Chapter 13 - Commutators

Definition 13.1.1 If g, h are two elements of a group G, then we call the element

$$[g,h] = ghg^{-1}h^{-1}$$

the **commutator** of g and h.

Note: If g and h commute then [g,h] =

[g,h] provides a measure for how much g and h fail to commute.

If α , β are permutations, and α , β fail to commute by "just a little bit" then $[\alpha,\beta]$ will be "close" to ϵ i.e. it will only permute a few numbers.

Example: In S_3 let $\alpha = (13)$, $\beta = (123)$

Creating Puzzle Moves with commutators:

We will concentrate on permutations in Sn.

Definitions: For $\alpha \in S_n$, define the fixed set of α by $fix(\alpha) = \{ m \in [n] \mid \alpha(m) = m \}$

(This is just the set of numbers that would appear as 1-cycles in the disjoint cycle form of ∞ .)

The moved set of α is the complement of fixe(α): $mov(\alpha) = fix(\alpha) = \{ m \in [n] \mid \alpha(m) \neq m \}$

(This is the set of all numbers which appear in cycles of length ≥ 2 in the disjoint cycle form of \propto .)

For
$$A \subset [n]$$
, and $\alpha \in Sn$ we define $\alpha A = \{ \alpha(\alpha) \mid \alpha \in A \}$

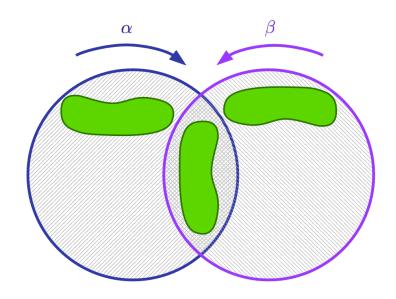
called the image of A under a.

Note: $|\alpha A| = |A|$ since α is injective.

Example: Let α=(1539)(411) ∈ S13

When is [x,B] close to the identity:

We'll look at conditions for which mov ($[\alpha,\beta]$) is small. First, consider the diagram:



 $\operatorname{mov}([\alpha, \beta]) \subset \operatorname{mov}(\alpha, \beta) \cup \alpha^{-1} \operatorname{mov}(\alpha, \beta) \cup \beta^{-1} \operatorname{mov}(\alpha, \beta)$

If $m \in [n]$ is moved by $[\alpha,\beta]$, i.e. $m \in mou([\alpha,\beta])$ then both:

- (a) me mov (x) or B(m) e mov (x); and
- (b) $m \in mov(\beta)$ or $\alpha(m) \in mov(\beta)$

In other words,

$$(*) \quad \text{mov}([\alpha,\beta]) = \left(\text{mov}(\beta) \cup \alpha^{-1}\text{mov}(\beta)\right) \cap \left(\text{mov}(\alpha) \cup \beta^{-1}\text{mov}(\alpha)\right)$$

Proof of (a), (b):

(a)

(b) Proof similar to part (a).

Another way to write (*) is

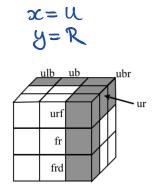
This says:

If α , β are puzzle moves then $[\alpha, \beta]$ only affects pieces that are in, or moved to, locations that are moved by both α and β .

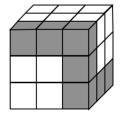
To create a move which only affects a few pièces choose α and β to have very little overlap.

Creating Moves on Rubik's Cube:

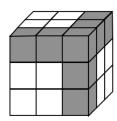
Puzzle moves [x,y]:



(a) Possible cubies moved by $URU^{-1}R^{-1}$.



(b) **Z-commutator**: Shading indicates locations changed by $FRF^{-1}R^{-1}$



(c) **Y-commutator**: Shading indicates locations changed by $FR^{-1}F^{-1}R$

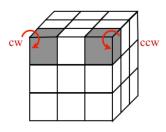
Figure 13.1: Y- and Z- commutators

Consider



 $x = LD^2L^{-1}$ (swaps rdb and lfu) y = U

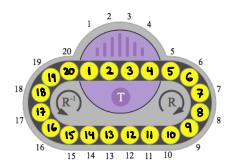
Figure 13.2: cubies moved by $[LD^2L^{-1}, U]$.



$$x = LD^2L^{-1}F^{-1}D^2F$$
 (twists ufl)
 $y = U$

Figure 13.3: cubies moved by $[LD^2L^{-1}F^{-1}D^2F, U]$.

Oval Track Puzzle:



$$[R^{-3},T] = (147)(23)(56)$$

 $[R^{-3},T]^2 = (174)$

$$mov(T) = \{1, 2, 3, 4\}$$

 $mov(R) = \{1, 2, ..., 20\}$

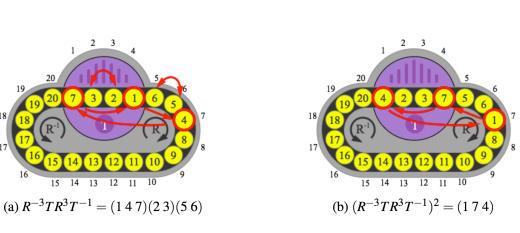


Figure 13.8: Basic commutators on the Oval Track puzzle