MATH 819 – HW5 (SEPARATED AND PROPER; LOCALLY FREE SHEAVES)

Due date: In class Tuesday, April 4th

Reading: Vakil: Separated and proper (Chapter 11) – see also Hartshorne II.3. Vector bundles and locally free sheaves: Chapter 14.1-14.3 and 15. Global Spec and Global Proj: 18.1-18.2

- (1) (Separatedness)
 - (a) If $\pi : X \to S$ is separated, $S = \operatorname{Spec}(R)$ is affine, and $U, V \in X$ are affine open sets, then $U \cap V$ is affine. (Examine $\Delta^{-1}(U \times_S V)$.) Taking X = S and $\pi = \operatorname{id}$, conclude: in an affine scheme, intersections of arbitrary affine open subschemes are affine. Then show \mathbb{A}^2 with two origins (over any base scheme) is not affine.
 - (b) Show that separatedness is preserved by pullback, and properness is preserved by composition. (Use the definition, or assume X, S are locally noetherian and π is finite type and then use the valuative criterion).
- (2) Let R be a noetherian ring and M a finitely-generated R-module.
 - (a) Let S be a multiplicative set and suppose $S^{-1}M = 0$. Show that there exists $f \in S$ such that $M_f = 0$.
 - (b) Let $p \in \operatorname{Spec}(R)$ and suppose M_p is a free R_p -module of rank n. Show that there exists $f \in R p$ such that M_f is a free R_f -module of rank n. (Hint: First find a map $R^n \to M$ such that $R_p^n \to M_p$ is an isomorphism. Then use (a).)
 - (c) Let X be a noetherian scheme and \mathscr{F} a coherent sheaf on X. Show: \mathscr{F} is locally free of rank $n \Leftrightarrow$ for all $p \in X$, \mathscr{F}_p is a free $\mathcal{O}_{X,p}$ -module of rank n.
- (3) Let \mathscr{E}, \mathscr{F} be locally free sheaves of ranks e and f on a noetherian scheme X.
 - (a) Show that $\mathscr{E} \otimes \mathscr{F}$, $\mathscr{E} \oplus \mathscr{F}$ and $\mathscr{H}om(\mathscr{E}, \mathscr{F})$ are all locally free, of ranks ef, e+fand ef again. (Take for granted that $\mathscr{H}om(\mathscr{E}, \mathscr{F})$ is quasicoherent and given by $\operatorname{Hom}_R(E, F)$ on affine charts, when \mathscr{F} is quasicoherent and \mathscr{E} is coherent; see Vakil 1.6.G and 14.3.A.)
 - (b) Show that $\operatorname{Sym}^{d}(\mathscr{E})$ is locally free of rank $\binom{e+d-1}{d}$. (If m_1, \ldots, m_e is a basis for \mathscr{E} locally, the monomials in m_1, \ldots, m_e give a basis for $\operatorname{Sym}^{d}(\mathscr{E})$.)
 - (c) Show that there is a surjective map of sheaves $\mathscr{E} \otimes \mathscr{H}om(\mathscr{E},\mathscr{F}) \to \mathscr{F}$ given by "evaluation" $v \otimes \varphi \mapsto \varphi(v)$. (Show it exists via universal properties of \otimes and gluing, then check it is surjective on sufficiently small affine charts.)

- (d) Specialize part (b) to $\mathscr{F} = \mathcal{O}_X$; the sheaf $\mathscr{H}om(\mathscr{E}, \mathcal{O}_X)$ is called the *dual* of \mathscr{E} and denoted \mathscr{E}^* or \mathscr{E}^{\vee} . Show: If \mathscr{E} has rank 1, the map $\mathscr{E} \otimes \mathscr{E}^* \to \mathcal{O}_X$ is actually an isomorphism.
- (4) Let $R = k[S^4, ST^3, S^3T, T^4] \subset k[S, T]$ (i.e. the 4-th Veronese subring omitting S^2T^2). We reset the grading on S and count its four generators now as degree 1. You may take for granted that $S \cong \frac{k[X,Y,Z,W]}{(XW-YZ,Y^3-ZW^2,Z^3-X^2Y)}$.
 - (a) Verify that $\sqrt{(X, W)} = R_+$, so $D_+(X) \cup D_+(W) = \operatorname{Proj} R$.
 - (b) Show that $D_+(X)$ and $D_+(W)$ are each isomorphic to \mathbb{A}^1 and that the gluing map simplifies to the usual \mathbb{P}^1 gluing map, so $\operatorname{Proj} R \cong \mathbb{P}^1$.
 - (c) Examine R(1) on each of the charts $D_+(X)$ and $D_+(W)$: write down the generator and transition map. Recognize $\widetilde{R(1)}$ as what we would have called $\mathcal{O}(4)$ on $\operatorname{Proj} k[S, T]$. In particular, its global sections are

$$\Gamma(\operatorname{Proj} R, \widetilde{R(1)}) = k \cdot \{S^4, S^3T, S^2T^2, ST^3, T^4\},\$$

even though $S^2T^2 \notin R$. This gives another example where the map $M_0 \to \Gamma(\widetilde{M}, \operatorname{Proj} R)$ isn't surjective. (It may be helpful to write S^2T^2 in terms of X, Y, Z, W on each chart.)

(5) (A valuative criterion) For any ring R and for $d \leq n$, let:

- $\operatorname{Mat}_{d \times n}(R)$ be the set of $d \times n$ matrices M with entries in R,
- $U_{d \times n}(R) \subset \operatorname{Mat}_{d \times n}(R)$ be the set of M such that the $d \times d$ minors of M generate the unit ideal in R, called *full rank* matrices.

• $GL_d(R) := U_{d,d}(R)$, the square matrices M such that det(M) is a unit. One indirect "definition" of the *Grassmannian* Gr(d,n) is to define, for all affine schemes X = Spec(R),

(*) Hom(Spec R, Gr(d, n)) := $U_{d \times n}(R) / \sim$,

where $M \sim AM$ for all $A \in GL_d(R)$. That is, by definition, a map Spec $R \to Gr(d, n)$ "is" a full-rank $d \times n$ matrix over R, up to the equivalence relation of row operations.

For this problem, ignore the question of how Gr(d, n) is a scheme and just work directly with the definition (*) above. (This is essentially a definition via universal property of Gr(d, n) as a quotient space.)

- (a) Let k be a field. Show that $\operatorname{Hom}(\operatorname{Spec} k, Gr(d, n))$ the k-points of Gr(d, n)— is in bijection with the set of all d-dimensional subspaces $V \subset k^n$.
- (b) Let K = k(t), the field of rational functions, with valuation val(f) given by the order of vanishing of f at t = 0. Consider the matrix:

$$M = \begin{bmatrix} 1 - t & 1 - t^2 & t & t^2 \\ \frac{1}{t^2} & \frac{1 + t}{t^2} & 1 & t \end{bmatrix} \in \operatorname{Mat}_{2 \times 4}(k(t))$$

Check:

- Some minor of M is nonzero, so M represents a "morphism Spec $k(t) \rightarrow Gr(2,4)$ ". For generic t, we have a 2-dimensional subspace of k^4 .
- If we set t = 0, the matrix is undefined. If we try rescaling the second row by t^2 and then set t = 0, the resulting matrix not full-rank over k. So it may seem that we can't "take the limit as $t \to 0$ ".
- (c) Calculate the valuation of each minor of M. You should find two minors are identically zero (order $+\infty$), two are order -1 and two are order 0.
- (d) Calculate $A^{-1}M$, where A is columns 1 and 3 of M. You should find that all nonzero entries now have nonnegative valuation, i.e., $A^{-1}M \in \operatorname{Mat}_{2\times 4}(k[t]_{(t)})$. Now set t = 0 and describe the resulting two-dimensional subspace of k^4 . (Really what has happened is all *minors* now have nonnegative valuation. Since $A^{-1}M$ contains an identity matrix, this includes all individual *entries*.)
- (e) Explain why every morphism $\operatorname{Spec} k(t) \to Gr(2,4)$ extends to a morphism $\operatorname{Spec} k[t]_{(t)} \to Gr(2,4)$. This is the "existence" part of the valuative criterion and is one way to prove that Gr(2,4) is proper.