BioMETRICS 66, 327-335
June 2010

DOI: 10.1111/j.1541-0420.2009.01308.x

Joint Inference on HIV Viral Dynamics and Immune Suppression
in Presence of Measurement Errors

L. Wu'»* W. Liu,?2 and X. J. Hu?®

!Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
?Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
3Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia V5A 156,
Canada
*email: lang@stat.ubc.ca

SUMMARY: In an attempt to provide a tool to assess antiretroviral therapy and to monitor disease progression, this article
studies association of human immunodeficiency virus (HIV) viral suppression and immune restoration. The data from a recent
acquired immune deficiency syndrome (AIDS) study are used for illustration. We jointly model HIV viral dynamics and time
to decrease in CD4/CD8 ratio in the presence of CD4 process with measurement errors, and estimate the model parameters
simultaneously via a method based on a Laplace approximation and the commonly used Monte Carlo EM algorithm. The
approaches and many of the points presented apply generally.
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1. Introduction

Human immunodeficiency virus (HIV) infection results in a
progressive destruction of immune function, which may be
indicated by a decrease of CD4 T-cells, an increase of CD8
T-cells, and a decrease in the ratio of CD4 to CD8 (Stevens
et al., 2006). The CD4/CD8 ratio recently has become a tool
for assessing the relative condition of HIV subjects. It, along
with CD4 count, provides a way of gauging the progression
from HIV to acquired immune deficiency syndrome (AIDS)
for prognostic purposes. After HIV-infected subjects start an
anti-HIV treatment, their viral loads typically decline in the
initial period, often with a roughly biphasic exponential decay
pattern, and then some subjects may experience viral rebound
later in the study, which is possibly due to drug resistance
and other factors. The relationship between HIV viral sup-
pression and immune restoration has received great attention
in AIDS research (Henry, Tebas, and Lane, 2006). However,
little has been published about statistical analysis for the par-
ticular association of HIV viral dynamics with time trend in
the CD4/CD8 ratio.

This article studies the association of viral decay with
CD4/CD8 time trend by jointly modeling HIV viral dynam-
ics, time to decrease in CD4/CDS8, and CD4 process. The re-
search was motivated by a recent AIDS Clinical Trials Group
(ACTG) study, the data of which are used in Ding and Wu
(2001), among others, to demonstrate that the initial viral
decay rate reflects the efficacy of an anti-HIV treatment. We
plotted the trajectories of the study subjects’ HIV viral load,
CD4/CD8 ratio, and CD4 count. The plots confirm that HIV
viral load is negatively correlated with both CD4 count and
the ratio CD4/CDS8. In addition, we observed the following:
(i) HIV viral rebound seems closely associated with time to
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decrease in CD4/CDS8; and (ii) compared with the CD4 pro-
cess, the CD4/CD8 ratio over time looks less wavering and its
trend seems more closely associated with the viral dynamics.

Figure 1 presents the trajectories of four randomly selected
study subjects. While the study data indicate a close asso-
ciation of the longitudinal viral load, CD4 count, and ratio
CD4/CDS8, they evidence large variation in the association
across subjects and within each subject over time. The obser-
vations led us to model each of the three processes and link
the three models with random effects, which characterize the
underlying individual-specific effects. The specific models for
this dataset are described in Section 3.

Joint modeling of longitudinal data and time-to-event data
has recently received much attention in the literature (e.g.,
Henderson, Diggle, and Dobson, 2002; Guo and Carlin, 2004;
Wu, Hu, and Wu, 2008). See Tsiatis and Davidian (2004) for
a comprehensive overview. A major challenge with joint mod-
eling is the associated intensive computation in the inference,
and in some cases it can even be computationally infeasible. In
the presence of measurement errors, missing data, and nonlin-
ear longitudinal models, the computational problem becomes
much worse. Wu et al. (2008) considered joint modeling of
a nonlinear mixed-effects (NLME) model and the Cox pro-
portional hazards model with missing data in the longitudi-
nal responses. They applied the Monte Carlo EM algorithm
(MCEM) for the joint likelihood inference, and experienced
intensive computing.

The new contributions of this article are as follows. We
study the association of viral dynamics with immune sup-
pression through both CD4 count and the trend of CD4/CD8
ratio, which may provide new scientific insights into the asso-
ciation. From a statistical methodological point of view, while
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Figure 1.

applying the well-established NLME model for the viral dy-
namics, we consider an empirical nonparametric mixed-effects
model for CD4 count, which is viewed as a covariate process
of the viral load, to incorporate measurement errors as well
as potential missing data. The modeling for CD4 process also
makes it feasible to relate the CD4 count as a time-dependent
covariate to the time-to-event of interest, which is modeled via
a parametric survival model. In addition, we propose a compu-
tationally efficient method based on a Laplace approximation,
referred to as the saddle-point approximation by physicists,
to address the computing challenge in a joint likelihood infer-
ence. The method offers a big computational advantage over
the computationally intensive methods appearing in the joint
model literature. Finally, the three models (the NLME model
for viral dynamics, the nonparametric mixed model for CD4
process, and the parametric event-time model for CD4/CD8
decline) are linked through the random effects that character-
ize the underlying individual-specific longitudinal processes.
The methods and many of the points discussed have broader
applications, not just limited to the specific scientific problem
discussed.

The rest of the article is organized as follows. Section 2
describes the joint models and the associated estimation pro-
cedures in general forms so that they can be considered in
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Viral load, CD4, and CD4/CDS8 trajectories of four randomly selected subjects.

other applications. After a brief review of the commonly used
approach in the joint likelihood inferences, the MCEM al-
gorithm, we present a computationally efficient approximate
likelihood approach based on a Laplace approximation. Sec-
tion 3 describes the specific models and reports an analy-
sis of the AIDS data that motivated this research. Section 4
presents a simulation study to examine the finite sample per-
formances of the approaches used in the data analysis. We
provide some discussion and final remarks in Section 5.

2. Joint Likelihood Inference
2.1 Joint Modeling

In a study with N independent subjects, let y;; be the re-
sponse of subject 7 at time ¢;;,7=1,...,n, andi=1,...,N.
Denote subject #’s time to the event of interest by T;. Given
2j;, the “true” (but unobservable) covariate value at time t;;,
we consider an NLME model for the longitudinal response
process

=9(B,tij, 2;,bi) + €,

Yij j=1,...

where g(-) is a nonlinear function, e;; are within subject
random errors, B = (B1,...,3.)T is a vector of fixed effects,



Joint Inference in AIDS Study

and b; = (b;1,...,b;4)" is a vector of random effects. We as-
sume that b; and e; = (e;1,..., e, )7 are independent, and e;
iid. ~ N(0,22;) and b; ii.d. ~ N(0, B), where v is an un-
known parameter, I; is the identity matrix, and B is an un-
known covariance matrix.

For the covariate process, we adopt a flexible empirical
nonparametric mixed-effects model to address measurement
errors

Zi(t)=r(t)+hi(t) + &) =2 () + &), i=1,...,N,

(2)

where z/(t) = r(t) + h;(t) are the true but unobservable co-
variate values at time ¢, r(t) and h;(t) are unknown non-
parametric smooth fixed-effects and random-effects functions,
respectively, and &; (t) ~ N(0,0?). The random smooth func-
tion h;(t) is introduced to incorporate the large interindivid-
ual variation in the covariate process, while the fixed smooth
function 7(f) represents population average of the covariate
process. We assume that h;(t) is the realization of a zero-
mean stochastic process.

We approximate the nonparametric functions r(¢) and
hi(t) by linear combinations of the natural cubic spline ba-
sis functions with percentile-based knots (Green and Solver-
man, 1994), W, () = [¢o(t), Y1(t), ..., ¥, 1(¢)]7 and ®,(t) =
[¢0(t)’ ¢1 (t)v e ¢q—1(t)]T . That iS7

() &y () = a(t) = ¥, 1) a,

g—1
hi(t) & hi, () = i Or(t) =8, ()7 a;,
(£) = hig (1) ;amm (1) a 3)
where a = (ayp,...,a, ;)7 is a p x 1 vector of fixed effects

and a; = (ajg,...,a;4-1)7 is a ¢ X 1 vector of random effects
with a; i.i.d. ~ N(0, A). Appropriate values of p and ¢ can be
determined via the standard model selection criteria such as
Akaike information criterion (AIC) or Bayesian information
criterion (BIC) values (e.g., Rice and Wu, 2001). Approximat-
ing r(t) and h;(t) by r, (t) and h;, (t), respectively, we can then
approximate the covariate model (2) by the following linear
mixed-effects (LME) model

Z(t) 2 O, () a+ @ (1) &+ &(t) ~ 2 () +&(1).  (4)

We assume that a;,b;,e;, and & are mutually independent.
Note that, since the LME model allows for unbalanced re-
sponse data, this covariate model can incorporate missing
data in the time-dependent covariates when the missing is
at random, in addition to addressing covariate measurement
erTors.

The event time 7; is likely related to the longitudinal re-
sponse and covariate processes. This association is of much
interest in many practical situations. We specify the associa-
tion by assuming that, conditional on the random effects a;
in the covariate model (4) and the random effects b; in the
response model (1), the event time T; ~ f(¢|a;, b;;vy,A) with
unknown parameters v and A. That is, we assume that the
event time is related to the longitudinal processes through
the random effects that characterize the individual-specific
effects. Particularly, we consider the following mixed-effects
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event time model:

T

log(T;) =7 +~ia +v3bi+6, i=1,2,...,N, (5

where the coefficients v = (79,7 ,~4% )7, and the random er-
rors €;’s are i.i.d. and follow a parametric distribution with
mean 0 and the other parameters X such as N(0,\?). We as-
sume that ¢;’s are independent of a; and b;. Model (5) may
be a good choice when the event times are thought to depend
on individual-specific longitudinal trajectories, such as initial
slopes and intercepts, or summaries of the longitudinal trajec-
tories, and it is closely related to so-called shared parameter
models (Wu and Carroll, 1988; DeGruttola and Tu, 1994). An
alternative model is to relate the event times directly to the
true but unobservable covariates. We will discuss this issue
with some length in Section 5.

In some practical situations, the event times cannot be ob-
served but only known as being contained in some time in-
tervals, i.e., being interval-censored. In the AIDS study men-
tioned in Section 1, for example, given that CD4 and CD8
were collected at a finite number of times, we can only know
that the time to the occurrence of the first CD4/CD8 de-
crease of a subject is between two data collection time points.
The observed event time data are then {(w;,v;],i =1,..., N},
where (w;,v;] is the smallest observed interval containing T;.
We take w; as his latest time in the study and v; = oo if sub-
ject i did not experience the event of interest during the whole
study period.

2.2 Estimation of Model Parameters

In a longitudinal study, such as the AIDS study described in
Section 1, the longitudinal response, the time-to-event, and
the covariate processes are usually connected physically or
biologically. As discussed in Section 1, we can model them
jointly through the shared random effects, which is often bi-
ologically meaningful. Thus, statistical inferences on all the
model parameters need to be made simultaneously; otherwise,
if the parameters in each of the three models are estimated
separately, the underlying association may not be fully ad-
dressed or captured. Moreover, if the shared parameters in
one model are substituted by their estimates from another
model, the uncertainty due to the estimation is not incorpo-
rated, and may lead to under-estimation of standard devia-
tions. In this section, we consider joint likelihood inferences
to estimate all the parameters simultaneously.

Let 0 = (o, B,0,v, A, B,~v,A) be the collection of all model
parameters, and use f(-) for a generic density function. With
the available data, {(y:,z:,w;,v;) : i =1,2,..., N}, the joint
likelihood function of 8 is

N
L(0|Y7Z7W7V):H //Li(a|)’nZi,quz‘;ambi)daidbi ;
im1

(6)
where L; (0 | yi, zi, wi, vis a;, b;) is f(yi | ai, bi; e, B, v) f(bi; B)
f(zilaisa,0) f(ai; A) f*(wi, v [ @i, bisy, A) with f*(w;, v; | a,
bi;v, \) :fuLl‘ f(t|a;,bj;v,\)dt. It is in general hard to
conduct inferences based on (6) directly, due to the high-
dimensional and intractable integral. Numerical integration
methods such as the Gauss—Hermite quadrature can be
computationally very intensive or even infeasible when the
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dimension of the random effects (a;,b;) is not small (say,
higher than 2). Another approach is to use the EM algorithm
to obtain the maximum-likelihood estimate (MLE) of 8, by
treating the unobservable random effects (a;, b;) as “missing
values,” as follows.

The EM algorithm iterates between an E-step, which com-
putes the conditional expectation of the “complete data” log-
likelihood given the available data and current parameter
estimates, and an M-step, which maximizes the conditional
expectation from the E-step to update the parameter esti-
mates. Specifically, in this application the “complete data”
are {(yi,zi,w;,v;,a;,b;), i=1,2,...,N}, so the E-step
evaluates

Q0] B(t)) =FE[l(0|y,z,w,v;a,b)|y,z,w,V; O(t)L

where ") is the estimate of 6 at the ith EM itera-
tion, (0 |y, z, w,v;a, b):Zf\;l l;(0;a;,b;),and ;(0;a;,b;) =
log L;(0|yi,zi,w;,v;;a;,b;) is the complete-data log-
likelihood for subject i. The M-step maximizes Q(8]6®)
to produce an updated estimate ¢+Y for ¢t =0,1,2,... till
convergence. We may obtain an initial estimate () by, for
example, separately estimating the model parameters in
each of the three models. Available computer programs for
optimizing a nonlinear function can be used to realize the
M-step.

The E-step is, however, hard to compute in the current
application, because of the required calculation of the mul-
tidimensional integral. The MCEM algorithm, a well-known
variation of the EM algorithm, approximates each conditional
expectation term in Q(6]60%) at the (¢t 4+ 1)th EM iteration
with the sample mean of [;(8;a;,b;) based on a large sam-
ple of (a;,b;) generated from the conditional distributions
f(a, b; |yi, zi, wi, vi; OF)). This Monte Carlo sampling in the
E-step is often accomplished via a Markov chain Monte Carlo
method such as the Gibbs sampler, along with rejection sam-
pling methods. Thus, the convergence of the MCEM involves
convergence of both the Gibbs sampler within each EM iter-
ation and the global convergence of the EM algorithm. See
Ibrahim et al. (2005) and Wu et al. (2008) for applications
of the approach in similar problems. Details of the MCEM in
the current application are provided in Web Appendix 1.

The implementation of the MCEM algorithm in this ap-
plication is rather computationally intensive and may even
exhibit convergence problems. It requires the convergence of
the Gibbs sampler within each EM iteration as well as the
global convergence of the EM algorithm. In some situations,
especially when the dimension of the random effects (a;, b;)
is high, the convergences of the Gibbs sampler and the EM
algorithm are difficult to check and the MCEM algorithm
may lead to undesirable outcomes. Alternative approaches
are therefore in big demand. Computationally more efficient
approximate methods may be obtained based on Taylor or
Laplace approximations. We present below a method based on
a Laplace approximation. It approximates the observed-data
joint likelihood L(0 |y, z, w,Vv) using a first-order Laplace ap-
proximation, which has an analytic expression and is thus
computationally more efficient than the MCEM since Monte
Carlo sampling is no longer needed.
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Let (5,15) = {(éi,f)i),i =1,2,...,N} be the collection of
the solutions to the following equations with a fixed 0,
8ll(e,al,bz)/a(al,bz):0, l:1727,N (7)

Following Lee, Nelder, and Pawitan (2006), we obtain the
first-order Laplace approximation to the observed-data joint
log-likelihood (0 |y, z, w,Vv) based on

[(0;5,]5) = l(0|y,z,w,v;5,l~))

1 82l(0|y,z,w,V;a,b)}

1
— 51ogdet{ T on d(a,b)d(a,b)”

where det{A} is the determinant of matrix A. Estimates ob-
tained by maximizing l~(0; a, f)) are thus approximate MLEs.
Lee et al. (2006) provided some detailed discussion about
this approach in the case of complete-data generalized lin-
ear mixed models (GLMM). The ideas can be applied in the
current models.

An algorithm for obtaining an estimator of @ based on the
foregoing Laplace approximation is as follows. Let the esti-
mate of @ in the Ith iteration be 81). For [ =0,1,2,...,

STEP 1. Solve equations (7) with 8 = 8) to obtain the ran-
dom effect estimates (a), b)),

STEP 2. Maximize the approximate joint log-likelihood
I(A;a,b) in (8) with (&,b) = (a"),b®) to obtain a new
estimate 9(+1,

Repeat the two steps until the sequence of {8© :]=
0,1,2,...} converges. Denote the limit of the sequence by 0,
which is an approximate MLE of 6. There are many opti-
mization procedures available in standard softwares, such as
ms() and optim() in Splus or R, which need only the original
functions rather than their derivatives.

We may interpret (a(), 5(1)) as empirical Bayesian estimates
of the random effects in the Ith iteration. The standard error
of the resulting estimator 6 can be computed using

. o%1(0;a bty
Cov(8) = { ,
90007 |, .

where (a”,b") is the random effects estimate obtained in the
last iteration. This matrix is often a routine output in many
optimization procedures, such as optim() in R.

In simpler settings, the performance of such a Laplace ap-
proximation to the likelihood functions is usually excellent
with a continuous response. See Pinheiro and Bates (1995)
for simulation results for complete-data NLME models and
Joe (2008) for complete-data GLMMs and an extensive dis-
cussion. The current setting is more complex, but the general
approach remains essentially the same. In Section 4, we con-
duct a simulation study to examine the performance of the
approximate method in the current setting. We denote the
approximate method by Laplace approximation (LAAP) in
the rest of the article. It appears that the LAAP approach,
compared with the MCEM algorithm, works well in our
application.
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3. Analysis of AIDS Data
3.1 Data and Models

The AIDS study mentioned in Section 1 had 46 HIV-infected
subjects who started an anti-HIV treatment 10 days after
entry. Viral loads were measured in HIV RNA and collected
along with CD4 and CDS8 counts on study days 0, 2, 7, 10,
14, 21, 28 and study weeks 8, 12, 24, and 48. For simplicity,
we imputed the viral loads below the assay’s lower detection
limit 100 copies/ml with a half of the limit. A total of 361
viral load measures were recorded, with the number of viral
load measures for each subject ranging from 4 to 10. The
missing rate of the associated CD4 and CD8 measures was
20% (72 out of 361). The objective of the analysis was to
study the association of the viral decay rates with the time
to decrease in CD4/CDS8 in the presence of CD4 counts with
measurement errors. We considered the joint modeling of the
three processes to characterize the association as well as to
incorporate measurement errors and missing data in CD4 (the
covariate process in the analysis).

In the initial period during an anti-HIV treatment, the
following biphasic exponential viral decay model (a two-
compartment model) has been shown to provide a good fit
in many studies with a strong biological justification and in-
terpretation (Wu and Ding, 1999)

Yij = logyg(Pre M1l 4 Pye i) 4 ey, (9)

where y;; is the logjy-transformation of the HIV viral load
measurement for subject i at time t;;, P;; and P are
individual-specific baseline viral load values, Ai;; and Ay, are
the individual-specific first-phase and second-phase viral de-
cay rates, respectively, and e;; is the random error for within-
subject measurements. We assume further that

log(Py;) = B1 + bix, Mij = B2 + big,
log(Ps;) = Bs + biz, Aoij = Py + /35z;'kj + bis,

where z;; is the true CD4 count at time ¢;; (which is unobserv-
able but might be estimated), §;’s are population parameters,
and b;;.’s are random effects that characterize between-subject
variations. See Liu and Wu (2007).

CD4 measures are known with nonnegligible errors. Ignor-
ing covariate measurement errors can lead to severely mislead-
ing results in a statistical inference. Replications or validation
data are in general needed to address measurement errors
(Carroll et al., 2006). With CD4 measures collected over time
from the AIDS study, we may model the CD4 process to par-
tially address the measurement errors. See Wu (2002) for an
example of modeling the process parametrically. However, the
CD4 trajectories are often complicated, and there is no well-
established model for the CD4 process. We, thus, model the
CD4 process empirically using a nonparametric mixed-effects
model, which is flexible and works well for complex longitu-
dinal data. Based on AIC and BIC model selection criteria,
we obtained the following nonparametric mixed-effects CD4
model for the current dataset:

zir = (a1 + a;1) + (a2 + @)1 (uir ) + (a3 + aiz)pa(uir) + ik,
(10)

where z;;, is the observed CD4 value at time w;, i(:)
and v(-) are two basis functions given in Section 2, a =
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(a1, ap,a3)T are population parameters (fixed-effects), a; =
(ai1, @iz, a;3)T are random effects, and &, is the measure-
ment error at time w;;,. We may view 2z, = (a1 + a;1) + (a2 +
aio) Y1(uir ) + (a3 + a;3) Yo(ui) as the true (but unobserv-
able) CD4 value at time u;;.

Let T; be subject #’s time to his first decline in the
CD4/CD8 ratio. We are interested in the association of the
time to the immune suppression with the individual-specific
initial viral decay rates and the true CD4 trajectory, which are
characterized by the random effects (or individual effects) in
the viral load and CD4 models. We may view the (unobserv-
able) random effects as error-free covariates in time-to-event
models. The associated inferences can be computationally
challenging when joint models consist of (nonlinear) longitu-
dinal models and the semiparametric Cox proportional haz-
ards model for time-to-event, a commonly used failure time
model (Tsiatis and Davidian, 2004; Wu et al., 2008), espe-
cially when the event times are interval censored. To focus on
the primary issues discussed in the article, we consider the
following parametric model of time-to-event:

log(T}) = Yo + 71Gi1 + Yoz + y3biz + Yabis + €, (11)
where v;’s are parameters and ¢; is the random error. In
Model (11), the random effects b;» and b;4 represent individ-
ual variations in viral decay rates so they may be predictive
for event times, while b;; and b;3 in the viral dynamic model
represent variations in the baseline viral loads, which seem
not highly predictive for event times, so they are excluded
from the model to reduce number of parameters. The random
effects a;; and a; capture the main features of individual
CD4 trajectories, so they are included in the model. Model
(11) is a parametric accelerated failure time (AFT) model
with random effects and seems to fit the current dataset rea-
sonably well (see Web Figure 1). It offers the advantages of
easy interpretation and robustness against neglected covari-
ates (Hougaard, 1999). An alternative model is to link the
event times to the unobserved true CD4 values 2}, , but model
(11) can offer some advantages. See discussion about it in
Section 5.

For the nonparametric mixed-effects CD4 model, we used
linear combinations of natural cubic splines with percentile-
based knots to approximate 7(¢) and h;(t). We set ¢(t) =
¢o(t) =1 and took the same natural cubic splines in the ap-
proximations (3) with ¢ < p in order to decrease the dimen-
sion of random effects. AIC and BIC criteria were used to de-
termine the best values of p and ¢, leading to CD4 model (10).
In addition, we standardized the CD4 counts and rescaled the
original time (in days) into [0, 1] in the analysis, in order to
avoid too small or large estimates as they may be unstable.
Since each of the study subjects started the treatment 10 days
after his entry, the time to the first CD4/CD8 decrease after
day 10 was taken as the time-to-event of interest. Given the
CD4 and CD8 evaluation scheme, the times to the CD4/CD8
decrease in the analysis were interval-censored. The median
of the observed interval length was 27 days, while seven sub-
jects in the study did not experience the CD4/CD8 decrease.
In practice, the right limits of the intervals are often used to
approximate the event times with interval censored data to
simplify the data analysis. The relatively wide time intervals
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Table 1
Estimates (standard errors) of the parameters in models (9), (10), and (11)
Method B1 B2 B3 Ba Bs a; Qs as Yo M V2 V3 M1
Naive 11.65  60.59 6.42 —0.44 1.20 —0.45 2.08 0.09 —1.86 —0.10 0.05 0.02 —0.01
(0.18) (3.31) (0.27) (0.75) (0.39) (0.12) (0.23) (0.17) (0.09) (0.13) (0.10) (0.01)  (0.03)
MCEM 11.66 63.1 6.48 —1.37 3.14 —0.45 2.17 0.01 —1.69 0.04 0.06 0.01 0.01
(0.19) (4.06) (0.32) (0.86) (0.63) (0.14) (0.20) (0.23) (0.13) (0.25) (0.15) (0.01)  (0.05)
LAAP 11.64 63.23 6.47 —1.43 3.18 —0.45 2.18 0.01 —1.68 0.04 0.06 0.01 0.01
(0.21) (4.01) (0.34) (0.85) (0.63) (0.15) (0.28) (0.23) (0.13) (0.24) (0.15) (0.01)  (0.05)

Estimates of the variance-covariance parameters in models (9), (10), and (11):
MCEM: 7 = 0.36, & = 0.51, A = 0.58, diag(A) = (0.52, 1.55,0.36), diag(B) = (1.02, 111.18,2.10, 16.18).
LAPP: 5 = 0.35, 6 = 0.52, A = 0.57, diag(A) = (0.50,1.52,0.39), diag(B) = (1.07,111.31,1.97,15.91).

here indicate that such approximation may not work well with
the current AIDS data.

3.2 FEstimation and Interpretation

The MCEM algorithm and the LAAP-based approach were
applied to estimate the parameters in the three joint mod-
els for the viral dynamics, the CD4 process, and the time to
CD4/CDS8 decrease. The estimates, together with their esti-
mated standard errors, are shown in Table 1. The two sets
of parameter estimates seem quite close, while the LAAP ap-
proach took much less time to implement.

The estimates of the parameters in the CD4 model (10)
suggest a significant overall increase in CD4 after the treat-
ment, and both individual variation and measurement error
in CD4 appear substantial. The two sets of estimates for the
individual-specific initial viral decay rate Ay;; = (8 + b;2 in
the viral dynamics model (9) indicate that the overall first-
phase viral decay is significant with a substantial variation
across subjects; the estimates of the population parameter
B2 (standard errors) are 63.10 (4.06) (MCEM) and 63.23
(4.01) (LAAP), and the estimates of the variances of the
random effect (individual effect) b;5 are 111.18 (MCEM) and
111.31 (LAAP). The second-phase viral decay rate (i.e., Ay;; =
Ba+ Bs2]; + b;4) appears positively associated with true CD4
value (zj;) over time; the estimates of (5 (standard errors)
are 3.14 (0.63) (MCEM) and 3.15 (0.63) (LAAP). This is
consistent with the findings reported in Ding and Wu (2001)
and Wu et al. (2008). Figure 2 shows 20 realizations of the
viral load process generated from each of the fitted viral dy-
namics models along with the observed trajectories of the
four randomly selected subjects whose data are presented in
Figure 1.

Different from what was anticipated, the estimates for the
parameters in the event time model (11) do not directly show
that the time to CD4/CD8 decrease is highly associated with
either the two viral decay rates or the CD4 changing rates
over time. To further explore this, we generated 20 sets of
the 46 study subjects’ times to CD4/CD8 decrease and times
to HIV RNA rebound from the fitted event time model and
viral dynamics model based on the LAAP method, respec-
tively. The corresponding 20 “lowess” curves, nonparametric
estimates of the association of the event times, and the re-
bound times are plotted in Figure 3, along with the linear
regression line. Here, we used the left limits of the observed
intervals to approximate the event times. Figure 3 reveals a
positive association of the event time with the viral rebound.

We also estimated the survivor function of the event time by
applying the Turnbull estimator, a nonparametric estimator.
The two parametric estimates are close to each other and
quite consistent with the nonparametric estimate.

For comparison, we also employed three “naive” approaches
to estimate the model parameters: (i) using only baseline CD4
in models (9) and (11), (ii) estimating the parameters in the
three models separately, and (iii) ignoring the measurement
errors in CD4 and using the observed CD4 in the viral dynam-
ics model (9). The first naive approach could not capture the
dynamics association of the viral load and CD4 processes.
Leaving alone its relatively large standard errors with the
parameter estimates, the second naive approach obtained a
negative correlation of CD4 with the second-phase viral de-
cay, which is counter-scientific. The parameter estimates of
the third naive approach are presented in Table 1, labeled by
“Naive.” The difference of naive estimates and MCEM /LAAP
estimates, due to whether or not ignoring potential CD4 mea-
surement errors, indicates that CD4 measurement errors can-
not be ignored in the analysis.

4. A Simulation Study

In this simulation study, we evaluate the performances of the
proposed methods (MCEM and LAAP), compare them with
the naive method (Naive), and conduct a sensitivity analysis.
The response NLME model and the event time model are
the same as those in the real-data example, but with equal-
spaced observation times between 0 and 1. The true values
of model parameters used in the simulations are given in the
tables for simulation results. The covariate model is carefully
chosen to mimic the observed CD4 trajectories in the real
dataset

sin(1.9¢;; + 0.39 4+ 0.2w;3) + &, (12)

where w;1, w;2, and w;3 are independent and follow N(0,1).
We generated 100 independent datasets based on the above
models with N = 100 and n; = 5,10. To conduct a sensitivity
analysis for the time-to-event model, we consider the follow-
ing three distributions for error ¢; in event time model (11):
€ ~ N(0,0.2%), ¢, ~ Gumbel(0,1), and ¢; ~ Logistic(0,1).
To summarize simulation results, we compute: EST (average
of estimates), ASE (average of standard errors from each sim-
ulation), SSE (simulated standard errors), BIAS (the percent
relative bias defined by (6; — 3;)/|6;] x 100%), MSE (the
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Table 2
Simulation results based on 100 repetitions with n; = 10 and ¢; ~ N(0,0.2%)
B B2 Ba B4 Bs Yo " V2 V3 V4
Method Estimate 12 63 6 -2 3 -1 0.4 0.6 0.3 0.2
Naive EST 12.02 59.27 5.87 —1.34 1.35 —0.86 0.28 0.44 0.22 0.15
ASE 0.14 1.43 0.21 0.35 0.09 0.04 0.06 0.05 0.02 0.02
SSE 0.14 1.47 0.21 0.39 0.11 0.04 0.07 0.06 0.02 0.02
BIAS 0.16 —5.93 —-2.15 33.18 —55.03 14.20 —29.28 —26.18 —27.46 —25.99
MSE 1.20 6.35 4.16 37.53 55.11 14.80 33.04 27.38 27.95 27.89
CRI 0.97 0.30 0.88 0.51 0.01 0.06 0.54 0.12 0.01 0.27
MCEM EST 12.02 62.99 5.99 —2.01 3.00 —1.02 0.40 0.60 0.29 0.20
ASE 0.14 1.25 0.20 0.29 0.14 0.14 0.13 0.10 0.05 0.07
SSE 0.14 1.22 0.21 0.29 0.11 0.15 0.11 0.09 0.05 0.08
BIAS 0.12 —0.01 —0.22 -0.73 —0.01 —2.40 —1.04 —0.07 —2.25 —1.00
MSE 1.21 1.98 3.23 14.52 4.60 13.85 32.07 16.67 15.86 33.46
CRI 0.95 0.95 0.94 0.96 0.98 1.00 0.95 0.96 0.99 0.97
LAAP EST 12.03 62.74 5.98 —2.04 3.01 —1.03 0.38 0.59 0.29 0.20
ASE 0.14 1.27 0.20 0.29 0.13 0.14 0.14 0.11 0.05 0.08
SSE 0.14 1.24 0.21 0.28 0.11 0.12 0.15 0.09 0.05 0.08
BIAS 0.23 —0.41 —-0.35 —1.89 0.37 —2.52 —3.83 —1.89 —4.56 —1.77
MSE 1.18 2.06 3.35 14.64 4.35 14.32 35.36 18.41 17.00 40.04
CRI 0.96 0.94 0.96 0.95 0.95 0.97 0.96 0.94 0.95 0.94
percent relative root MSE defined by  cal normality of the resulting estimators when both the sam-

\/(BJ — B;)2 + ASE?/|3;| x 100%), and CRI (coverage
rates of 95% confidence intervals).

The MCEM, the LAAP, and the third naive approach were
applied to estimate the model parameters using each of the
generated datasets. The results based on 100 repetitions with
n; = 10 are presented in Table 2. Both MCEM and LAAP per-
form well, in terms of either bias or MSE or coverage rates,
and their estimates are close to the true values. The MCEM
approach appears slightly more efficient than the LAAP ap-
proach. The naive method performs the worst based on any
of the criteria. The estimates obtained by the naive method
are similar to the MCEM and LAAP estimates for the § pa-
rameters in the viral dynamic model (9), but show a trend of
under-estimating the v parameters, i.e., the covariate effects
in the time-to-event model (11).

Sensitivity analyses with ¢ ~ Gumbel(0,1) and
Logistic(0,1) and simulation results with n; = 5 are reported
in Web Tables 1-3. It appears that both MCEM and LAAP
are quite robust to the choice of the ¢; distributions in the
current simulation settings. The LAAP performs reasonably
well with few repeated measurements (i.e., n; = 5).

€ ~

5. Discussion

The computation associated with the joint inferences in joint
models of longitudinal data and survival data can be ex-
tremely intensive and may lead to convergence problems (Tsi-
atis and Davidian, 2004; Wu et al., 2008). This is especially
the case when nonlinear and semiparametric/nonparametric
models are used and missing data or measurement errors are
present. The LAAP-based method presented in this article
offers a favorable alternative. It approximates the multidi-
mensional integral in the observed-data joint likelihood by an
analytic expression. Following Vonesh (1996) and Zeng and
Cai (2005), we may establish the consistency and asymptoti-

ple size and the number of within-individual measurements
go to infinite.

Note that in this article the longitudinal and survival mod-
els are linked through shared random effects. The advantages
of such an approach are that the link between the models is
made clear, a computationally efficient approximate method
can be easily implemented, and model interpretation may be
reasonable in some applications. However, in some situations
this formulation could become problematic, such as difficulty
in interpretation, especially if the random effects structures
are more complex. Recently, Tseng, Hsieh, and Wang (2005)
considered an alternative approach for joint inference of AFT
models and time-dependent covariates.

The performance of the LAAP approach with discrete re-
sponses such as binary responses may be less satisfactory
since Laplace approximations may not be satisfactory with
discrete function (Joe, 2008). For example, if the longitudi-
nal responses and/or covariates are discrete and are modeled
using GLMMs, a joint model approach similar to the one in
this article may not perform well. In this case, a second-order
Laplace approximation may be needed and may improve the
approximation. Performances of methods based on Laplace
approximations depend on both the sample size and the num-
ber of within-individual measurements (Vonesh, 1996).

As pointed out by the referees, an alternative event-time
model is to link the event times to the unobserved true time-
dependent covariates rather than the random effects in the
assumed covariate model. Such a model is easy to interpret.
However, in many practical situations such as the AIDS study
that partly motivated this research, each of the covariate pro-
cesses is not fully observed but only at a few time points,
which along with the unobservable true covariate processes
causes difficulties in implementing the model. Moreover, the
current event-time model (5) can offer the following advan-
tages: (i) the random effects in the covariate model summarize
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the history of the covariate process, with individual-specific
intercepts and rates of change, and the summary quantities
are likely better predictors than the covariates at several par-
ticular times; (ii) the link between the three models is made
clear by the shared random effects; (iii) it is easy to imple-
ment. In addition, when it is desirable, we can evaluate the
effect of the true covariate process to the event time based on
the fitted AFT model in combination of the covariate process
model.

For joint inference, parameter (or model) identifiability can
be an important but difficult problem when many model pa-
rameters must be estimated simultaneously. Thus, we pre-
fer parsimonious models that contain fewer parameters, espe-
cially for models of secondary interest such as the covariate
model whose parameters may be viewed as nuisance parame-
ters. Fortunately, with nonlinear models such as the ones con-
sidered in this article, parameter identifiability is often less of
a concern than with linear models (Carroll et al., 2006). In
practice, if the models are not identifiable, the EM algorithm
would diverge quickly. In the application considered in this
article, the EM algorithm converged without problems and
we did not observe potential identifiability problems.

We have focused on time-dependent covariates with mea-
surement errors and missing data. To address measurement
errors in time-independent covariates, validation data or repli-
cates are needed (Carroll et al., 2006). Moreover, the Laplace
approximation may become somewhat more complicated if
the ranges of the covariate values are not the whole space due
to the nature of Laplace approximation. When missing co-
variates are nonignorable, the missing data mechanism needs
to be modeled and incorporated in the likelihood, sensitivity
analyses should be performed, and then the proposed work
can be extended straightforwardly.

6. Supplementary Materials

Web Appendix 1, Figure 1, and Tables 1-3 referenced in Sec-
tions 2.2, 3.1, and 4 are available under the Paper Informa-
tion link at the Biometrics website http://www.biometrics.
tibs.org.
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