MATH 819 - HW5 (SEPARATED AND PROPER; LOCALLY FREE SHEAVES)

Due date: In class Tuesday, April 4th
Reading: Vakil: Separated and proper (Chapter 11) - see also Hartshorne II.3. Vector bundles and locally free sheaves: Chapter 14.1-14.3 and 15. Global Spec and Global Proj: 18.1-18.2
(1) (Separatedness)
(a) If $\pi: X \rightarrow S$ is separated, $S=\operatorname{Spec}(R)$ is affine, and $U, V \in X$ are affine open sets, then $U \cap V$ is affine. (Examine $\Delta^{-1}\left(U \times_{S} V\right)$.)
Taking $X=S$ and $\pi=$ id, conclude: in an affine scheme, intersections of arbitrary affine open subschemes are affine. Then show \mathbb{A}^{2} with two origins (over any base scheme) is not affine.
(b) Show that separatedness is preserved by pullback, and properness is preserved by composition. (Use the definition, or assume X, S are locally noetherian and π is finite type and then use the valuative criterion).
(2) Let R be a noetherian ring and M a finitely-generated R-module.
(a) Let S be a multiplicative set and suppose $S^{-1} M=0$. Show that there exists $f \in S$ such that $M_{f}=0$.
(b) Let $p \in \operatorname{Spec}(R)$ and suppose M_{p} is a free R_{p}-module of rank n. Show that there exists $f \in R-p$ such that M_{f} is a free R_{f}-module of rank n.
(Hint: First find a map $R^{n} \rightarrow M$ such that $R_{p}^{n} \rightarrow M_{p}$ is an isomorphism. Then use (a).)
(c) Let X be a noetherian scheme and \mathscr{F} a coherent sheaf on X. Show: \mathscr{F} is locally free of rank $n \Leftrightarrow$ for all $p \in X, \mathscr{F}_{p}$ is a free $\mathcal{O}_{X, p}$-module of rank n.
(3) Let \mathscr{E}, \mathscr{F} be locally free sheaves of ranks e and f on a noetherian scheme X.
(a) Show that $\mathscr{E} \otimes \mathscr{F}, \mathscr{E} \oplus \mathscr{F}$ and \mathscr{H} om $(\mathscr{E}, \mathscr{F})$ are all locally free, of ranks ef, e+f and ef again. (Take for granted that $\mathscr{H} \operatorname{om}(\mathscr{E}, \mathscr{F})$ is quasicoherent and given by $\operatorname{Hom}_{R}(E, F)$ on affine charts, when \mathscr{F} is quasicoherent and \mathscr{E} is coherent; see Vakil 1.6.G and 14.3.A.)
(b) Show that $\operatorname{Sym}^{d}(\mathscr{E})$ is locally free of rank $\binom{e+d-1}{d}$. (If m_{1}, \ldots, m_{e} is a basis for \mathscr{E} locally, the monomials in m_{1}, \ldots, m_{e} give a basis for $\operatorname{Sym}^{d}(\mathscr{E})$.)
(c) Show that there is a surjective map of sheaves $\mathscr{E} \otimes \mathscr{H} \operatorname{om}(\mathscr{E}, \mathscr{F}) \rightarrow \mathscr{F}$ given by "evaluation" $v \otimes \varphi \mapsto \varphi(v)$. (Show it exists via universal properties of \otimes and gluing, then check it is surjective on sufficiently small affine charts.)
(d) Specialize part (b) to $\mathscr{F}=\mathcal{O}_{X}$; the sheaf $\mathscr{H} \operatorname{om}\left(\mathscr{E}, \mathcal{O}_{X}\right)$ is called the dual of \mathscr{E} and denoted \mathscr{E}^{*} or \mathscr{E}^{\vee}.
Show: If \mathscr{E} has rank 1 , the map $\mathscr{E} \otimes \mathscr{E}^{*} \rightarrow \mathcal{O}_{X}$ is actually an isomorphism.
(4) Let $R=k\left[S^{4}, S T^{3}, S^{3} T, T^{4}\right] \subset k[S, T]$ (i.e. the 4 -th Veronese subring omitting $S^{2} T^{2}$). We reset the grading on S and count its four generators now as degree 1 . You may take for granted that $S \cong \frac{k[X, Y, Z, W]}{\left(X W-Y Z, Y^{3}-Z W^{2}, Z^{3}-X^{2} Y\right)}$.
(a) Verify that $\sqrt{(X, W)}=R_{+}$, so $D_{+}(X) \cup D_{+}(W)=\operatorname{Proj} R$.
(b) Show that $D_{+}(X)$ and $D_{+}(W)$ are each isomorphic to \mathbb{A}^{1} and that the gluing map simplifies to the usual \mathbb{P}^{1} gluing map, so $\operatorname{Proj} R \cong \mathbb{P}^{1}$.
(c) Examine $\widetilde{R(1)}$ on each of the charts $D_{+}(X)$ and $D_{+}(W)$: write down the generator and transition map. Recognize $\widetilde{R(1)}$ as what we would have called $\mathcal{O}(4)$ on $\operatorname{Proj} k[S, T]$. In particular, its global sections are

$$
\Gamma(\operatorname{Proj} R, \widetilde{R(1)})=k \cdot\left\{S^{4}, S^{3} T, S^{2} T^{2}, S T^{3}, T^{4}\right\}
$$

even though $S^{2} T^{2} \notin R$. This gives another example where the map $M_{0} \rightarrow$ $\Gamma(\widetilde{M}, \operatorname{Proj} R)$ isn't surjective. (It may be helpful to write $S^{2} T^{2}$ in terms of X, Y, Z, W on each chart.)
(5) (A valuative criterion) For any ring R and for $d \leq n$, let:

- $\operatorname{Mat}_{d \times n}(R)$ be the set of $d \times n$ matrices M with entries in R,
- $U_{d \times n}(R) \subset \operatorname{Mat}_{d \times n}(R)$ be the set of M such that the $d \times d$ minors of M generate the unit ideal in R, called full rank matrices.
- $G L_{d}(R):=U_{d, d}(R)$, the square matrices M such that $\operatorname{det}(M)$ is a unit.

One indirect "definition" of the Grassmannian $\operatorname{Gr}(d, n)$ is to define, for all affine schemes $X=\operatorname{Spec}(R)$,

$$
\text { (*) } \quad \operatorname{Hom}(\operatorname{Spec} R, G r(d, n)):=U_{d \times n}(R) / \sim,
$$

where $M \sim A M$ for all $A \in G L_{d}(R)$. That is, by definition, a map $\operatorname{Spec} R \rightarrow$ $\operatorname{Gr}(d, n)$ "is" a full-rank $d \times n$ matrix over R, up to the equivalence relation of row operations.

For this problem, ignore the question of how $\operatorname{Gr}(d, n)$ is a scheme and just work directly with the definition (*) above. (This is essentially a definition via universal property of $G r(d, n)$ as a quotient space.)
(a) Let k be a field. Show that $\operatorname{Hom}(\operatorname{Spec} k, G r(d, n))$ - the k-points of $\operatorname{Gr}(d, n)$ - is in bijection with the set of all d-dimensional subspaces $V \subset k^{n}$.
(b) Let $K=k(t)$, the field of rational functions, with valuation $\operatorname{val}(f)$ given by the order of vanishing of f at $t=0$. Consider the matrix:

$$
M=\left[\begin{array}{cccc}
1-t & 1-t^{2} & t & t^{2} \\
\frac{1}{t^{2}} & \frac{1+t}{t^{2}} & 1 & t
\end{array}\right] \in \operatorname{Mat}_{2 \times 4}(k(t))
$$

Check:

- Some minor of M is nonzero, so M represents a "morphism Spec $k(t) \rightarrow$ $G r(2,4)$ ". For generic t, we have a 2-dimensional subspace of k^{4}.
- If we set $t=0$, the matrix is undefined. If we try rescaling the second row by t^{2} and then set $t=0$, the resulting matrix not full-rank over k. So it may seem that we can't "take the limit as $t \rightarrow 0$ ".
(c) Calculate the valuation of each minor of M. You should find two minors are identically zero (order $+\infty$), two are order -1 and two are order 0 .
(d) Calculate $A^{-1} M$, where A is columns 1 and 3 of M. You should find that all nonzero entries now have nonnegative valuation, i.e., $A^{-1} M \in \operatorname{Mat}_{2 \times 4}\left(k[t]_{(t)}\right)$. Now set $t=0$ and describe the resulting two-dimensional subspace of k^{4}. (Really what has happened is all minors now have nonnegative valuation. Since $A^{-1} M$ contains an identity matrix, this includes all individual entries.)
(e) Explain why every morphism $\operatorname{Spec} k(t) \rightarrow \operatorname{Gr}(2,4)$ extends to a morphism Spec $k[t]_{(t)} \rightarrow G r(2,4)$. This is the "existence" part of the valuative criterion and is one way to prove that $\operatorname{Gr}(2,4)$ is proper.

