MATH 819 - HW6 (DIVISORS AND MAPS TO PROJECTIVE SPACE)

Due date: Friday, April 21st
Reading: Vakil: Ch. 15, 16.2, 17.4: Divisors, line bundles and maps to projective space
(1) Let $C=\operatorname{Proj} \frac{k[X, Y, Z]}{\left(Y^{4}-X^{4}-Z^{4}\right)}$, a quartic curve in \mathbb{P}^{2}. Let $i: C \hookrightarrow \mathbb{P}^{2}$ denote the closed embedding of C in \mathbb{P}^{2}.
(a) Find the divisor of the rational function $f=Z /(X-Y)$.
(b) For which $d \in \mathbb{Z}$ is f a global section of $O_{C}(d \cdot[1: 1: 0])$?
(c) Explain the following assertions:

- $i^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cong \mathcal{O}_{C}(4 \cdot[1: 1: 0])$,
- $\mathcal{O}_{C}(4 \cdot[1: 1: 0])$ is very ample, and
- $\mathcal{O}_{C}([1: 1: 0])$ is ample.
$(\mathrm{d})^{*}$ (Optional!) Show that C is smooth and of genus 3 .
(2) Let $V \subset \Gamma\left(\mathcal{O}_{\mathbb{P}^{1}}(3)\right)$ be the linear system spanned by $S^{3}, S T^{2}, T^{3}$. Is V basepointfree? Does V give a closed embedding?
(3) Let $\mathbb{P}\left(k[X, Y, Z]_{2}\right) \cong \mathbb{P}^{5}$ be the projective space of conics in \mathbb{P}^{2}.

Let $V \subset k[X, Y, Z]_{2}$ be the linear series of conics passing through $[0: 1: 1]$, $[1: 0: 1]$ and $[1: 1: 0]$. Find a basis for V, list any base points, and write down the corresponding rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{n}$.
(4) Vakil 16.2.B,C(a) (look up Vakil 8.2.H), and E on globally generated sheaves.

Note: an \mathcal{O}_{X}-module map $\mathcal{O}_{X} \rightarrow \mathscr{F}$ is the same as a choice of element of $\Gamma(\mathscr{F}, X)$.
(Just like an R-module $\operatorname{map} R \rightarrow M$ is the same as an element of M.)
(5) (The relationship between complete and incomplete linear series)
(a) Let $p=[0: \cdots: 0: 1] \in \mathbb{P}^{n}$. Show that $k\left[X_{0}, \ldots, X_{n-1}\right] \hookrightarrow k\left[X_{0}, \ldots, X_{n}\right]$ gives a morphism $\pi_{p}: \mathbb{P}^{n} \backslash\{p\} \rightarrow \mathbb{P}^{n-1}$. This is called "projection from p ".
If $H \subseteq \mathbb{P}^{n-1}$ is a hyperplane, show that $\overline{\pi_{p}^{-1}(H)}$ is a hyperplane containing p. Conclude that π_{p} comes from an incomplete linear series in $\Gamma\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$.
(b) Let $0 \rightarrow K \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of k-vector spaces. Forget about schemes for a moment and think of $\mathbb{P}(V)$ as the set of onedimensional subspaces of V. Give a map of sets $\pi_{K}: \mathbb{P}(V) \backslash \mathbb{P}(K) \rightarrow \mathbb{P}(W)$.
(c) Continuing (b), describe a k-algebra map $\operatorname{Sym}\left(W^{*}\right) \hookrightarrow \operatorname{Sym}\left(V^{*}\right)$ giving π_{K} as a morphism of schemes. This is "linear projection away from $\mathbb{P}(K)$ ".
(d) Let \mathscr{L} be a line bundle on a projective k-scheme X. Let $V \subset \Gamma(\mathscr{L}, X)$ be a basepoint-free linear series. Show that the morphism $|V|$ is the morphism $|\mathscr{L}|$ corresponding to the complete linear series, followed by a linear projection: if $\operatorname{dim}_{k} \Gamma(\mathscr{L}, X)=n$ and $\operatorname{dim}_{k} V=m$,

