \mathscr{F}$ and $\mathscr{H} \operatorname{om}(\mathscr{E}, \mathscr{F})$ are all locally free, of ranks $e f, e+f$ and ef again. (Take for granted that $\mathscr{H} \operatorname{om}(\mathscr{E}, \mathscr{F})$ is quasicoherent and given by $\operatorname{Hom}_{R}(E, F)$ on affine charts, when \mathscr{F} is quasicoherent and \mathscr{E} is coherent; see Vakil 1.6.G and 14.3.A.)
(b) Show that $\operatorname{Sym}^{d}(\mathscr{E})$ is locally free of $\operatorname{rank}\binom{e+d-1}{d}$. (If m_{1}, \ldots, m_{e} is a basis for \mathscr{E} locally, the monomials in m_{1}, \ldots, m_{e} give a basis for $\left.\operatorname{Sym}^{d}(\mathscr{E}).\right)$
(c) Show that there is a surjective map of sheaves $\mathscr{E} \otimes \mathscr{H}$ om $(\mathscr{E}, \mathscr{F}) \rightarrow \mathscr{F}$ given by "evaluation" $v \otimes \varphi \mapsto \varphi(v)$. (Show it exists via universal properties of \otimes and gluing, then check it is surjective on sufficiently small affine charts.)
(d) Specialize part (b) to $\mathscr{F}=\mathcal{O}_{X}$; the sheaf $\mathscr{H} \operatorname{Om}\left(\mathscr{E}, \mathcal{O}_{X}\right)$ is called the dual of \mathscr{E} and denoted \mathscr{E}^{*} or \mathscr{E}^{\vee}.
Show: If \mathscr{E} has rank 1 , the map $\mathscr{E} \otimes \mathscr{E}^{*} \rightarrow \mathcal{O}_{X}$ is actually an isomorphism.

Solutions. For $(\mathrm{a})(\mathrm{b})(\mathrm{d})$ and the surjectivity in (c), the thing we're asked to prove is a local property, so it suffices to check it on sufficiently small affine open sets. That is, you can immediately (if you wish) reduce to $X=\operatorname{Spec} R$ affine and
\mathscr{E}, \mathscr{F} free (rather than just locally free), that is, $\mathscr{E}=\widetilde{E}$ where $E=R^{e}$ and $\mathscr{F}=\widetilde{F}$ where $F=R^{f}$.

For (b), the proof is called "stars and bars".
For (c), Note that the given formula makes sense on every affine open set. Moreover, for a distinguished inclusion, $\operatorname{Spec} R_{f} \hookrightarrow \operatorname{Spec} R$, the diagram

commutes. This means the formula defines a map of sheaves on the base, which therefore extends to a map of sheaves. We can check surjectivity locally: on a trivializing open set U as above, let $y \in F$. Then let $\phi: E \rightarrow F$ be defined by sending some basis element $x \in E$ to y. Then $\psi(y \otimes \phi)=x$, so ψ is surjective.

For (d), once we know the map exists, we can check it's an isomorphism locally. So locally $\mathscr{E} \cong R$ and $\mathscr{E}^{*} \cong R$, generated by the identity function id : $R \rightarrow R$. (For any other $\phi \in \operatorname{Hom}(R, R)$, if $\phi(1)=s$ then ϕ is just multiplication by s, and so $\phi=s \cdot \mathrm{id}$.) Every element $r \otimes \phi$ is then just a multiple of $1 \otimes \mathrm{id}$, namely $r \otimes \phi=r \otimes(s \cdot \mathrm{id})=r s(1 \otimes \mathrm{id})$.

The map is now $R \otimes \operatorname{Hom}(R, R) \rightarrow R$ given by $r \otimes \phi \mapsto \phi(r)$. This sends $1 \otimes \mathrm{id} \mapsto 1$ and $r(1 \otimes \mathrm{id}) \mapsto r$, so it is an isomorphism. (For an explicit inverse map, send $r \mapsto r(1 \otimes \mathrm{id})$.)
(4) Let $R=k\left[S^{4}, S^{3} T, S T^{3}, T^{4}\right] \subset k[S, T]$ (i.e. the 4-th Veronese subring omitting $S^{2} T^{2}$). We reset the grading on S and count its four generators now as degree 1 . You may take for granted that $S \cong \frac{k[X, Y, Z, W]}{\left(X W-Y Z, Y^{3}-Z X^{2}, Z^{3}-Y W^{2}\right)}$.
(a) Verify that $\sqrt{(X, W)}=R_{+}$, so $D_{+}(X) \cup D_{+}(W)=\operatorname{Proj} R$.
(b) Show that $D_{+}(X)$ and $D_{+}(W)$ are each isomorphic to \mathbb{A}^{1} and that the gluing map simplifies to the usual \mathbb{P}^{1} gluing map, so $\operatorname{Proj} R \cong \mathbb{P}^{1}$.
(c) Examine $\widetilde{R(1)}$ on each of the charts $D_{+}(X)$ and $D_{+}(W)$: write down the generator and transition map. Recognize $\widetilde{R(1)}$ as what we would have called $\mathcal{O}(4)$ on $\operatorname{Proj} k[S, T]$. In particular, its global sections are

$$
\Gamma(\operatorname{Proj} R, \widetilde{R(1)})=k \cdot\left\{S^{4}, S^{3} T, S^{2} T^{2}, S T^{3}, T^{4}\right\}
$$

even though $S^{2} T^{2} \notin R$. This gives another example where the map $M_{0} \rightarrow$ $\Gamma(\widetilde{M}, \operatorname{Proj} R)$ isn't surjective. (It may be helpful to write $S^{2} T^{2}$ in terms of X, Y, Z, W on each chart.)
Solutions. (a) We have $Y^{3}=Z X^{2}$ and $Z^{3}=W^{2} Y \in(X, W)$, so $Y, Z \in$ $\sqrt{(X, W)}$. Therefore $R_{+} \subseteq \sqrt{(X, W)}$, which implies $D_{+}(X) \cup D_{+}(W)=\operatorname{Proj} R$.
(b) For $D_{+}\left(S^{4}\right)$, the ring is

$$
\begin{aligned}
\left(R_{S^{4}}\right)_{0} & =k\left[S^{4}, S^{3} T, S T^{3}, T^{4}, \frac{1}{S^{4}}\right]_{0} \\
& =k\left[\frac{S^{4}}{S^{4}}, \frac{S^{3} T}{S^{4}}, \frac{S T^{3}}{S^{4}}, \frac{T^{4}}{S^{4}}\right] \\
& =k\left[1, \frac{T}{S},\left(\frac{T}{S}\right)^{3},\left(\frac{T}{S}\right)^{4}\right]=k\left[\frac{T}{S}\right] .
\end{aligned}
$$

Similarly, for $D_{+}\left(T^{4}\right)$, the ring is $k\left[\frac{T}{S}\right]$. The transition maps are

$$
k\left[\frac{T}{S}\right] \hookrightarrow k\left[\frac{T}{S}, \frac{S}{T}\right] \hookleftarrow k\left[\frac{S}{T}\right],
$$

which we recognize as those of \mathbb{P}^{1}.
(c) On $D_{+}\left(S^{4}\right),\left(R(1)_{f}\right)_{0}$ is $S^{4} k\left[\frac{T}{S}\right]$, generated by S^{4}. On $D_{+}\left(T_{4}\right)$, the module is $T^{4} k\left[\frac{S}{T}\right]$. We have

$$
S^{4}=T^{4} \cdot\left(\frac{S}{T}\right)^{4}
$$

which is the transition function for $\mathcal{O}_{\mathbb{P}^{1}}(4)$. We therefore get 5 linearly independent global sections, including

$$
S^{4} \cdot\left(\frac{T}{S}\right)^{2}=S^{2} T^{2}=T^{2}\left(\frac{S}{T}\right)^{2}
$$

(5) (A valuative criterion) For any ring R and for $d \leq n$, let:

- $\operatorname{Mat}_{d \times n}(R)$ be the set of $d \times n$ matrices M with entries in R,
- $U_{d \times n}(R) \subset \operatorname{Mat}_{d \times n}(R)$ be the set of M such that the $d \times d$ minors of M generate the unit ideal in R, called full rank matrices.
- $G L_{d}(R):=U_{d, d}(R)$, the square matrices M such that $\operatorname{det}(M)$ is a unit.

One indirect "definition" of the Grassmannian $\operatorname{Gr}(d, n)$ is to define, for all affine schemes $X=\operatorname{Spec}(R)$,

$$
(*) \quad \operatorname{Hom}(\operatorname{Spec} R, G r(d, n)):=U_{d \times n}(R) / \sim,
$$

where $M \sim A M$ for all $A \in G L_{d}(R)$. That is, by definition, a map Spec $R \rightarrow$ $G r(d, n)$ "is" a full-rank $d \times n$ matrix over R, up to the equivalence relation of row operations.

For this problem, ignore the question of how $\operatorname{Gr}(d, n)$ is a scheme and just work directly with the definition $(*)$ above. (This is essentially a definition via universal property of $\operatorname{Gr}(d, n)$ as a quotient space.)
(a) Let k be a field. Show that $\operatorname{Hom}(\operatorname{Spec} k, \operatorname{Gr}(d, n))$ - the k-points of $\operatorname{Gr}(d, n)$ - is in bijection with the set of all d-dimensional subspaces $V \subset k^{n}$.
(b) Let $K=k(t)$, the field of rational functions, with valuation $\operatorname{val}(f)$ given by the order of vanishing of f at $t=0$. Consider the matrix:

$$
M=\left[\begin{array}{cccc}
1-t & 1-t^{2} & t & t^{2} \\
\frac{1}{t^{2}} & \frac{1+t}{t^{2}} & 1 & t
\end{array}\right] \in \operatorname{Mat}_{2 \times 4}(k(t))
$$

Check:

- Some minor of M is nonzero, so M represents a "morphism Spec $k(t) \rightarrow$ $\operatorname{Gr}(2,4)$ ". For generic t, we have a 2-dimensional subspace of k^{4}.
- If we set $t=0$, the matrix is undefined. If we try rescaling the second row by t^{2} and then set $t=0$, the resulting matrix not full-rank over k. So it may seem that we can't "take the limit as $t \rightarrow 0$ ".
(c) Calculate the valuation of each minor of M. You should find two minors are identically zero (order $+\infty$), two are order -1 and two are order 0 .
(d) Calculate $A^{-1} M$, where A is columns 1 and 3 of M. You should find that all nonzero entries now have nonnegative valuation, i.e., $A^{-1} M \in \operatorname{Mat}_{2 \times 4}\left(k[t]_{(t)}\right)$. Now set $t=0$ and describe the resulting two-dimensional subspace of k^{4}.
(Really what has happened is all minors now have nonnegative valuation. Since $A^{-1} M$ contains an identity matrix, this includes all individual entries.)
(e) Explain why every morphism $\operatorname{Spec} k(t) \rightarrow \operatorname{Gr}(2,4)$ extends to a morphism Spec $k[t]_{(t)} \rightarrow G r(2,4)$. This is the "existence" part of the valuative criterion and is one way to prove that $\operatorname{Gr}(2,4)$ is proper.

Solutions.

(a) By definition, a map $\operatorname{Spec} k \rightarrow G r(d, n)$ is a row-equivalence class of $d \times n$ matrices. From linear algebra, two matrices over k have the same row-span if and only if they are row equivalent.
(b) The 13 -minor is $\Delta_{13}=1-t-\frac{1}{t}$, so we see that for $t \neq 0$, this is nonzero. Thus for most t, the matrix has rank 2 .

Rescaling the second row by t^{2} and setting $t=0$ gives $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$. This is rank 1 , so it does not represent a map $\operatorname{Spec} k \rightarrow G r(d, n)$.

		$\Delta_{i j}$	$\operatorname{val}_{t}\left(\Delta_{i j}\right)$
	Δ_{12}	0	∞
(c) They are:	Δ_{13}	$-1 / t+1-t$	-1
	Δ_{14}	$-1+t-t^{2}$	0
	Δ_{23}	$-1 / t-t^{2}$	-1
	Δ_{24}	$-1-t^{3}$	0
	Δ_{34}	0	∞

(d) We have $A^{-1} M=\left[\begin{array}{cccc}1 & 1+t & 0 & 0 \\ 0 & 0 & 1 & t\end{array}\right]$. Now this represents a map $\operatorname{Spec} k[t] \rightarrow$ $G r(d, n)$ and the fiber at $t=0$ is $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$.
(e) Here's what we did:

- We have a map $\operatorname{Spec} k(t) \rightarrow G r(d, n)$, represented by a matrix M. Since M has full rank over the field $k(t)$, some minor is nonzero (as an element of $k(t)$).
- Let A be the submatrix whose minor has the lowest valuation. This valuation is not $+\infty$ (since some minor is nonzero).
- Then $A^{-1} M$ has all minors with nonnegative valuations, and an identity matrix in the columns coming from A. For any entry $m_{i j}$ of $A^{-1} M$, if we swap out the i-th column of the identity submatrix for column j (containing $m_{i j}$), the resulting minor is exactly $\pm m_{i j}$. Therefore $m_{i j}$ has valuation ≥ 0.
- Therefore $A^{-1} M$ has all entries in $k[t]_{(t)}$, hence represents a morphism Spec $k[t]_{(t)} \rightarrow$ $G r(d, n)$. And of course we haven't changed the original morphism Spec $k(t) \rightarrow$ $G r(d, n)$, since $A^{-1} M$ is row equivalent (over $k(t)$) to M.

