Chapter 8: 3-Cycles

The Alternating Group: (a.k.a the group of <u>even</u> permutations)

Permutations come in one of two types: even or odd

$$A_n = \{ \alpha \in S_n : \alpha \text{ is even } \}$$
 $O_n = \{ \alpha \in S_n : \alpha \text{ is odd } \}$

$$S_n = A_n \cup O_n$$
, and $A_n \cap O_n = \emptyset$.

Properties of An

1 Ec An

② An is closed under composition:

3) An is closed under taking inverses: $\alpha \in An \Rightarrow \alpha \in An$

Notice $\varepsilon \not\in On$ and On is not closed under composition. In fact, if $\alpha, \beta \in On$ then $\alpha \beta \in An$.

An is called the Alternating Group of degree n.

Theorem 8.2.1 — Cardinality of A_n . $|A_n| = |O_n| = \frac{n!}{2}$, for $n \ge 2$.

Proof:

Example: List the elements of A2, A3, A4.

Example: How many elements of order 5 are there in Ag?

Products of 3-cycles:

We know every element of Sn, for $n \ge 2$, can be expressed as a product of 2-cycles. We say

Sn is generated by 2-cycles.

Theorem 8.3.1 Every permutation in A_n , for $n \ge 3$, can be expressed as a product of 3 cycles.

Example: For $\alpha \in A_q$ write it as a product of 3-cycles: $\alpha = (137)(2854)(69)$

Swap Variation:

Variation: Legal move is to pick any 3 boxes and cycle their contents either to the left or to the right.

Observation: A permutation is obtainable from the solved state, through legal moves, if and only if it is expressible as a product of 3-cycles.

Corollary 8.4.1 — Solvability of Swap Variation. The Swap puzzle, where the legal moves consist of 3-cycles on any three boxes, is solvable if and only if the starting position is an even permutation.

Example: Determe the solvability of each puzzle in this variation of swap.



