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Abstract 

Dunes are bedforms commonly found in sand-bedded rivers. They are important 

sources of flow resistance and mechanisms for sediment transport, so there is a 

practical need to directly predict dune dimensions.  Migrating dunes also leave 

signatures of their presence and evolution as cross-strata in sand deposits, which can 

be used to indirectly hindcast paleo-flows.  The most common method to predict 

dimensions in modern flows or hindcast paleo-flows is depth-scaling relations, which 

assume a depth control on dunes.  There is substantial scatter about depth-scaling 

relations, suggesting that other physical processes may control dimensions.  This study 

identifies primary controls on dune dimensions in rivers through a meta-analysis of 

published dune data, and a series of flume experiments.  The data compilation shows 

approximately two orders of magnitude variation in dune height and length at any given 

flow depth.  Dune heights in shallow flows (< 2.5 m), where asymmetric dunes with high 

lee angles are common, grow relatively higher in the flow than symmetrical low lee angle 

dunes in deeper channels (> 2.5 m).  The data set is used to provide depth-scaling 

relations with added statistical uncertainty.  Scatter about the scaling relations is 

attributed to natural variability in dune dimensions and transport stage effects.  Flume 

experiments are used to better identify controls on dune dimensions.  Results confirm 

dune-depth scaling is weak and that transport stage is a fundamental control.  The 

experimental data are used to derive new non-linear scaling relations between 

equilibrium dune dimensions and transport stage.  The relations provide a physically-

sound method to guide predictions of dune dimensions in rivers and paleo-

reconstructions from estimated dune dimensions in the rock record.  A series of 

experimental observations of dune growth from a flat bed were also made.  The results 

show that growth behaviour also depends on transport stage, and the time to equilibrium 

dimensions decreases non-linearly with transport stage.  The observations are used to 

propose a series of relations that can predict dune dimensions through time as they 

respond to an imposed flow. 

Keywords:  rivers; geomorphology; sedimentology; bedforms; dunes; sediment 

transport 



iv 

Dedication 

To my brother, Dylan, who may not have had much time for this “book learnin’” but 

would have been impressed with it nonetheless. 



v 

Acknowledgements 

Thanks to my supervisor, Jeremy Venditti, for the guidance and encouragement 

along the way.  Jeremy’s unwavering support has helped me become a much more 

confident researcher over the years.  I am also grateful for our conversations about 

science and academia, in general.  These talks provided valuable insight into how to be 

successful in my studies and career, while maintaining my core beliefs. 

Mike Church has also played a pivotal role in my career and this work.  Not only 

is Mike’s passion for the geosciences inspirational, he always saw potential in me as a 

researcher and provided constant support.  I would also like to thank Ray Kostaschuk for 

encouraging me when I was a student at Guelph.  Ray’s enthusiasm and attitude 

towards science (and low-angle dunes) often provided me with extra motivation.     

Thanks to Shahin Dashtgard for coming on-board and providing thoughtful 

critiques that led to a much stronger dissertation.  I am also grateful for Brent Ward and 

David Mohrig’s comments and discussion surrounding this work.  Matt Akenhead, 

Malcolm Little, Martin Lin, Kirsti Fairweather, Kyle Kusack, Moslem Kazemi, and B-Jae 

Kelly provided support at various stages that contributed to the success of this project.  

I am privileged to have met great friends at SFU who enriched this experience in 

so many ways. I am especially grateful to Megan Hendershot, Maureen Attard, Sheena 

Spencer, Alex Gitto, Dan Haught, Eva Kwoll, Jonny Cripps, Michael Martin, and Leon 

Hoffman who were always there to talk school life or utter non-sense.  While there are 

too many many friends outside of SFU to list here, their support and encouragement (in 

various forms) were constant sources of strength. 

I would like to thank my partner, Christy Gunn, who patiently stood with me 

during the ups and downs of this process.  She made the highs so much better, and the 

lows seem not so bad.  Her support has meant the world to me. 

Finally, I must thank my family.  Each of them has been instrumental in helping 

me achieve this goal in their own unique way.  The one constant from them all has been 

complete support to pursue my goals.  I am incredibly grateful for the foundation they 

provided me with (and continue to provide).  Without that solid foundation, this would 

have been a heck of a lot tougher. 



vi 

Table of Contents 

Approval .......................................................................................................................... ii 

Abstract .......................................................................................................................... iii 

Dedication ...................................................................................................................... iv 

Acknowledgements ......................................................................................................... v 

Table of Contents ........................................................................................................... vi 

List of Tables .................................................................................................................. ix 

List of Figures.................................................................................................................. x 

List of Notations ............................................................................................................ xv 

Preface......................................................................................................................... xix 

Chapter 1. Introduction .............................................................................................. 1 

1.1. The Bedform Continuum ........................................................................................ 2 

1.2. Dune Typology ...................................................................................................... 5 

1.3. Scaling of Dunes ................................................................................................... 8 

1.4. Physical Controls on Dune Size and Growth ....................................................... 11 

1.5. Scope and Objectives .......................................................................................... 13 

Chapter 2. Reevaluating Dune Scaling Relations .................................................. 15 

2.1. Introduction .......................................................................................................... 15 

2.2. Dune Scaling Relations ....................................................................................... 20 

2.2.1. Yalin (1964) ................................................................................................. 20 

2.2.2. Gill (1971) .................................................................................................... 23 

2.2.3. Allen (1978) ................................................................................................. 24 

2.2.4. van Rijn (1984) ............................................................................................ 25 

2.2.5. Julien and Klaassen (1995) ......................................................................... 27 

2.2.6. Karim (1995) ................................................................................................ 27 

2.2.7. Karim (1999) ................................................................................................ 28 

2.3. Data Compilation ................................................................................................. 28 

2.4. Assessment of the Relations ............................................................................... 34 

2.5. Reevaluation of the Data Set ............................................................................... 39 

2.6. Dune-Depth Scaling Revisited ............................................................................. 42 

2.6.1. Regression analysis and prediction intervals ............................................... 43 

2.6.2. Non-parametric approach ............................................................................ 49 

2.7. Synthesis ............................................................................................................. 51 

2.7.1. Are dunes depth-controlled? ........................................................................ 52 

2.7.2. What are the fundamental controls on dune dimensions? ............................ 54 

2.7.3. Why do dunes appear to scale with depth? ................................................. 56 

2.8. Application ........................................................................................................... 58 

2.9. Conclusions ......................................................................................................... 60 

Chapter 3. The Transport Scaling of Dunes ........................................................... 62 

3.1. Introduction .......................................................................................................... 62 



vii 

3.2. Methods .............................................................................................................. 66 

3.2.1. Experimental Design.................................................................................... 67 

3.2.2. Measurements ............................................................................................. 68 

3.2.3. Sediment Transport Measurements ............................................................. 68 

3.2.4. Filtering method ........................................................................................... 70 

3.2.5. Data Analysis............................................................................................... 72 

3.2.6. Automated bedform dimension method ....................................................... 74 

3.2.7. Equilibrium Test ........................................................................................... 75 

3.3. Observations ....................................................................................................... 76 

3.3.1. Automated Method Comparison .................................................................. 76 

3.3.2. Equilibrium Identification .............................................................................. 77 

3.3.3. Mean flow conditions ................................................................................... 78 

3.3.4. Sediment Transport ..................................................................................... 80 

3.3.5. Bedform Morphology and Dimensions ......................................................... 81 

3.3.6. Variability in Dimensions .............................................................................. 85 

3.3.7. Bedform Response to Flow .......................................................................... 87 

3.4. Dune-scaling ....................................................................................................... 91 

3.4.1. Depth-scaling .............................................................................................. 91 

3.4.2. Transport stage scaling ............................................................................... 93 

3.5. Discussion ........................................................................................................... 97 

3.5.1. Depth-Scaling Revisited .............................................................................. 97 

3.5.2. The Role of Transport Stage on Bedform Dimensions ................................. 98 

3.5.3. Controls of Bedform Dimension Variability ................................................. 100 

3.5.4. A physically realistic method for predicting bedform dimensions in rivers .. 101 

3.6. Conclusions ....................................................................................................... 102 

Chapter 4. Dune Growth from a Flat Bed .............................................................. 104 

4.1. Introduction ........................................................................................................ 104 

4.2. Methods ............................................................................................................ 110 

4.2.1. Experimental Design.................................................................................. 110 

4.2.2. Measurements ........................................................................................... 111 

4.2.3. Data Analysis............................................................................................. 112 

4.3. Results .............................................................................................................. 113 

4.3.1. Dimensions through Time .......................................................................... 113 

4.3.2. Phenomenology of Bedform Growth .......................................................... 115 

4.3.3. Shape of Growth Curves ........................................................................... 120 

4.3.4. Time to Equilibrium .................................................................................... 124 

4.3.5. Bedform Growth Constant ......................................................................... 126 

4.4. Discussion ......................................................................................................... 127 

4.4.1. Morphodynamics of bedforms growth ........................................................ 127 

4.4.2. Towards a method for predicting bedform growth in rivers ......................... 128 

4.5. Conclusions ....................................................................................................... 133 

Chapter 5. Synthesis and Conclusions ................................................................ 134 

5.1. Predictive power of dune scaling relations ......................................................... 134 



viii 

5.2. Depth and transport stage controls on dune dimensions and variability ............. 136 

5.3. Physically-based scaling relations that include uncertainty ................................ 138 

5.4. Dune growth from a flat bed .............................................................................. 139 

5.5. A method for predicting dune growth ................................................................. 140 

References ................................................................................................................. 142 

Appendix A. Data Source References .................................................................. 156 

Appendix B.  Chapter 2 Supplementary Data File ................................................ 160 

Appendix C.  Detailed Seatek Data Filtering Method............................................ 161 

Appendix D.  Chapter 3 Supplementary Figures .................................................. 165 

Appendix E.  Chapter 3 Supplementary Tables .................................................... 167 

Appendix F.  Chapter 3 Supplementary Videos .................................................... 169 

Appendix G.  Chapter 4 Supplementary Figures .................................................. 170 

Appendix H.  Chapter 4 Supplementary Videos ................................................... 179 
 



ix 

List of Tables 

Table 2.1. Flume data used to test the scaling relations. See Appendix A for 
complete references and Appendix B for detailed data set. .................... 29 

Table 2.2. Field data used to test the scaling relations. See Appendix A for complete 
references and Appendix B for detailed data set. ................................... 30 

Table 2.3. Performance statistics for prediction of observed variables using the dune 
height scaling relations. .......................................................................... 35 

Table 2.4. Performance statistics for prediction of observed variables using the dune 
length scaling relations. .......................................................................... 36 

Table 2.5. The scaling relations and summary statistics from the linear regression 
analysis. ................................................................................................. 45 

Table 2.6. Variables needed to calculate a prediction interval. ................................ 47 

Table 2.7. Median scaling relations and their associated uncertainty range bounds.
 ............................................................................................................... 50 

Table 3.1. Initial experimental conditions. ............................................................... 67 

Table 3.2. Mean flow conditions and bedform dimensions for the 10-hour statistically 
stationary observation period. ................................................................ 78 

Table 3.3. Mean bedform characteristics and Coefficient of Variation (CV). ............ 84 

Table 3.4. Results of regression analysis using mean values and Equation 3.10. ... 96 

Table 4.1. Initial experimental and equilibrium conditions (see Chapter 3 for details).
 ............................................................................................................. 111 

Table 4.2. Model fitting results. ............................................................................. 122 

Table 4.3. Height and length growth constants from Equations 4.4. ...................... 126 

 



x 

List of Figures 

Figure 1.1. The bedform continuum (e.g., Simons & Richardson, 1961; Guy et al., 
1966; Southard & Boguchwal, 1990; Cartingy et al., 2014) (figure 
modified from Venditti 2013)..................................................................... 4 

Figure 1.2. Schematics of angle of repose and low angle symmetric dune 
morphologies (e.g., Smith and McLean, 1977; Kostaschuk & Villard, 
1996; Bradley et al., 2013; Hendershot et al., 2016).  L is dune length, 
and H is dune height. Flow is from left to right (figure from Venditti (2013))
 ................................................................................................................. 7 

Figure 1.3. (a) Dune Height (H) and (b) Length (L) against depth (h) using data from 
Allen (1982).  The grey areas cover the plot position of the data in Allen’s 
(1982) complilation (figure from Venditti, 2013). ....................................... 9 

Figure 1.4. The aspect ratio (H/L) of equilibrium ripples and dunes plotted as a 
function of the transport stage (𝜏∗/𝜏∗𝑐).  The dark and light shaded areas 
(drawn in by Lin and Venditti (2013), based on data from Yalin (1972)) 
represent data clouds for ripples and dunes, respectively (figure from Lin 
and Venditti, 2013). ................................................................................ 10 

Figure 1.5. Dune response ((a) Stable, (b) Growth, (c) Damping) to position of the 
maximum sediment flux (circle). ............................................................. 12 

Figure 1.6. Cartoon demonstrating how sediment eroded along the stoss may bypass 
the crest and be deposited further downstream.  This starves the crest of 
sediment, causing the dune to decrease in height. ................................. 13 

Figure 2.1. (a) Bathymetric map of the Main Arm of the Fraser River off Steveston, 
British Columbia Canada (from Hendershot et al., 2016). Individual dune 
(b) height and (c) length plotted as a function of flow depth.  Data from the 
Mississippi River provided by Jeffery Nittrouer (unpublished) and from the 
Parana River provided by Dan Parsons (unpublished). Columbia River 
data are from Smith & McLean (1977) and the Fraser River data are from 
the centerline of panel a. ........................................................................ 19 

Figure 2.2. Dune height plotted as a function of depth using the scaling relations of 
(a) Yalin (1964) with different transport stages, (b) Gill (1971) with 
triangular dunes and symmetrical dunes at Froude numbers of 0.2 and 
0.6 under mixed load conditions, (c) Julien and Klaassen (1995) with 
varying median grain sizes and (d) Karim (1999) with different lower 
regime 𝐹𝑟 numbers.  The black dashed line in each panel is the Yalin 
(1964) simplified equation H = h/6. ......................................................... 23 

Figure 2.3. (a) Relative dune height plotted against Shields number using Allen 

(1978).   (b) Relative dune height defined as 
𝐻

ℎ
∗ (

𝐷50

ℎ
)

−0.3
 plotted against 

the van Rijn (1984) transport stage parameter. (c) Relative dune height as 
a function of a suspension criteria defined as the ratio of shear velocity 
(𝑢∗) to settling velocity (𝑤𝑠) using Karim (1995).  The black dashed line is 
the simplified version of Yalin (1964). ..................................................... 25 

Figure 2.4. Dune height plotted as a function of length. ............................................ 31 

Figure 2.5. (a) Dune height plotted against flow depth. (b) Dune length plotted 
against flow depth.  The dashed black lines are limits reported by Allen 



xi 

(1982) and the solid black lines are the simplified H = h/6 and L = 5h 
scaling relations of Yalin (1964). ............................................................ 32 

Figure 2.6. Individual (a) dune height and (b) length plotted against depth 
immediately downstream of the gravel sand transition in the Fraser River.
 ............................................................................................................... 33 

Figure 2.7. Probability histograms of (a) dune height (H) and (b) dune length (L) 
relative to depth (h) using all data. In (c) and (d) data are separated into 
flume and field observations.   Relative dune height is presented as h/H 
(rather than H/h) to quote ratios as integers. .......................................... 34 

Figure 2.8. Comparison of observed and predicted dune heights.  Predictions are 
made using (a) Yalin (1964), (b) simplified Yalin (1964), (c) Gill (1971) 
with triangular coefficient (𝛽  = ½), (d) Gill (1971) with symmetrical 

coefficient (𝛽 = 2/𝜋), (e) Allen (1978), (f) van Rijn (1984), (g) Julie and 
Klaassen (1995), (h) Karim (1995), and (i) Karim (1999).  The 1:1 (perfect 
prediction) is indicated by the solid black line, the dotted line is for a factor 
of 1.5 and the dashed line is for a factor of 3.5. ...................................... 38 

Figure 2.9. Comparison of observed and predicted dune length.  Predictions are 
made using (a) Yalin (1964), (b) van Rijn (1984) and (c) Julie and 
Klaassen (1995). The solid black line indicates perfect prediction, the 
dotted line is for a factor of 1.5 and the dashed line is for a factor of 3.5.39 

Figure 2.10. Probability histograms of dune (a) height (H) and (b) length (L) relative to 
depth (h), separated by flows < 2.5 m and > 2.5 m deep. ....................... 40 

Figure 2.11. a) High angle asymmetric dune (HAD) planform compared to low angle 
symmetric dune (LAD) shape (from Venditti 2013).   b) Reach-averaged 
lee angle plotted as a function of reach-averaged depth.  Flume data are 
from Robert and Uhlman (2001), Tujinder et al. (2009) and Blom et al. 
(2003).  Field data are from Gabel (1993), Venditti and Bauer (2005), 
Prent and Hickin (2001), Carling et al. (2000), Wilbers (2004), Kostaschuk 
and Ilersich (1995), Bradley et al. (2013), and Roden (1998).  Also plotted 
are unpublished data (open triangles) from the Fraser River, the Parana 
River (provided by Dan Parsons and Ray Kostaschuk), and the 
Mississippi River (provided by Jeffery Nittrouer). .................................... 41 

Figure 2.12. Relations and prediction intervals with BCF applied between flow depth 
and dune height derived from (a) regression analysis and (b) calculation 
of the median relations (see Section 2.6.2). ........................................... 44 

Figure 2.13. Relations and prediction intervals with BCF applied between flow depth 
and dune length derived from (a) regression analysis and (b) calculation 
of the median relation (see Section 2.6.2).  The entire data set is 
presented here without any separation by flow depth. ............................ 45 

Figure 2.14. Relations and prediction intervals with BCF applied between dune height 
and flow depth derived from (a) regression analysis and (b) calculation of 
the median relations using field data only. .............................................. 48 

Figure 2.15. Cumulative probability plots of (a) h/H with data separated at depths < 2.5 
m and depths > 2.5 m, (b) L/h using the entire data set and (c) h/H for 
field data only. ........................................................................................ 49 

Figure 2.16. Idealized cumulative probability plots that demonstrate how the prediction 
intervals about the median were determined. ......................................... 50 



xii 

Figure 2.17. Dune growth curves for height (H) and length (L) from experiments by 
Venditti et al. (2005b).  For each flow, the average depth was held 
constant at 0.15 m but the mean flow velocity was different.  He and Le are 
average equilibrium heights and lengths, respectively. ........................... 54 

Figure 2.18. The aspect ratio (H/L) of the dune in the data compilation plotted as a 
function of (a) transport stage (𝜏∗/𝜏∗𝑐) and (b) suspension criterion  

(𝑢∗/𝑤𝑠).  The shaded area (drawn by Venditti, 2013) in (a) represents the 
data cloud from Yalin (1972) for dunes.  Data included here are 254 
points from flume experiments and 99 from field observations. .............. 55 

Figure 2.19. Results of flume experiments by Venditti et al. (2016) showing (a) dune 
aspect ratio, (b) dune height, and (c) dune length plotted as a function of 
transport stage (𝜏∗/𝜏∗𝑐).  Blue diamonds, red squares and green triangles 
are reach averaged values from individual runs under bedload (BLD), 
mixed load (MXD), and suspended sediment (SSD) conditions, 
respectively.  The black circles represent the averages of all the runs for 
each condition. ....................................................................................... 56 

Figure 3.1. Grain-size distribution of sediment used in experiments ......................... 66 

Figure 3.2. (a) Example of a contour map generated from Seatek raw data and (b) a 
contour map using the same data after the filter has been applied.  (c)  
Unfiltered (red) and filtered (black) data from the center Seatek sensor.  
Data are from a Run 15-UMIX, when increased sediment in suspension 
added extra noise in the raw data. ......................................................... 72 

Figure 3.3. Example of a center profile from a 20-UMIX scan.  Data in the shaded 
box have been excluded from the slope calculation to remove the effect of 
the water surface being drawn down over the large dune. ...................... 73 

Figure 3.4 Comparison between Hp at (a) 15 cm, (b) 20 cm, (c) 25 cm initial flow 
depths and Lp at (d) 15 cm, (e) 20 cm, (f) 25 cm initial flow depths for the 
manual method and the McElroy (2009) automated method. ................. 77 

Figure 3.5. Time series of (a) reach averaged flow depth (hR) and (b) reach averaged 
mean velocity (UR) for all conditions. ...................................................... 79 

Figure 3.6. Time series of 𝑢∗ 𝑤𝑠⁄
𝑅
 separated by initial depths of (a) 15 cm, (b) 20 cm 

and (c) 25 cm and 𝜏∗/𝜏∗𝑐𝑅
 for (d) 15 cm, (e) 20 cm and (f) 25 cm.  The 

dashed line indicates the suspension threshold 𝑢∗ 𝑤𝑠⁄  = 1. ..................... 80 

Figure 3.7. (a) Bedload qbl, (b) suspended load qss, (c) total load flux qs, (d) qss/qs and 
(e) qs/qbl versus 𝑢∗ 𝑤𝑠⁄ .  (f) Bedload qbl, (g) suspended load qss, (h) total 

load flux qs (i) qss/qs and (j) qs/qbl versus 𝜏∗/𝜏∗𝐶.  The black line in (a) and 
(f) is the Fernandez-Luque and van Beek (1976) bedload relation. ........ 81 

Figure 3.8. Examples from the time series of bed configurations between two scans 
(0.3 hrs) from (a) 15-THLD (Appendix F; Supplementary Video F1), (b) 
15-BLD (Appendix F; Supplementary Video F2), (c) 15-LMIX (Appendix F; 
Supplementary Video F3), (d) 15-UMIX (Appendix F; Supplementary 
Video F4), and (e) 15-SPSN (Appendix F; Supplementary Video F5). .... 83 

Figure 3.9. Time series of HR at initial depth of (a) 15 cm, (b) 20 cm, (c) 25 cm, and 
LR at (d) 15 cm, (e) 20 cm, (f) 25 cm. ...................................................... 85 

Figure 3.10. (a) Box and whisker plots showing median H, 25th and 75th percentile, and 
the 5th and 95th percentile.  Normalized frequency plots of HR for the (b) 
15 cm (c) 20 cm and (d) 25 cm runs.  (e) Box and whisker plots showing 



xiii 

median L, 25th and 75th percentile, and the 5th and 95th percentile.  
Normalized frequency plots of LR for the (b) 15 cm (c) 20 cm and (d) 25 
cm runs. ................................................................................................. 87 

Figure 3.11. Relations between (a-c) dune height (H), (d-f) length (L) and (g-i) 

steepness (H/L) and flow characteristics, including depth (h), mean 
velocity (U) and Froude number (Fr). Circles, Squares and diamonds are 
from runs with the initial depths of 15 cm, 20 cm, and 25 cm, respectively. 
Smaller symbols are reach-averaged values and larger symbols are 
mean values for a run............................................................................. 89 

Figure 3.12. Relation between (a-b) dune height (H), (b-c) length (L) and (c-d) 

steepness (H/L) and transport stage defined as 𝑢∗ 𝑤𝑠⁄  and 𝜏∗/𝜏∗𝐶. Circles, 
Squares and diamonds are from runs with the initial h of 15 cm, 20 cm, 
and 25 cm, respectively. Smaller symbols are reach-averaged values and 
larger symbols are mean values for a run............................................... 91 

Figure 3.13. (a) Dune height and (b) length plotted against depth for each scan.  
Circles, Squares and diamonds are from runs with the initial h of 15 cm, 
20 cm, and 25 cm, respectively. The solid lines are Bradley and Venditti’s 
(2017) depth-scaling relations for flows < 2.5 m deep.  Dashed and 
Dotted lines are their 50% and 95% uncertainty bounds, respectively. ... 92 

Figure 3.14. Relations between mean dune dimensions and mean flow variables: (a) 

𝐻/𝐿̅̅ ̅̅ ̅̅  (b) 𝐻/ℎ̅̅ ̅̅ ̅̅ , (c) and 𝐿/ℎ̅̅ ̅̅ ̅ versus 𝑢∗/𝑤𝑠
̅̅ ̅̅ ̅̅ ̅̅

 and (d) 𝐻/𝐿̅̅ ̅̅ ̅̅ , (e) 𝐻/ℎ̅̅ ̅̅ ̅̅ , (f) and 𝐿/ℎ̅̅ ̅̅ ̅ 

versus  τ*/τ*c
̅̅ ̅̅ ̅̅ ̅̅

.  The red circle in (b) and (e) indicate the outlier 𝐻/ℎ̅̅ ̅̅ ̅̅  value 
from the 25-BDLD stage that was omitted from the regression. Circles, 
Squares and diamonds are from runs with the initial h of 15 cm, 20 cm, 
and 25 cm, respectively.  The dotted lines represent the 95% confidence 
limits of the regression relations. ............................................................ 95 

Figure 3.15. Relations between the median dune dimensions and median flow 
variables: (a) H/Lmed, (b) h/Hmed, (c) and L/hmed versus 𝑢∗/𝑤𝑠𝑚𝑒𝑑

 and (d) 

H/Lmed, (e) h/Hmed, (f) and L/hmed versus 𝜏∗/𝜏∗𝐶 𝑚𝑒𝑑 . .................................. 97 

Figure 4.1. Examples of bedform (a) height and (b) length growth time series data 
from Iseya (1984; Run 3) and (c) height and (d) length growth time series 
data from Venditti et al. (2005a; Flow B). The power relations are defined 
by Equations 4.2a and 4.2b, and the exponential relations are Equations 
4.3a, and 4.3b. ..................................................................................... 108 

Figure 4.2. Bedform height (a-e) and length (f-i) through time for the different 
transport stage conditions.  The lighter blue and grey symbols are from 
the redundant scans for the 15 and 20 cm runs, respectively. .............. 114 

Figure 4.3. Bed topography for the Threshold Stage at an initial depth of 15 cm (15-
THLD) at (a) 0.17, (b) 1.25, (c) 1.42 and (d) 6.93 hrs. (Appendix H, 
Supplementary Video H1). ................................................................... 116 

Figure 4.4. Bed topography for the Bedload Stage at an initial depth of 15 cm (15-
BDLD) at (a) 0.17, (b) 0.50, (c) 1.17 and (d) 5.18 hrs (Appendix H, 
Supplementary Video H2). ................................................................... 117 

Figure 4.5. Bed topography for the Lower Mixed Stage at an initial depth of 15 cm 
(15-LMIX) at (a) 0.05, (b) 0.24, (c) 0.58 and (d) 0.92 hrs (Appendix H, 
Supplementary Video H3,H3b). ............................................................ 118 



xiv 

Figure 4.6. Bed topography for the Upper Mixed Stage at an initial depth of 15 cm 
(15-UMIX) at (a) 0.03, (b) 0.2, and (c) 0.58 hrs. (Appendix H, 
Supplementary Video H4, H4b). ........................................................... 118 

Figure 4.7. Bed topography for the SPSN at an initial depth of 15 cm (15-SPSN) at 
(a) 0 and (b) 0.17 hrs (Appendix H, Supplementary Video H5). ............ 119 

Figure 4.8. Bed topography for the Threshold Stage at an initial depth of 25 cm at (a) 
1.59, (b) 2.92, (c) 4.76 and (d) 10.94 hrs (Appendix H11, Supplementary 
Video H11). .......................................................................................... 120 

Figure 4.9. Example growth curves of H/He of L/Le plotted with t/te. ........................ 121 

Figure 4.10. Curve fits to the height (a-e) and length (f-j) time series data until 
equilibrium is achieved in the runs with 15 cm initial flow depths.  Two 
hours of data are shown for the SPSN time series (e,j) since equilibrium 
was instantaneously achieved.  The grey circles are from the short scans 
and the black are from the long scans. ................................................. 123 

Figure 4.11. Equilibrium transport stage against te for (a) height and (b) length using 
data from the experiments presented here plus data of Iseya (1984) and 
Venditti (2005a). ................................................................................... 125 

Figure 4.12. Examples of exponential fits using Equations 4.4 with b = 4.59 to bedform 
(a) height and (b) length growth time series data from Iseya (1984; Run 3) 
and (c) height and (d) length growth time series data from Venditti et al. 
(2005a; Flow B). ................................................................................... 127 

Figure 4.13. Time to equilibrium plotted against transport stage using the same non-
dimensional variables presented in Coleman et al. (2005). The lighter and 
darker shades are height and length data, respectively. ....................... 130 

Figure 4.14. Equilibrium transport stage against the non-dimensional time to 

equilibrium for  (a) 𝑡𝑒𝐻 (
𝑢∗

ℎ
), (b) 𝑡𝑒𝐿 (

𝑢∗

ℎ
), (c) 𝑡𝑒𝐻 (

𝑈̅

ℎ
) and (d) 𝑡𝑒𝐿 (

𝑈̅

ℎ
)  using 

data from the experiments presented here, Iseya (1984) and Venditti 
(2005a). ............................................................................................... 132 

 

 



xv 

List of Notations 

𝑎 Parabolic shape coefficient 

𝑎𝐻 Coefficient that describes equilibrium dune height 

𝑎𝑖 Regression intercept 

𝑎𝐿 Coefficient that describes equilibrium dune length 

𝛼 Standard error of regression 

𝐵𝐶𝐹 Bias Correction Factor 

𝑏 Horizontal parabolic position coefficient  

𝑏𝐻 Height growth constant 

𝑏𝐿 Length growth constant 

𝛽 Dune shape coefficient  

𝛽𝐻 ratio of a subsample mean height compared to the mean value 

𝛽𝐿 ratio of a subsample mean length compared to the mean value 

𝜀 Scaling coefficient  

𝐶 Concentration of suspended sediment at a height above the 
bed 

𝐶𝑎 Reference suspended sediment concentration 

𝐶ℎ̅ Mean depth-averaged suspended sediment concentration  

𝐶′ Chezy-coefficient 

CV Coefficient of Variation 

𝑐 Vertical parabolic position coefficient  

𝐷 Grain size 

𝐷50 Median grain size 

𝐷90 90% percentile of the grain size 

𝛿 Coefficient describing diffusion between sediment and fluid 
particles 

𝐹𝑟 Froude number 

𝐹𝑟̅̅ ̅ Average Froude number 

𝛾 Growth exponent 

𝑔 Gravitational acceleration 

𝐻 Dune height 

𝐻̅ Mean dune height 

𝐻̂ Subsample mean dune height 



xvi 

𝐻𝑒 Equilibrium dune height 

𝐻𝑖 Log-transformed height for which prediction is being made 

𝐻𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 Dune height prediction interval 

𝐻𝑙𝑜𝑔
̅̅ ̅̅ ̅̅  Mean of the log-transformed dune height values 

𝐻𝑝 Averaged bedform height using one profile 

𝐻𝑝𝑟𝑒𝑑 Log-transformed predicted dune height 

𝐻𝑅 Reach-average dune height 

𝐻/𝐿 Dune steepness 

𝐻/𝐿𝑅 Reach-average dune steepness 

𝐻/𝐿̅̅ ̅̅ ̅̅  Mean dune steepness 

ℎ Flow depth 

ℎ̅ Mean flow depth 

ℎ𝑖 Log-transformed depth for which prediction is being made 

ℎ𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 Flow depth prediction interval 

ℎ𝑙𝑜𝑔
̅̅ ̅̅ ̅̅  Mean of the log-transformed depth values 

ℎ𝑝𝑟𝑒𝑑 Log-transformed predicted flow depth 

ℎ𝑅 Reach averaged depth 

𝑘 von Karman constant 

𝐿 Dune length 

𝐿̅ Mean dune length 

𝐿̂ Subsample mean dune length 

𝐿𝑒 Equilibrium dune length 

𝐿𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 Dune length prediction interval 

𝐿𝑝 Averaged bedform length using one profile 

𝐿𝑝𝑟𝑒𝑑 Log-transformed predicted dune length 

𝐿𝑅 Reach-average dune length 

𝑚 Regression slope 

𝑁 Number of data points 

Ƞ Empirical coefficient from the Einstein–Brown formula 

p Probability 

𝜌𝑠 Density of sediment 

𝜌𝑤 Density of water 

Q Discharge 



xvii 

qbl Bedload flux 

qs Suspended flux 

qss Total bed material flux 

𝑅𝑏 Hydraulic radius 

𝑅𝑒𝑔 Grain Reynolds number 

𝑆 Slope 

SbR Reach bed slope 

SwR Reach water surface 

𝑆𝐸𝐻 Standard error for height prediction 

𝑆𝐸𝐿 Standard error for length prediction 

𝑆𝐸𝐸𝐻ℎ Standard error of estimate for regression between dune height 
and flow depth 

𝑆𝐸𝐸ℎ𝐻 Standard error of estimate for regression between flow depth 
and dune height 

𝑆𝐸𝐸ℎ𝐿 Standard error of estimate for regression between flow depth 
and dune length 

𝜎𝐻 Standard deviation of the log-transformed dune height 

𝜎𝐻𝑅 Standard deviation of reach-averaged height data 

𝜎ℎ Standard deviation of the log-transformed depth 

𝜎𝐿𝑅 Standard deviation of reach-averaged length data 

𝑇 Transport stage parameter 

𝑡 Time  

𝑡𝑒 Time required to achieve equilibrium dimension 

𝑡𝑒𝐻 Time required to achieve equilibrium dune height 

𝑡𝑒𝐿 Time required to achieve equilibrium dune length 

𝑡∝  Two-tailed Student’s t-test value 

𝜏 Shear stress 

𝜏𝑐𝑟 Critical shear stress for particle movement 

𝜏𝑟𝑒𝑎𝑐ℎ Reach-average shear stress 

𝜏𝑡𝑜𝑡 Total bed stress 

𝜏∗ Shields number (non-dimensional shear stress) 

𝜏∗𝑐 Critical Shields number for sediment entrainment 

𝜏∗/𝜏∗𝑐 Transport stage 

𝜏∗/𝜏∗𝑐𝑅
 Reach-averaged transport stage 

𝜏∗/𝜏∗𝑐
̅̅ ̅̅ ̅̅ ̅̅  Mean transport stage 



xviii 

𝑈 Mean flow velocity 

𝑈ℎ
̅̅̅̅  Mean depth-averaged streamwise velocity 

𝑈𝑅 Reach-averaged mean flow velocity 

𝑢∗ Shear velocity 

𝑢′∗ Grain shear velocity 

𝑢∗𝑐 Critical grain shear velocity 

𝑢∗/𝑤𝑠 Suspension number 

𝑢∗ 𝑤𝑠⁄
𝑅
 Reach-average suspension number 

(𝑢∗/𝑤𝑠
̅̅ ̅̅ ̅̅ ̅̅ ) Average suspension number 

𝑤 Flume width 

𝑤𝑠 Particle settling velocity 

𝑧 Height above the bed 

𝑧𝑎 Height of reference suspended sediment concentration above 
the bed 

𝜁 Distribution and confidence interval constant 

 



xix 

Preface 

The research conducted in this thesis was lead by the author, Ryan Bradley, and 

the work presented in Chapters 1-5 was conducted with contribution from Professor 

Jeremy G. Venditti.  Professor Michael Church provided early reviews of Chapters 1-5 

and Professor Shahin Dashtgard provided early reviews of Chapters 1,3-5. 

Chapter 2 is a reprinted invited review from Earth-Science Reviews: 

Bradley, Ryan W., and Venditti, Jeremy G. (2017). Reevaluating dune scaling relations, 

Earth-Science Reviews, Volume 165, 2017, Pages 356-376, ISSN 0012-8252. 

Copyright 2017, with Permission from Elsevier. 

Chapter 3 will be submitted to the Journal of Geophysical Research: Earth 

Surface under the title Transport Stage Scaling of Dunes with R.W. Bradley and J.G. 

Venditti as the authors. 

Chapter 4 will be submitted to the Journal of Geophysical Research: Earth 

Surface under the title Dune Growth from a Flat Bed with R.W. Bradley and J.G. Venditti 

as the authors. 

 



1 

Chapter 1. Introduction 

Alluvial river channels are the product of complex interactions between water and 

sediment at the Earth’s surface.  The complexity of these fluvial and sedimentary 

processes is compounded by the range of spatial (e.g., grain to landscape) and temporal 

(e.g., seconds to centuries) scales at which they operate.  There has been a long history 

of research on river dynamics and morphology because rivers are sites of significant 

socioeconomic development and ecologic importance.  Despite over a century of 

detailed river studies, our ability to understand and predict river processes remains 

limited because of the inherent complexity.  

Low-gradient portions of river networks are typically sand-bedded.  The labile 

bed of these channels typically features sandy bedforms that exist at many different size 

scales and geometries, and dune bedforms are commonly found at scales smaller than 

channels.  Geomorphologists, sedimentologists, and engineers are particularly 

interested in dunes because they are important sources of flow resistance and 

mechanisms for sediment transport.  Dunes contribute to flow resistance by adding 

significant form drag (Einstein & Barbarossa, 1952; Engelund & Hansen, 1967; Van Rijn, 

1993) as dune-generated turbulence and flow separation result in the dissipation of 

mean flow energy (Nelson et al., 1993; Nezu & Nakagawa, 1993; Kwoll et al., 2016).  

The growth and migration of dunes can also result in significant bedload transport in 

rivers (Simons & Richardson, 1966; Mohrig & Smith, 1996; McElroy & Mohrig, 2009; 

Venditti et al., 2016) as dunes translate downstream by stoss erosion and lee slope 

deposition. Deformation of dunes during migration results in changes to shape, size and 

spacing that further contributes to sediment transport (McElroy & Mohrig, 2009; Ganti et 

al., 2013; Venditti et al., 2016).  Large volumes of bed material can also be moved via 

suspension by dune-generated turbulence (cf., Rood & Hickin, 1989; Kostaschuk & 

Church, 1993; Bradley et al., 2013).  Quantitative estimates of flow resistance (e.g., 

Engelund & Hansen, 1967; Fredsøe, 1982; van Rijn, 1984; Paarlberg et al., 2010), and 

sediment transport (e.g., Simons et al., 1965; Engel & Lau, 1980; van den Berg, 1987; 

Mohrig & Smith, 1996) usually require some measure of dune dimensions.  

Understanding the physical controls on dunes is crucial to strengthening our ability to 

predict dune characteristics in modern river flows.   
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Dunes also provide insight into past river flows on Earth or other planetary 

surfaces.  Migrating dunes leave behind characteristic primary sedimentary structures 

(cross-strata) in sand deposits that provide signatures of their presence and evolution.  

Cross-stratified units made up of cross-sets preserved between two successive 

erosional surfaces are formed by ancient dunes (e.g., Allen, 1970; Rubin & Hunter, 

1982; Jerolmack & Mohrig, 2005; Ganti et al., 2013) and are common features in 

sedimentary strata.  Cross-set thickness distribution is often linked to formative bedform 

dimension distributions theoretically (cf., Paola & Borgman, 1991; Bridge & Best, 1997) 

or empirically (cf., Bridge, 1997; Leclair et al., 1997; Leclair & Bridge, 2001; Leclair, 

2002).  Estimated dune heights, based on cross-strata, are used to make indirect first 

order estimates of flow depth in paleo-environmental reconstructions (e.g., Bridge & Tye, 

2000; Leclair & Bridge, 2001; Bridge, 2003; Adams & Bhattacharya, 2005; Ponten & 

Plink-Bjorklund, 2007; Lunt et al., 2013).  However, the success of these reconstructions 

depends critically on our understanding of what controls dune growth and dimensions in 

modern channels. 

This dissertation seeks to identify the controls on dune height and wavelength 

(herein referred to as length) in rivers and how dunes grow to a statistically steady state 

(equilibrium).  There are physically-based numerical models that predict the evolution of 

bedforms (e.g., Giri & Shimizu, 2006; Shimizu et al., 2009; Nelson et al., 2011), but 

these models require testing across a wide range of transport conditions.  Therefore, this 

study employs an empirical approach to understand the fundamental controls on 

bedform dimensions, which may be used to guide and refine existing theory and models.  

Before the specific objectives of the work are provided, a brief review of our current 

understanding of what controls bedform dimensions is presented.  The review 

emphasises flaws and gaps in theories that attempt to describe bedform development in 

rivers. 

1.1. The Bedform Continuum 

Bedforms in rivers are traditionally thought of as a continuum in which lower-

stage plane beds, ripples, dunes, upper-stage plane beds, antidunes and cyclic steps 

emerge as a typical sequence as flow velocity is increased over an initially flat bed 

(Simons & Richardson, 1961; Southard & Boguchwal, 1990; Venditti, 2013; Cartingy et 
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al., 2014).  The continuum is usually separated by the Froude number (𝐹𝑟), which is a 

ratio of inertial to gravitational forces expressed as:  

𝐹𝑟 =
𝑈̅

√𝑔ℎ
         (Eq 1.1) 

where 𝑈̅ is mean flow velocity, ℎ is flow depth and 𝑔 is gravitational acceleration.  Lower 

stage plane beds, ripples, and dunes fall under a ‘lower flow regime’ when flows are 

subcritical (𝐹𝑟 < 1).  As flows approach 𝐹𝑟 = 1 and become supercritical (𝐹𝑟 > 1), lower 

regime bedforms wash out to a plane bed and then form antidunes. These ‘upper flow 

regime’ features have relatively higher bed-material discharge and less flow resistance 

than lower regime bedforms.  
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Figure 1.1. The bedform continuum (e.g., Simons & Richardson, 1961; Guy et 
al., 1966; Southard & Boguchwal, 1990; Cartingy et al., 2014) (figure 
modified from Venditti 2013). 

The bedform continuum concept is a culmination of early efforts to predict 

bedform behavior (e.g., Simons & Richardson, 1961; Guy et al., 1966; Southard & 

Boguchwal, 1990), but is too simplistic in concept.  Other researchers have developed 

phase diagrams that apply the continuum concept to predict what type of bedform will 

appear under certain sets of hydraulic and sedimentary variables.  Southard and 

Boguchwal (1990) provide a series of widely cited phase diagrams that predict general 

bedform type based on grain size and mean flow velocity.  Others have developed 

phase diagrams using the Froude number and grain size (Vanoni, 1974), dimensionless 

shear stress and grain size (Allen, 1982; van Rijn, 1993; Southard, 1991; Carling, 1999), 

or grain settling velocity and the grain Reynolds number (Liu, 1957).  Some other phase 

diagrams use three variables.  Rubin and McCulloch (1980) offer three-variable phase 

diagrams that use grain size, flow, depth, and velocity, and Ohata et al. (2017) use a 

variety of flow hydraulic and sediment variables in 3-D dimensionless space.   
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The sheer volume of phase diagrams, employing different hydraulic and 

sedimentary controls, suggests that the range of controls on bedforms has not been fully 

identified.  Furthermore, even the most well defined and widely applied phase diagrams 

show overlap in existence fields.  Most phase diagrams have been derived using 

observations entirely from controlled flume experiments where ℎ < 1 m.  Attempts to 

extrapolate to field conditions, especially in deeper sand-bedded rivers, have shown that 

these phase diagrams cannot predict bedform types in all environments (Kostaschuk & 

Villard, 1996; van den Berg et al., 1998). These caveats are concerning since 

sedimentologists often apply phase diagrams to interpret flows that formed sedimentary 

structures, and engineers use them in natural channel design and river engineering 

problems. 

1.2. Dune Typology 

A variety of different metrics and terms have been used to distinguish lower flow-

regime bedforms, but there is some commonly accepted terminology for dunes used 

throughout this dissertation.  Dunes are large-scale, flow-transverse bed features that 

commonly form in sediments ranging from fine sand to gravel (grain diameters: 0.125 

mm to 64 mm).  They have dimensions that range anywhere from a few centimetres to 

several metres in height and can be up to 1000 m in length.  Dunes are often considered 

to be distinct from smaller scale ripples, even though they can display similar geometric 

shapes.  Ripple dimensions scale with grain size (Yalin, 1964; 1985; Baas, 1994) and 

only form in sediment < ~ 0.6 mm (Allen, 1982).  Ripples form in hydraulically smooth 

conditions when the grain Reynolds number (𝑅𝑒𝑔 = 𝑢∗𝐷/𝜈, where 𝑢∗ is shear velocity, 𝐷 

is grain size, and 𝜈 is kinematic viscosity of water) is < 5, while dunes can be found in 

transitional (5 < 𝑅𝑒𝑔 < 70) and hydraulically rough flows (𝑅𝑒𝑔 >70).  Dunes are also 

larger features that can affect the water surface and are widely thought to scale with flow 

depth (Bridge, 2003; Garcia, 2008; Venditti, 2013), a fallacy addressed below.  

Dunes are usually described in terms of their planform and geometry.  Their 

planimetric morphology can be divided into two-dimensional (2D) and three-dimensional 

(3D) bed features.  Two-dimensional dunes have relatively regular spacing and straight 

crestlines transverse to the mean flow. Most natural dune fields are inherently 3D (e.g., 

Parsons et al., 2005; Hendershot et al., 2018), exhibiting irregular spacing, heights and 
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lengths, and complex cross-stream variations in crest lines with irregular scour pits 

within troughs.  Some authors (e.g., Baas et al., 1993; Baas, 1994; Venditti et al., 2005) 

have suggested that all 2D bedform fields will inevitably develop into 3D morphologies, 

given a constant flow and enough time, because crestline defects emerge and remain in 

the field.  These defects emerge as bedforms split due to superimposition of bedforms 

(Allen, 1973; Gabel, 1993), bedform spurs (Allen, 1969; Swanson et al., 2017) and 

crestline bifurcations (Hendershot et al., 2018).    

Dune geometry can appear as angle-of-repose asymmetric or low-angle 

symmetric (Figure 1.2; Best, 2005; Venditti, 2013). Asymmetric dunes have long, gently 

sloping (2 to 6°) stoss sides and short, steep (~30°) lee sides. These bedforms are 

easily produced in flumes and smaller natural channels (ℎ < 1 m), and as a result, have 

been studied extensively.  However, field observations from rivers much larger than 

flumes show more symmetrical dunes with similar stoss and lee lengths and much lower 

lee-side angles (<< 30°) (cf., Smith & McLean, 1977; Kostaschuk & Villard, 1996; 

Hendershot et al., 2016; Hu et al., 2018; Galeazzi et al., 2018).  While persistent flow 

separation is a characteristic feature of flow over asymmetric dunes (e.g., Nelson et al., 

1993; McLean et al., 1994; Bennett & Best, 1995; Venditti & Bennett, 2000; Venditti, 

2007), it has not been observed over low-angle dunes in the field (e.g., Smith and 

McLean, 1977; Kostaschuk & Villard, 1996; Bradley et al., 2013).  Detailed 

measurements over experimental low-angle dunes suggest that a decelerated flow 

region develops in the lee with a small zone of intermittent flow reversal (Best & 

Kostaschuk, 2002; Kwoll et al., 2016).  Even though permanent flow separation is 

absent, turbulence generated by low-angle dunes is still capable of moving large 

volumes bed material through suspension (Kostaschuk & Church, 1993; Kostaschuk & 

Villard, 1999; Bradley et al., 2013). 
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Figure 1.2. Schematics of angle of repose and low angle symmetric dune 
morphologies (e.g., Smith and McLean, 1977; Kostaschuk & Villard, 
1996; Bradley et al., 2013; Hendershot et al., 2016).  L is dune length, 
and H is dune height. Flow is from left to right (figure from Venditti 
(2013))  

It remains unknown why different dune morphologies occur, mostly because low-

angle dunes have never been produced under experimental conditions and it is difficult 

to make detailed observations in deep rivers.  Low-angle dunes have been observed 

with superimposed high-angle bedforms (e.g., Carling et al., 2000; Sukhodolov et al., 

2006) but superimposed bedforms are not found on all low-angle dunes (e.g., Nittrouer 

et al., 2008; Hendershot et al., 2016).  It seems likely that flow depth is somehow 

important, but high-angle dunes can be present in deep rivers (cf., Hendershot et al., 

2016; Galeazzi et al., 2018) and marine environments (cf., Ashley, 1990; Franzetti et al., 

2013), so depth may not be the sole control.   

The relative importance of bedload versus suspended load is often cited as a 

control on lee angle.  Steep angles are maintained by a constant bedload supply to the 

crest (Bridge, 2003; Kostaschuk, 2006), and low-angle dunes are commonly found 

where large volumes of bed material are moved through suspension (e.g., Kostaschuk & 

Church, 1993; Kostaschuk & Villard, 1996; Bradley et al., 2013).  Bed material moving in 

suspension may bypass the crest and deposit in lower leeside and tough positions, 

starving the upper lee of a constant sediment supply needed to maintain steep crest 

avalanching (Kostaschuk & Villard, 1996; Kostaschuk et al., 2009).  Hendershot et al. 

(2016) showed systematic decline in lee slope angle with increased bed-material 

suspension.  However, dunes in shallow channels under conditions of high bed-material 

suspension, still display a high-angle slip face even though they are longer and flatter 

(Venditti et al., 2016).  Recently, Hendershot et al. (2016) suggested that increased 

volumes of bed material supplied to crests of large dunes in deep rivers promote 
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liquefaction on the lee side and generate sand flows or avalanches that can occur on the 

lower lee angle slope, but this idea requires critical testing.       

1.3. Scaling of Dunes 

Even though different dune morphologies exist in deep and shallow channels, it 

is widely accepted that a definable characteristic of dunes is that their dimensions scale 

with flow depth (Bridge, 2003; Garcia, 2008; Venditti, 2013).  Dunes are thought to have 

heights (𝐻) and lengths (𝐿) that scale with flow depth (ℎ) as: 

𝐻 =  
ℎ

6
          (Eq. 1.2) 

𝐿 =  5ℎ         (Eq. 1.3) 

Dunes not following the above scaling relations are sometimes argued to be non-

equilibrium features, adjusting to a change in flow.  Equations 1.2 and 1.3 are often 

applied to predict dimensions in flow resistance calculations and estimates of scour 

depth (e.g., Engelund & Hansen, 1967; Fredsøe, 1982; van Rijn, 1984; Paarlberg et al., 

2010) and some sediment transport equations (e.g., Simons et al., 1965; Engel & Lau, 

1980; van den Berg, 1987; Mohrig & Smith, 1996). They also appear in methods to 

derive first order estimates of flow depth in paleo-environmental reconstructions (e.g., 

Bridge & Tye, 2000; Leclair & Bridge, 2001; Bridge, 2003; Adams & Bhattacharya, 2005; 

Poten & Plink-Bjorklund, 2007; Lunt et al., 2013). 

The depth-scaling relations in Equations 1.2 and 1.3 are usually attributed to 

Yalin (1964); however, he originally proposed them as an “average of experimental 

points” and noted that ℎ/6 represents an “average maximum” height.  This suggests that 

his relations have been misused as a definition of equilibrium features.  Allen (1984) 

further showed that field dunes may increase in size with the scale of the system, but the 

scatter about Equations 1.2 and 1.3 is tremendous (Figure 1.3).  The scatter produces 

scaling relations for 𝐻 that range between ℎ/2.5 and ℎ/20 (Figure 1.3a), while 𝐿 scaling 

ranges between ℎ and 16ℎ (Figure 1.3b).  Some of this scatter can be attributed to flow 

unsteadiness, but that does not solely explain the wide variation in scaling between 

systems.  The lack of constant scaling with flow depth is further supported by empirical 

data from laboratory flumes (e.g., Venditti et al., 2005; Venditti et al., 2016).  Dune 
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growth data from Venditti et al. (2005) showed that different equilibrium 𝐻 and 𝐿 

occurred in runs with different flow strengths but with the same flow depth.  Individual 

dunes showed much scatter about the equilibrium 𝐻 and 𝐿, but none of the mean 

equilibrium heights conformed to the ℎ/6 scaling. 

 

Figure 1.3. (a) Dune Height (H) and (b) Length (L) against depth (h) using data 
from Allen (1982).  The grey areas cover the plot position of the data 
in Allen’s (1982) complilation (figure from Venditti, 2013). 

Flow depth must exert some constraint on 𝐻 since dunes generally increase in 

size with the scale of the system and cannot grow above the water surface.  However, 

variability about depth-scaling relations indicates that something else controls dune 

dimensions.  Yalin’s (1964) original work noted that transport stage, defined as the ratio 

of bed shear stress (𝜏) to its critical value for particle movement (𝜏𝑐𝑟), affects dune 

dimensions.  Transport stage is more commonly defined non-dimensionally using the 

ratio of the Shields number to the critical Shields number for sediment entrainment 

(𝜏∗/𝜏∗𝑐).  The Shields number is defined as: 

𝜏∗ =  
𝜏

(𝜌𝑠−𝜌𝑤)𝑔𝐷
        (Eq. 1.4) 

where 𝜌𝑠 is sediment density, 𝜌𝑤 is the density of water and 𝐷 is the representative grain 

size of the sediment, usually taken as the median grain size, 𝐷50.  Values of 𝜏∗𝑐 vary with 

grain size (e.g., Shields, 1936; Brownlie, 1981). While transport stage as a control has 

been largely ignored in favor of depth scaling, subsequent data compilations have 
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confirmed that dune aspect ratio (𝐻/𝐿) changes with 𝜏∗/𝜏∗𝑐 (Figure 1.4) (e.g., Yalin, 

1972; Yalin & Karahan 1979; Allen 1982; Lin & Venditti, 2013).  As 𝜏∗/𝜏∗𝑐 increases, 

dunes steepen until a point where further increases to 𝜏∗/𝜏∗𝑐 result in dune flattening until 

they wash out to an upper-stage plane bed.  A series of observations from Venditti et al. 

(2016) showed that the pattern in Figure 1.4 emerges because 𝐻 increases and then 

decreases with 𝜏∗/𝜏∗𝑐 while 𝐿 continually increases.  It is therefore of concern that the 

role of transport stage has been ignored in dune scaling, given that early work by Yalin 

(Yalin, 1964; Yalin & Karahan, 1979) and Allen (1982) also highlighted the importance of 

𝜏∗/𝜏∗𝑐 . 

 

Figure 1.4. The aspect ratio (H/L) of equilibrium ripples and dunes plotted as a 
function of the transport stage (𝝉∗/𝝉∗𝒄).  The dark and light shaded 
areas (drawn in by Lin and Venditti (2013), based on data from Yalin 
(1972)) represent data clouds for ripples and dunes, respectively 
(figure from Lin and Venditti, 2013). 
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1.4. Physical Controls on Dune Size and Growth 

Depth-scaling relations imply that dune growth is controlled by flow depth but the 

physical mechanism for this control has never been fully elucidated.  Most 

geomorphologists and sedimentologists indicate dune size is controlled by boundary 

layer thickness.  This notion appears to date back to Jackson (1975), who linked the 

thickness of the boundary layer to flow depth but offered no mechanistic reasoning.  A 

boundary layer control is difficult to accept since a classically-defined boundary layer 

limit, where turbulence shifts from anisotropic to isotropic, seldom exists in rivers.  Rivers 

are too shallow for a boundary layer to fully form, since macroturbulence produced from 

bed roughness leads to anisotropy throughout the water column (Nowell & Church, 

1979).   

The Froude number is also often cited as a potential control on dune dimensions. 

Bennett and Best (1996) proposed that all dunes grow up into the flow until the crest is 

planed off.  They reasoned that growth stops because high 𝐹𝑟 conditions at the crest 

prevent further deposition of sediment.  This theory indirectly invokes a depth control 

since there is some critical height in the flow that a dune must reach to topographically 

force the flow over the crest such that it accelerates to critical conditions. There is little 

evidence in the literature to support this theory, especially considering dunes in deep 

channels.  Froude numbers are commonly 0.1 to 0.3 in larger natural rivers, so dunes 

would have to grow extremely large relative to the flow depth to create critical flow at the 

crest.  Furthermore, dunes exist in eolian and deep-sea environments where the Fr 

number is negligible.  Dunes may be able to grow to heights that promote planing of the 

crest in shallow channels, but this cannot be the universal explanation for what controls 

the height of dunes. 

Individual dune height has also been linked to how shear stress is distributed 

over a dune.  Smith (1970) reasoned that the position of the maximum bedload sediment 

flux (𝑞𝑚𝑎𝑥) relative to the topographic maximum over a dune controlled whether it would 

grow, be stable or erode. Dunes will maintain their height if the position of 𝑞𝑚𝑎𝑥 is at the 

topographic maximum since erosion of the stoss is in balance with deposition on the lee 

(Figure 1.5a).  If 𝑞𝑚𝑎𝑥 is upstream of the crest (Figure 1.5b), more sediment is eroded 

along the stoss and supplied to the crest where deposition at the lee promotes growth.  

Dune height is lowered when 𝑞𝑚𝑎𝑥 is downstream of the crest as bed material is eroded 
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from the topographic maximum (Figure 1.5c).  The position of 𝑞𝑚𝑎𝑥 over a dune depends 

on how the shear stress is distributed, suggesting shear stress as a potential control on 

dimensions.  This supports the idea that transport stage (𝜏∗/𝜏∗𝑐) controls dune 

dimensions because 𝜏 is included in the calculation of 𝜏∗/𝜏∗𝑐 (Equation 1.4). 

 

Figure 1.5. Dune response ((a) Stable, (b) Growth, (c) Damping) to position of 
the maximum sediment flux (circle). 

Bed material suspension has also been connected to dune dimensions.  Amsler 

& Schreider (1999) and Damen et al. (2018) observed a decrease in 𝐻 in natural dune 

fields when suspension relative to bedload increased.  It has been suggested that bed 

material moving in suspension bypasses the dune crest and deposits further 

downstream (Figure 1.6) (Naqshband et al., 2014; Hendershot et al., 2016).  Less 

sediment supplied as bedload to the crest and avalanching slip face causes a decrease 

in 𝐻 (Fredsoe, 1979; 1982).  The propensity for suspension in rivers is defined by the 

ratio of the shear velocity (𝑢∗ =  √𝜏/𝜌𝑤)  to the settling velocity of particles (𝑤𝑠), which 

also supports a shear stress control on dune dimensions.  Furthermore, 𝑢∗ 𝑤𝑠⁄  is directly 

proportional to 𝜏∗/𝜏∗𝑐 for a given grain-size, reinforcing early suggestions that transport 

stage may exert a fundamental control over dunes (cf., Yalin, 1964; Yalin & Karahan, 

1979; Allen, 1982). 
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Figure 1.6. Cartoon demonstrating how sediment eroded along the stoss may 
bypass the crest and be deposited further downstream.  This 
starves the crest of sediment, causing the dune to decrease in 
height. 

1.5. Scope and Objectives 

There is a practical need to directly predict dune dimensions in rivers for 

calculations of flow resistance and sediment transport, and to indirectly use dunes 

preserved in the rock record to hindcast paleo-flows.  The most common way to predict 

dimensions is through depth-scaling relations that link 𝐻 and 𝐿 to ℎ.  These relations 

have the benefit of only requiring one easily measurable variable, but the variability 

about the relations limits their usefulness.  Furthermore, it is likely that there are other 

processes controlling dune dimensions.  

The central research question of this dissertation is: What controls dune 

dimensions and growth in rivers? This problem is approached through a meta-analysis 

of the largest collection of published dune dimension data compiled, and through a 

series of flume experiments in the River Dynamics Laboratory at Simon Fraser 

University.  The specific objectives of the work are to: 

1. Evaluate the predictive power of dune scaling relations and quantify the 

variability about them; 

2. Determine the role of depth and transport stage on dune dimensions and 

variability;  

3. Develop new scaling relations based in theory that offer measures of uncertainty; 

4. Determine how dunes grow from a flat bed under different flow depths and 

transport stages and; 

5. Develop a method for predicting bedform dimensions during growth. 
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In Chapter 2, the predictive ability of published scaling relations using depth and 

other variables is examined using a range of previously reported dune dimension data.  

The data are used to develop new scaling relations that account for the difference in 

morphology observed in shallow and deep channels.  The data are also used to derive 

ranges about the scaling relations to provide uncertainty in predictions.  Hypotheses are 

proposed that help explain the apparent scaling of dune dimensions with flow depth. 

A series of flume experiments is presented in Chapters 3 and 4 where 

observations are made of dune development from a flat sand bed. Chapter 3 

systematically examines the role of depth and transport stage on setting equilibrium 

dune dimensions.  Measurements consist of dune dimensions and morphologies from a 

10-hour equilibrium period when dune fields were in a statistical steady state.  These 

data are used to propose new scaling relations between dune dimensions and transport 

stage, with the depth effect removed.  The relations provide a physically-sound method 

to guide predictions of dune dimensions in rivers and paleo-reconstructions from 

estimated dune dimensions in the rock record.   

Chapter 4 focuses on observations from the flume experiments when the bed 

initially evolved from a flatten state towards an equilibrium bedform field.  The influence 

of flow depth and transport stage on bedform dimensions, morphodynamics, and growth 

curves is examined as the beds evolved through time.  New predictive growth relations 

are proposed to empirically predict dune dimensions as they respond to imposed flows.     

Chapter 5 summarizes results of Chapters 2 to 4 in context of the research 

objectives detailed above. 
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Chapter 2. Reevaluating Dune Scaling Relations 

Abstract 

 In sand-bedded rivers, dunes dominate sediment transport and flow resistance.  

Dunes are also commonly preserved in fluvial deposits as cross-stratified units that 

record their size, shape and migration rates.  Prediction of dune dimensions is therefore 

important for forecasting modern river channel dynamics as well as reconstructing past 

fluvial environments on Earth and other planets.  Predictions are often made by 

assuming that the formative flow depth (h) sets dune dimensions with height scaling as 

1/6h and length as 5h.  Yet, there is a suite of other scaling relations that link dune 

dimensions to other variables like grain size, transport stage and Froude number.  Here 

we present a new compilation of flow and dune dimension data to evaluate scaling 

relations.  The data reveal approximately two orders of magnitude variation in dune 

height and length at any given flow depth.  Dune heights in shallow flows (< 2.5 m), 

where strongly asymmetric dunes with high lee angles are common, are generally larger 

than 1/6h.  Dunes in deeper channels (> 2.5 m) are often more symmetric, have lower 

lee angles, are relatively shorter in height than 1/6h and have a wider range of observed 

heights for a given depth.  None of the scaling relations predict the observations 

exceptionally well, likely because of natural variability in dune dimensions and because 

they do not explicitly account for the apparent scaling break that occurs at 2.5 m.  We 

propose new simple depth-scaling relations with added statistical uncertainty for the 

prediction of dune height and length from flow depth, as well as flow depth from dune 

height.  We conclude that shallow and deep flow dunes exhibit different scaling due to a 

change in the dominant process controls as dunes get larger. 

2.1. Introduction 

Bedforms are common features in sediment-transporting flows at the Earth’s 

surface.  In sand-bedded alluvial channels, deformation of the labile bed through erosion 

and deposition produces bedforms that display specific geometric properties.  These 

smaller than channel-scale features appear as a continuum where lower-stage plane 

beds, ripples, dunes, upper-stage plane beds, antidunes and cyclic steps emerge as a 

typical sequence of bedforms as flow is increased (Simons & Richardson, 1961; 
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Southard & Boguchwal, 1990; Venditti, 2013; Cartingy et al., 2014). Numerous phase 

diagrams have been developed that link bedform type to a variety of hydraulic and 

sedimentary variables such as depth, sediment size and dimensionless shear stress 

(e.g., Allen, 1982; van Rijn, 1984; Southard & Boguchwal, 1990; Carling, 1999; Cartingy 

et al., 2014; Baas et al., 2016).  However, our ability to predict bedform size, morphology 

and dynamics is limited due to complex interactions at the fluid–sediment interface. 

Dunes are of particular interest to geomorphologists, sedimentologists, and 

hydraulic engineers because they are common features in modern sand-bedded rivers 

and significantly affect channel dynamics.  Dunes add form drag within a channel and 

thus can be an important source of flow resistance.  The form drag occurs because 

turbulence and flow separation generated by dunes dissipate the mean flow energy of a 

river channel (Nelson et al., 1993; Nezu & Nakagawa, 1993; Hutoff, 2012; Kwoll et al., 

2016).  The growth and migration of dunes also provide an important mechanism for 

sediment movement via bedload (cf., Simons & Richardson, 1966; van den Berg, 1987; 

Mohrig & Smith, 1996; Venditti et al., 2005a; McElroy & Mohrig, 2009; Naqshband et al., 

2014a, Venditti et al., 2016).  Dunes translate downstream by dune stoss erosion and 

lee slope deposition.  As translation occurs, deformation of the dune form due to 

changes in shape, size and spacing also contributes sediment transport (McElroy & 

Mohrig 2009, Ganti et al., 2013, Venditti et al., 2016).  In addition to bedload, large 

volumes of suspended sediment can be generated over dunes via large-scale 

turbulence (cf., Rood & Hickin, 1989; Kostaschuk & Church, 1993; Venditti & Bennett, 

2000; Kostaschuk et al., 2009; Bradley et al., 2013) and sediment entrained into 

suspension on the stoss slope may bypass the crest and move further down the channel 

(Mohrig & Smith, 1996).  

Knowledge of bedform dynamics is important in order to understand modern 

channel processes but it can also provide information about channels no longer present 

at Earth and other planetary surfaces.  The migration of dunes leaves behind 

characteristic primary sedimentary structures (cross-strata) in sand deposits.  Cross-

stratified units made up of cross-sets preserved between two successive erosional 

surfaces are formed by ancient dunes (e.g., Allen, 1970; Rubin & Hunter, 1982; 

Jerolmack & Mohrig, 2005; Ganti et al., 2013) and are common features in sedimentary 

strata.  Cross-set thickness distribution is often linked to formative bedform dimension 

distributions theoretically (cf. Paola & Borgman, 1991; Bridge & Best, 1997) or 
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empirically (cf. Bridge, 1997; Leclair et al., 1997; Leclair & Bridge, 2001; Leclair, 2002; 

Leclair, 2011).  Interpretation of these deposits requires a physically based 

understanding of modern dune processes.   

Both the direct problem of predicting dune characteristics from observed flow 

characteristics and the inverse problem of reconstructing flow conditions from dunes 

preserved in the rock record rely on relations between flow characteristics and dune 

dimensions.  Dune dimensions predicted through the direct problem are used as a 

quantitative measure of roughness height in flow resistance calculations and estimates 

of scour depth (e.g., Engelund & Hansen, 1967; Fredsøe, 1982; van Rijn, 1984; 

Paarlberg et al., 2010).  Furthermore, many sediment transport equations include dune 

dimensions (cf., Simons et al., 1965; Engel & Lau, 1980; van den Berg, 1987; Mohrig & 

Smith, 1996).  In the inverse problem, estimated dune heights based on cross-strata are 

used to make first order estimates of flow depth in paleo-environmental reconstructions 

(e.g., Bridge & Tye, 2000; Leclair & Bridge, 2001; Bridge, 2003; Adams & Bhattacharya, 

2005; Poten & Plink-Bjorklund, 2007; Lunt et al., 2013).  However, the success of these 

reconstructions depends critically on the relation that links dune dimensions to flow 

characteristics.   

The importance of dunes for understanding modern river channel dynamics, as 

well as reconstructing past flows, has resulted in a long history of relations between 

various flow parameters and dune height and length.  These relations are commonly 

referred to as ‘scaling relations’, even though not all are power laws that express a scale 

factor (coefficient) and a scale distortion factor (exponent), conditions normally required 

to establish a formal scaling (Barenblatt, 2003).  While some of the relations between 

flow and dune geometry are formal scaling relations (e.g., Van Rijn, 1984; Julien & 

Klaassen, 1995; Karim, 1999), many are not (e.g., Yalin, 1964; Gill, 1971; Allen, 1978; 

Karim, 1995) so we use the term scaling relations in a more informal sense to refer to all 

relations linking flow and dune dimensions. 

The most commonly used scaling relations link dune dimensions to boundary 

layer thickness, usually assumed to be flow depth in rivers (cf. Yalin, 1964).  Fully 

developed dunes, when dimensions are not adjusting to a change in flow strength, are 

widely thought to have heights 1/6 flow depth (h) and lengths of 5h (Yalin, 1964).  Dunes 

not conforming to these simple relations have been argued to be non-equilibrium 
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features (e.g., Carling et al., 2000; Bridge, 2003; Holmes & Garcia, 2008).  In addition to 

simple depth-scaling relations, there are also more complex relations that link dune 

dimensions to other hydraulic and sedimentary characteristics (cf., Allen, 1978; van Rijn, 

1984; Karim, 1995).  The wide array of scaling relations proposed in the literature 

reflects a lack of consensus on the mechanisms controlling dune dimensions, leading 

geomorphologists, sedimentologists, and hydraulic engineers alike, to often rely on the 

Yalin (1964) relations.  However, individual dunes in large alluvial dune fields can have a 

wide range of height and lengths at the same flow depth.  For example, dune fields in 

the lower Fraser River have many sizes of dunes, despite all existing at similar flow 

depths (Figure 2.1a).  Observations of dune heights (H) and lengths (L) in other large 

alluvial channels (Mississippi, Columbia and Parana Rivers), also show that H and L 

vary substantially within a dune field (Figure 2.1b,c).  Given that so much natural 

variability exists even within bedform fields, it is surprising that scaling relations do not 

have some measure to characterize this variability. 
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Figure 2.1. (a) Bathymetric map of the Main Arm of the Fraser River off 
Steveston, British Columbia Canada (from Hendershot et al., 2016). 
Individual dune (b) height and (c) length plotted as a function of flow 
depth.  Data from the Mississippi River provided by Jeffery Nittrouer 
(unpublished) and from the Parana River provided by Dan Parsons 
(unpublished). Columbia River data are from Smith & McLean (1977) 
and the Fraser River data are from the centerline of panel a. 

This review examines our current understanding of the controls on dune 

dimensions in rivers through a meta-analysis of dune scaling relations.  A review of 

published scaling relations is presented, and relations are tested against a newly 

compiled set of previously published and some unpublished observations of dune 

dimensions from unidirectional flows in flumes and rivers. This new data set includes 

high spatial resolution observations derived from multibeam echo-sounding that provide 
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the complete dune field topography, rather than relying solely on single beam echo-

sounders that may poorly characterize dune dimensions when transects are misaligned 

with the dune field. The data set is used to develop new scaling relations that account for 

natural dune variability using prediction intervals.  The specific objectives of this review 

are: 1) to evaluate dune scaling relations; 2) to develop new scaling relations that can be 

used to predict dune dimensions in modern channels, as well as reconstruct past flows 

from dunes preserved in the rock record; 3) to incorporate variability in appropriate 

scaling relations; and 4) to determine the controls on dimensions of dunes in rivers.   

2.2. Dune Scaling Relations 

Dune-dimension scaling relations can broadly be classified as those that are 

based on: (1) depth (Yalin, 1964); (2) depth and grain size (Julien & Klaassen, 1995); (3) 

transport stage (Allen, 1978; Karim, 1995; van Rijn, 1984); and (4) transport stage and 

Froude number (Gill, 1971; Karim, 1999).  Transport stage is defined broadly here as 

any metric that is composed of a ratio of the shear stress to a grain-size. This includes 

the Shields number and the ratio of shear velocity to particle settling velocity or more 

exotic metrics in the same form (e.g., van Rijn, 1984).  It also includes the ratio of the 

shear stress to the critical shear stress, the latter of which is indexed to a specific grain 

size.  In our assessment of scaling relations, we have not included relations that 

mathematically or numerically link dune dimensions to characteristics of the flow 

because they require explicit coupling of equations for fluid motion and sediment 

transport (cf., Ranga Raju-Soni, 1976; Fredsøe, 1982; Tjerry & Fredsøe, 2005).  The 

resultant numerical and/or analytical solutions are not generally applicable in either the 

direct or inverse problems at present.  We focused on the well-defined empirical 

relations that are most often applied by geomorphologists, sedimentologists and 

engineers.    

2.2.1. Yalin (1964) 

 Yalin (1964) provides the most widely used dune scaling relations to link bedform 

dimensions to flow depth.  Using dimensional analysis and previously unpublished and 

published flume observations (Barton & Lin, 1955; Singh, 1960; Shinohara & Tsubaki, 
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1959; Vanoni & Brooks, 1957), as well as some field data (Shinohara & Tsubaki, 1959; 

Lane & Eden, 1940), Yalin proposed the following scaling relation for dune height (H): 

𝐻

ℎ
=  

1

6
(1 −  

𝜏𝑐

𝜏
)        (Eq. 2.1) 

where ℎ is flow depth, 𝜏𝑐 is critical shear stress for the median bed material size from the 

Shields curve and 𝜏 is ‘an average value of shear stress acting on the bed’, which 

implies it is the total shear stress (not corrected for form drag).  Yalin (1964) attributed 

any variability about this relation to experimental error, particularly in how authors 

recorded and reported the dune height.  The behavior of Equation 2.1 is shown in Figure 

2.2a with varying values of 𝜏𝑐/𝜏  that correspond to bedload dominated, mixed load and 

suspension dominated conditions.  Church (2006) established ranges for the inverse of  

𝜏𝑐/𝜏, that suggest bedload dominated (BLD) conditions occur when 1 < 𝜏/𝜏𝑐 < 3.3, 

mixed-load dominated (MXD) conditions occur when 3.3 < 𝜏/𝜏𝑐 < 33 and suspended-

load dominated (SSD) conditions occur when 𝜏/𝜏𝑐 > 33. The conditions were defined 

using the thresholds for motion and suspension, established empirically for reach scales.  

The behavior of these relations is shown in Figure 2.2a for a threshold condition, and the 

approximate logarithmic mean for BLD, MXD, and SSD.  The logarithmic mean for the 

SSD was determined using an upper limit of 𝜏/𝜏𝑐 = 65 which was found by Yalin (1972) 

to be the upper limit for when dunes form in channels.   

In our calculations, the ratio 𝜏/𝜏𝑐 is calculated from the ratio of the critical Shields 

number for entrainment (𝜏∗𝑐) to the Shields number calculated as: 

𝜏∗ =  
𝜏

(𝜌𝑠−𝜌𝑤)𝑔𝐷50
       (Eq. 2.2) 

where 𝐷50 is the median diameter of the material, 𝜌𝑠 is the sediment density (assumed 

𝜌𝑠 = 2650g/m3), 𝜌𝑤 is the density of water and 𝜏 is bed shear stress given as: 

𝜏 =  𝜌𝑤𝑔ℎ𝑆        (Eq. 2.3) 

where 𝑔 is gravitational acceleration and 𝑆 is the slope. Values of 𝜏∗𝑐 vary with properties 

of the flow and sediment and can be obtained from the Shields diagram.  As the bed 

shear stress increases beyond the critical shear stress required for bed movement, 

dunes grow towards 1/6ℎ as suggested by the Yalin (1964) relation (Equation 2.1).  As 

shear stress increases at a given flow depth, dunes grow larger (Figure 2.2a).  At  𝜏/𝜏𝑐 = 
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10, 𝐻 is within 10% of 1/6ℎ and 𝜏/𝜏𝑐 has little effect on the relation.  Equation 2.1 was 

subsequently simplified (cf. Allen, 1976) as: 

𝐻 =  
ℎ

6
         (Eq. 2.4) 

to describe equilibrium dune height, ignoring the effect of shear stress.  This assumption 

is now the conventional definition of dune equilibrium even though Yalin (1964) originally 

proposed it as an upper limit of growth.  Fitting a line to his data set, Yalin (1964) 

proposed an empirical scaling relation for dune length (𝐿) as: 

𝐿 =  5ℎ           (Eq. 2.5) 

which has also been widely accepted as an equilibrium length. 
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Figure 2.2. Dune height plotted as a function of depth using the scaling 
relations of (a) Yalin (1964) with different transport stages, (b) Gill 
(1971) with triangular dunes and symmetrical dunes at Froude 
numbers of 0.2 and 0.6 under mixed load conditions, (c) Julien and 
Klaassen (1995) with varying median grain sizes and (d) Karim 
(1999) with different lower regime 𝑭𝒓 numbers.  The black dashed 
line in each panel is the Yalin (1964) simplified equation H = h/6. 

2.2.2. Gill (1971) 

 Citing experimental observations from Simons and Richardson (1962) where 

dunes grew larger in the flow than predicted by h/6, Gill (1971) argued that Yalin’s 

(1964) relation was not always valid.  Gill (1971) added a modified Brown–Einstein bed 

load equation from Gill (1968) and the Froude number to derive the following scaling 

relation: 

𝐻

ℎ
=  

1−𝐹𝑟2

2Ƞ𝛽
(1 −  

𝜏𝑐

𝜏
)       (Eq. 2.6) 
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where Ƞ is an empirical coefficient from the Einstein–Brown formula, 𝛽 is a shape 

coefficient that varies with dune geometry (for triangular dunes 𝛽  = ½, symmetrical 

dunes β = 2/π) and 𝐹𝑟 is the Froude Number: 

 𝐹𝑟 =
𝑈̅

√𝑔ℎ
        (Eq. 2.7) 

where 𝑈̅ is the mean flow velocity.  Gill (1971) did not test Equation 2.6 with any 

empirical data so it is unclear how well it predicts dune height.  Gill also acknowledged 

that the value for Ƞ could be a significant source of error, stating that it could lie 

somewhere between 3/2 and 3, but the author did not suggest an appropriate value.  

The scaling relation using triangular dunes and symmetrical dunes with Fr equal to 0.2 

and 0.6 is shown in Figure 2.2b using Ƞ = 3.  Figure 2.2b is plotted using mixed load 

conditions (𝜏/𝜏𝑐= 10) to highlight the effect of Fr and 𝛽 on the relation, but varying the 

𝜏/𝜏𝑐 has a similar response to Figure 2.2a where dunes grow larger in the flow towards a 

maximum height with increasing shear stress above the critical value.  The Froude 

number controls how large dunes will grow in the channel, as lower Froude numbers 

predict larger dunes, while the shape coefficient predicts that triangular dunes will grow 

relatively larger than the sinusoidal dunes (Figure 2.2b).   

2.2.3. Allen (1978) 

 Allen (1978) argued that dunes grow larger in a flow with increasing transport 

stage up to a point when the increasing flow strength leads to smaller dunes as they 

begin washing out to an upper stage plane bed.  Allen (1978) showed this behavior 

using data from flume experiments of Stein (1965) to which he fit a fourth-order 

polynomial that included the Shields number (Equation 2.2) to give: 

𝐻

ℎ
= 0.08 + 2.24 (

𝜏∗

3
) − 18.13 (

𝜏∗

3
)

2
+ 70.9 (

𝜏∗

3
)

3
− 88.33 (

𝜏∗

3
)

4
  (Eq. 2.8) 

The relation is limited to flows where 0.25 < 𝜏∗ < 1.5 as this was the range observed in 

the experiments.  This relation shows that dunes grow larger as 𝜏∗ initially increases 

reaching a maximum H when 𝜏∗= 1.20.  Dunes then get smaller in height until they wash 

out at 𝜏∗= 1.5 (Figure 2.3a).  For most of the Shields number range, dunes plot higher 

than predicted by the h/6 relation (Figure 2.3a). 
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Figure 2.3. (a) Relative dune height plotted against Shields number using Allen 

(1978).   (b) Relative dune height defined as 
𝑯

𝒉
∗ (

𝑫𝟓𝟎

𝒉
)

−𝟎.𝟑
 plotted 

against the van Rijn (1984) transport stage parameter. (c) Relative 
dune height as a function of a suspension criteria defined as the 
ratio of shear velocity (𝒖∗) to settling velocity (𝒘𝒔) using Karim 
(1995).  The black dashed line is the simplified version of Yalin 
(1964). 

2.2.4. van Rijn (1984) 

 van Rijn (1984) also acknowledged the influence of transport stage.  Using data 

from 84 flume experiments (Guy et al., 1966; Stein, 1965; Delft Hydraulics, 1979; 

Williams, 1970; Znamenskaya, 1963) and 22 field observations (Lane & Eden, 1940; 
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Stuckrath, 1969; Tsubaki et al., 1953; van Urk & Klaassen,1982), van Rijn (1984) 

suggested that: 

𝐻

ℎ
= 0.11 (

𝐷50

ℎ
)

0.3
(1 − 𝑒−0.5𝑇)(25 − 𝑇)     (Eq. 2.9) 

where 𝑇 is a transport stage parameter defined as 

 𝑇 =
(𝑢′∗)2−(𝑢∗𝑐)2

(𝑢∗𝑐)2                   (Eq. 2.10) 

where 𝑢∗𝑐 is the critical grain shear velocity obtained from the Shields diagram and grain 

shear velocity 𝑢′∗ is  

𝑢′∗ = 𝑈̅ √𝑔/𝐶′.       (Eq. 2.11) 

The Chezy-coefficient related to grain roughness is  

  𝐶′ = 18 log∗ 12𝑅𝑏/3𝐷90      (Eq. 2.12) 

where 𝑅𝑏 is the hydraulic radius, and 𝐷90 is the 90% percentile of the grain size of the 

bed material.  Using alternative formulations of Equations 2.10-2.12 does affect how well 

Equation 2.9 fits the data and should therefore be avoided.  Equation 2.9 imposes an 

upper limit for dunes since no predictions can be made where 𝑇 > 25.  The scaling 

relation suggests that dune height increases at an initially steep slope with 𝑇 until around 

𝑇 = 3 when it begins to decrease with transport stage until the dunes wash out (Figure 

2.3b). 

van Rijn (1984) also provided an equation for dune steepness: 

𝐻

𝐿
= 0.015 (

𝐷50

ℎ
)

0.3
(1 − 𝑒−0.5𝑇)(25 − 𝑇)       (Eq. 2.13) 

and equated Eq. 2.13 to Eq. 2.9 to provide a depth-scaling relation for dune length: 

𝐿 = 7.3ℎ                                 (Eq. 2.14) 

This implies that dune length is only related to mean flow depth while height is controlled 

by transport stage.  It also further suggests that bedform height will increase and then 

decrease with flow strength at a constant flow depth until dunes flatten and wash out.   
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2.2.5. Julien and Klaassen (1995) 

 Julien and Klaassen (1995) showed that the relations of van Rijn (1984) did not 

accurately predict dune dimensions in deep rivers because the relations were empirical 

fits to primarily flume data.  They also provided evidence that dunes in deep rivers can 

exist when 𝑇 > 25.  Adding some previously unpublished data to published data sets 

(Julien, 1992; Wijbenga, 1991; Shen et al., 1978; Peters, 1978; Adrianse, 1986; Brillhuis, 

1998; Kamphuis, 1990), Julien and Klaassen (1995) proposed that dune height scales 

with depth as: 

𝐻 =  𝜀ℎ ( 
𝐷50

ℎ
)

0.3
       (Eq. 2.15) 

where 0.8 <  𝜀  < 8 with a mean 𝜀 of 2.5, whereas dune length scales as 

𝐿 = 6.25ℎ.        (Eq. 2.16) 

No guide is provided by the authors as to what values should be used for the empirical 

coefficient 𝜀, except that higher values were observed during floods.  They furthered 

argued that dune height does not decrease with increasing shear stress, but rather the 

height remains relatively constant.  The height scaling relation behavior is shown in 

Figure 2.2c with 𝜀 = 2.5 and various sand sizes.  Dune height increases with depth at a 

lower rate than the Yalin (1964) relation, and larger grain sizes predict larger dunes.   

2.2.6. Karim (1995) 

 Building on Allen (1978) and van Rijn (1984), Karim (1995) further acknowledged 

that dune height is a parabolic function of transport stage and developed a relation 

between H/h and a suspension criterion in the form 𝑢∗ 𝑤𝑠⁄  (𝑢∗ is bed shear velocity as 

√𝑔ℎ𝑠, and 𝑤𝑠 is the particle fall velocity).  The suspension criterion has the same basic 

form as the Shields number (a metric of the shear stress divided by a grain size metric) 

and  𝜏∗ ∝ √𝑢∗ 𝑤𝑠⁄  (see Venditti et al., 2016).  Using the data set of Allen (1978), adding 

some observations from (Guy et al., 1966) and previously unpublished field data, Karim 

(1995) fit a 4th order polynomial to the observations giving: 

 
𝐻

ℎ
= −0.04 + 0.294 (

𝑢∗

𝑤𝑠
) + 0.00316 (

𝑢∗

𝑤𝑠
)

2

− 0.0319 (
𝑢∗

𝑤𝑠
)

3

+ 0.00272 (
𝑢∗

𝑤𝑠
)

4

    (Eq. 2.17)  
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Dune height increases with 𝑢∗/𝑤𝑠  until a maximum value is reached at 𝑢∗/𝑤𝑠 = 2.0 

where it begins to decrease (Figure 2.3c).  Karim (1995) argued that suspended 

sediment transport becomes more important in controlling bedform height than bed load 

transport when 𝑢∗/𝑤𝑠 = 2.0.  In this scaling relation, the presence of dunes is limited to 

0.15 <  𝑢∗/𝑤𝑠 < 3.64. 

2.2.7. Karim (1999) 

 Karim (1999) argued that energy loss produced by form drag from bedforms 

could be estimated from the head loss across a sudden expansion in open channel 

flows.  Using this energy loss concept, a scaling relation was derived as: 

𝐻

ℎ
= ⌊

(𝑆−0.0168 (
𝐷50

ℎ
)

0.33
∗𝐹𝑟2)(

𝐿

ℎ
)

1.20

0.47𝐹𝑟2 ⌋

0.73

      (Eq. 2.18)  

In addition to dunes, this relation was proposed for ripples and transitional features when 

dunes wash out to plane bed.  Karim (1999) suggested that the Julien and Klaassen 

(1995) length scaling relation (Eq. 2.14) should be used in Equation 2.18 when 

predicting the height of dunes.  Equation 2.18 is plotted in Figure 2.2d assuming a grain 

size of 300 μm and a slope of 0.0002 with varying Froude numbers.  Dunes grow higher 

in the flow with decreasing Froude number.   

2.3. Data Compilation 

In order to evaluate the dune scaling relations, we compiled a data set of dune 

dimensions and flow characteristics from both laboratory flume experiments and field 

observations from all published and unpublished sources known and accessible to the 

authors.  Data were selected from this set for further analysis based on three criteria. 

First, primary dune dimensions and depth needed to be reported as reach-averaged 

values of dune fields or such that they could be calculated. Smaller dunes superimposed 

on larger dunes were excluded because these features more likely scale with local flow 

conditions over the larger feature (Jackson, 1975). The use of reach-averaged data is 

also necessary to reduce the variability associated with individual dunes that can be 

found within a dune field (Figure 2.1).  The second criterion was that all dunes were fully 

adjusted to flow conditions, meaning they were not systematically growing or shrinking in 
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response to sharp rising or falling hydrographs.  Hysteresis effects can result in dunes 

requiring days to weeks to readjust to flow conditions depending on the flow magnitude 

change and dune size (Pretious & Blanch, 1951; Allen, 1974; Villard & Church, 2003), so 

we have eliminated data when authors acknowledged hysteresis effects. The final 

criterion was that the reported bedforms dimensions were consistent with dune 

terminology. Bed features that scale with channel width (bars; see Jackson, 1975; 

Bridge, 2003) or grain size (ripples; see Allen, 1982; Bartholdy et al., 2015) have not 

been included in this data set. For example, Shen et al. (1978) reported ‘dune’ features 

with lengths and heights that are consistent with channel bars, so these data were not 

included.  In total, 664 reach-averaged height observations were recovered from 22 

flume experiments (282 observations; Table 2.1) and 24 field studies (382 observations; 

Table 2.2).  Fewer data were available for dune lengths and flow depth, with a total of 

498 observations coming from 21 flume experiments (256 observations; Table 2.1) and 

20 field studies (242 observations; Table 2.2). 

Table 2.1. Flume data used to test the scaling relations. See Appendix A for 
complete references and Appendix B for detailed data set. 

Data Source 
# of 

Points 

# of 
Length 
Points 

# of 
Transport 

Stage Points 

Flow 
Depth 

Range (m) 

Dune 
Height 

Range (m) 

Dune 
Length 

Range (m) 

Transport 
Stage 
Range 

Bishop (1977) 22 22 22 0.10-0.19 0.02-0.08 0.80-1.60 1.79-9.63 

Blom et al. (2005) 8 8 8 0.15-0.39 0.02-0.12 0.6-1.79 4.83-21.36 

Bridge & Best (1988) 2 2 2 0.1 0.02-0.03 0.75-0.76 29.96-33.29 

Coleman & Melville (1994) 2 - 2 0.13 0.02-0.02 - 5.50-7.37 

Coleman et al. (2005) 13 13 13 0.10-0.17 0.01-0.04 0.11-0.72 1.77-22.68 

Guala et al. (2014) 3 3 3 0.19-0.22 0.02-0.03 0.29-0.48 2.94-4.57 

Guy et al. (1966) 65 65 65 0.13-0.34 0.01-0.2 0.31-5.40 2.21-46.53 

Iseya (1984) 6 6 6 0.17-0.48 0.02-0.18 0.79-3.42 5.24-41.84 

Kuhnle & Wren (2009) 2 2 2 0.22 0.06 1.13-1.42 13.99-20.27 

Leclair (2002) 26 23 24 0.15-0.90 0.04-0.14 0.71-1.50 7.31-99.42 

Naqshband et al. (2014a) 2 2 2 0.25 0.07-0.08 2.25-4.35 7.99-22.27 

Nordin (1971) 4 4 4 0.16-0.85 0.04-0.08 0.88-1.47 12.29-27.98 

Schindler & Robert (2005) 4 4 4 0.15-0.17 0.03-0.03 0.46-0.84 35.06-41.25 

Simons et al. (1961) 10 10 10 0.12-0.30 0.05-0.16 0.39-0.70 3.16-33.74 

Simons et al. (1963) 41 40 41 0.16-0.41 0.02-0.13 1.01-2.50 2.33-44.23 

Stein (1965) 37 17 37 0.12-0.37 0.03-0.13 1.37-3.41 2.90-50.22 

Tuijinder et al. (2009) 3 3 3 0.15-0.20 0.07-0.08 1.37-1.44 7.99-14.73 

Venditti et al. (2005) 5 5 5 0.15 0.02-0.05 0.30-1.17 1.87-5.11 

Venditti et al. (2016) 3 3 3 0.13-0.15 0.04-0.07 0.91-2.06 5.52-34.92 

Wijbenga & Klaassen (1983) 7 7 7 0.20-0.41 0.07-0.10 1.20-1.59 9.05-20.94 

Williams (1967) 9 9 9 0.15-0.16 0.01-0.05 0.55-1.59 2.83-13.09 

Wren et al. (2007) 8 8 8 0.19-0.21 0.06-0.07 1.35-1.71 4.94-10.38 
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Table 2.2. Field data used to test the scaling relations. See Appendix A for 
complete references and Appendix B for detailed data set. 

Data Source River 
# of 

Points 

# of 

Length 

Points 

# of 

Transport 

Points 

Flow Depth 

Range (m) 

Dune 

Height 

Range (m) 

Dune Length 

Range (m) 

Transport 

Stage Range 

Adel-Fattah 

et al. (2004) 
Nile 4 4 4 3.51-5.17 0.70-1.60 22.00-44.00 5.85-10.85 

Amsler (2003) Parana 58 - - 6.80-24.50 0.27-4.62 - - 
 Amazon 1 - - 35.50 6.13 - - 

 Uruguay  

(FICH 2002) 
8 - - 7.10-9.50 0.70-1.65 - - 

 Araguaia 4 - - 2.10-3.80 0.40-0.61 - - 

Culbertson 

et al. (1972) 
Rio Grande 3 3 3 4.27-4.56 0.79-1.28 9.14-13.41 219.36-255.59 

Gabel (1993) Calamus 15 15 10 0.34-0.06 0.10-0.20 2.00-4.05 45.40-61.07 

Holmes & 

Garcia (2008) 
Missouri 3 3 3 4.84-6.46 0.32-1.25 5.70-140.00 53.7-67.43 

Jordan (1962) Mississippi 6 6 - 8.53-27.43 1.52-5.49 73.15-228.60  

Julien (1992) 
Zaire  

(Peters 1978) 
21 21 21 9.50-17.00 1.20-1.90 90.00-450.00 20.42-60.27 

 Jamuna 33 33 33 8.2-19.5 0.80-5.10 15.00-251.00 33.87-104.46 
 Parana 13 13 15 22.00-26.00 3.00-7.50 100.00-450.00 61.69-74.65 

Korchoka (1968) Polomet 56 - - 0.16-2.43 0.02-0.35 - - 

Kostaschuk 

(unpub) 
Ob (2010) 1 1 - 6.00 0.53 20.30 - 

 Parana (2004) 3 3 - 7.00-12.90 1.53-3.93 51.10-157.50 - 

Mason (unpub) Trinity (2014) 15 15 - 1.86-4.60 0.15-0.41 6.22-9.16 - 

Neill (1969) Red Deer 29 29 - 0.91-3.66 0.15-0.91 2.44-21.34 - 

Nittrouer 

(unpub) 
Mississippi 2 2 - 20.00-25.00 1.04-3.43 21.00-97.00 - 

Nordin (1971) Atrisco Lateral 3 3 3 0.67-0.70 0.11-0.12 1.61-1.87 18.02-20.35 

Parsons  

(unpub) 
Parana 1 1 - 6.79 1.48 53.92 - 

Ramirez & 

Allison (2013) 
Mississippi 8 8 - 19.33-20.67 0.15-0.39 4.07-10.87 - 

Shinohara & 

Tsubaki (1959) 
Hii 8 - - 0.59-1.03 0.09-0.25 - - 

Strasser et al. 

(2002) 
Amazon 7 7 7 16.82-60.36 1.74-7.44 81.61-312.94 15.96-78.47 

Sukhodolov 

et al. (2006) 
Embarras 1 1 1 0.35 0.13 2.00 4.45 

Szupiany et al. 

(2012) 
Parana 2 2 - 10.27-10.88 1.59-1.70 68.09-72.47 - 

Toniolo (2013) Tanana 4 4 - 5.14-5.90 0.60-1.20 41.30-66.70 - 

Van der Mark et 

al. (2008) 
North Loup 2 - - 7.30-9.10 0.25 - - 

 Rhine 1 - - 8.00 0.31 - - 

Venditti (unpub) Fraser 1 1 - 14.46 0.65 10.05 - 

Vendtiti & Bauer 

(2005) 
Green 1 1 1 1.50 0.30 4.50 43.46 

Wilbers (2004) Rhine 68 66 - 3.28-10.73 0.14-1.19 3.91-46.70 - 
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The data compilation shows that dune height and length follow a power law: 

𝐻 = 0.0513𝐿0.7744       (Eq. 2.19) 

with a R2 value of 0.89 (Figure 2.4).  Equation 2.19 is similar to the relation of Flemming 

(1988): 

𝐻 = 0.0677𝐿0.8098       (Eq. 2.20) 

which was based on 1491 deep sea, tidal and river bedforms.  This suggests that the 

dunes presented here are consistent with previous observations and implies similarity 

between the sub-aqueous environments.   

 

Figure 2.4. Dune height plotted as a function of length.   

Dune heights (Figure 2.5a) and lengths (Figure 2.5b) increase with flow depth, 

supporting the long-held belief that flow depth influences dune dimensions (e.g., Yalin, 

1964; Allen, 1982).  This is expected since depth must exert some control on how large 

dunes can grow because dunes cannot emerge out of the water.  The limits observed 

here are similar to those reported by Allen (1982) in his data compilation (Figure 2.5).  

Almost no data plot above H = h/2.5, indicating that this may represent the upper limit of 

dune growth in rivers, contrary to Yalin’s suggestion that H = h/6 is the limit of dune 
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growth.  A lower limit for height is more poorly defined. However, recent work with multi-

beam echo sounders has shown that individual dunes in a larger dune field can have 

heights much smaller than h/H = 20 in the Mississippi River (Nittrouer et al., 2011) 

(Figure 2.1b) and under sediment supply limited conditions in the Fraser River, dunes 

can be as small as h/H= 100 (Figure 2.6a).  These observations from the Mississippi and 

Fraser River cast doubt on the idea that depth is the fundamental control on dune 

dimensions.  Our data compilation suggests that any size dune is possible below ~h/2.  

The h/6 Yalin relation (Equation 2.3) roughly runs through the middle of the data set, but 

does not adequately characterize the variability. 

 

Figure 2.5. (a) Dune height plotted against flow depth. (b) Dune length plotted 
against flow depth.  The dashed black lines are limits reported by 
Allen (1982) and the solid black lines are the simplified H = h/6 and L 
= 5h scaling relations of Yalin (1964). 
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Figure 2.6. Individual (a) dune height and (b) length plotted against depth 
immediately downstream of the gravel sand transition in the Fraser 
River. 

The L=5h relation from Yalin similarly plots through the center of the data but with 

even more scatter about it (Figure 2.5b). The data roughly follow the range of Allen 

(1982) where they were limited to L/h = 16 and L/h = 1.  However, well-defined limits are 

more difficult to define.  Mississippi dunes have been observed with lengths smaller than 

L/h = 1 (Nittrouer et al., 2011) (Figure 2.1b) and sediment-supply-limited dunes in the 

Fraser River have L/h < 1 (Figure 2.6b).   It appears that for a given flow depth, a range 

of dune heights and lengths is possible.  Moreover, there is approximately two orders of 

magnitude difference for dune heights and lengths for a given flow depth.   

Probability histograms of h/H as well as the mean and median h/H values are 

given in Figure 2.7.  For all the data, the most probable value of h/H falls between 4 and 

5, with a long tail in the distribution. This suggests a wide range of h/H values with 

decreasing probability (Figure 2.7a).  The L/h distribution for all the data (Figure 2.7b) 

also displays a long tail but the distribution is less skewed.  Probability peaks in the 

range of L/h= 6 to 7 but the absolute probability of this peak is low.  When the h/H data 

are separated by flume and field observations (Figure 2.7c), the distribution for flume 

data peaks between h/H = 2 to 4.  The field data similarly peak at h/H = 3 to 4 with a 

second peak at 7 to 8 but the absolute probability of these peaks is low.  The mean and 

median h/H for the flume data are lower than the field data.  The L/h distribution for the 

flume data peaks around 6 to 8 and is less skewed than the field data which peaks 
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around 3 to 5.  The mean L/h is similar for the flume and the field data but the median is 

lower for field data. 

 

Figure 2.7. Probability histograms of (a) dune height (H) and (b) dune length (L) 
relative to depth (h) using all data. In (c) and (d) data are separated 
into flume and field observations.   Relative dune height is 
presented as h/H (rather than H/h) to quote ratios as integers. 

2.4. Assessment of the Relations  

Previous assessments have tested the predictive ability of only a few select 

scaling relations with limited data sets (e.g., Allen, 1982; van Rijn, 1984; Karim, 1999).  

The wide range of geometries and flow conditions in this newly compiled data set, 

provides a unique opportunity to re-evaluate scaling relations.  Simple height scaling 

relations (e.g., Yalin, 1964) can be tested with the entire data set but others that require 

more detailed inputs (e.g., van Rijn, 1984; Karim, 1999) have less data to test against 

(Table 2.3) because the necessary information was not reported in the original sources 

listed in Tables 2.1 and 2.2.  For example, since the Yalin (1964) simplified relation 
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(Equation 2.4) only requires h to predict H, all of the data (664 observations) can be 

used.  However, the van Rijn (1984) relation (Equation 2.13), requires mean velocity and 

grain size so only 368 observations can be used since these values were less frequently 

reported in the literature.  Some height relations (e.g., Allen, 1978; Karim ,1995) are 

limited to a certain range of observations, and thus cannot be used outside their limits. 

Of the 368 observations that can be used to test the van Rijn (1984) relation, 6 are 

outside the range of the relation and predict no dunes will be present in the channel.  

The total useable observations that can be used for each height relation and the number 

of predictions that can be made within the limits of the relation are provided in Table 2.3.  

The length relations only rely on depth to make a prediction so all the length 

observations (498) can be used to test them (Table 2.4).   

Table 2.3. Performance statistics for prediction of observed variables using 
the dune height scaling relations. 

Source Equation 
# of useable 

observations 

# of 

predictions 

% within a 

factor of 1.5 

% within a 

factor of 3.5 

Yalin (1964) 
𝐻

ℎ
=  

1

6
(1 −  

𝜏𝑐

𝜏
) 394 394 29.2% 96.7% 

Yalin (1964) 
(simplified) 

𝐻 =  
ℎ

6
 664 664 39.5% 95.0% 

Gill (1971) 
(triangular) 𝐻

ℎ
=  

1 − 𝐹𝑟2

2Ƞ𝛼
(1 −  

𝜏𝑐

𝜏
) 

394 394 52.3% 95.2% 

Gill (1971) 
(symmetrical) 

394 394 38.8% 97.7% 

Allen (1978) 

𝐻

ℎ
= 0.08 + 2.24 (

𝜏∗

3
) − 18.13 (

𝜏∗

3
)

2

+ 

 70.9 (
𝜏∗

3
)

3

− 88.33 (
𝜏∗

3
)

4

 
394 319 51.1% 98.1% 

Van Rijn (1984) 
𝐻

ℎ
= 0.11 (

𝐷50

ℎ
)

.3

(1 − 𝑒−.5𝑇)(25 − 𝑇) 368 362 47.5% 88.1% 

Julien & Klaassen 
(1995) 𝐻 =  𝜀ℎ ( 

𝑑50

ℎ
)

.3

 588 588 55.6% 91.0% 

Karim (1995) 

𝐻

ℎ
= −0.04 + 0.294 (

𝑢∗

𝑤𝑠

) + 0.00316 (
𝑢∗

𝑤𝑠

)
2

 

−0.0319 (
𝑢∗

𝑤𝑠

)
3

+ 0.00272 (
𝑢∗

𝑤𝑠

)
4

 

374 337 49.9% 92.3% 

Karim (1999) 
𝐻

ℎ
= ⌊

(𝑆 − 0.0168 (
𝐷50

ℎ
)

.33

∗ 𝐹2) (
𝐿
ℎ

)
1.20

0.47𝐹2
⌋

0.73

 363 363 52.9% 96.4% 
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Table 2.4. Performance statistics for prediction of observed variables using 
the dune length scaling relations. 

Source Equation 
# of useable 

observations 

% within a 

factor of 1.5 

% within a 

factor of 3.5 

Yalin (1964) 𝐿 =  5ℎ 498 44.8% 93.4% 

Van Rijn (1984) 𝐿 = 7.3ℎ 498 53.6% 89.4% 

Julien & Klaassen (1995) 𝐿 = 6.25ℎ 498 53.2% 91.8% 

 

In order to examine the predictive ability of these scaling relations in a systematic 

way, adjustments and some assumptions needed to be made to some data sets.  We 

calculated the shear stress for all the data using Equation 2.3 and applied the sidewall 

correction to flume data using the Williams (1970) method: 

𝜏𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  
𝜏

(1+0.18ℎ/𝑤2)
      (Eq. 2.21) 

where w is the width of the flume.  In Coleman et al. (2005) and Strasser et al. (2002) 

the data necessary to use Equation 2.3 were not reported, so we adopted their reported 

values of shear. The Yalin (1964), Gill (1971) and van Rijn (1984) relations require 𝜏∗𝑐 

(or  𝑢∗𝑐 = √𝜏∗𝑐/𝜌), which varies with grain size according to the Shields diagram.  𝜏∗𝑐 

was calculated for each grain size using the Brownlie (1981) fit to the Shields diagram: 

𝜏∗𝑐 = 0.22𝑅𝑒𝑔
∗−.06

+ 0.06 ∗ 10(−7.7𝑅𝑒𝑔
−0.6)    (Eq. 2.22) 

where 𝑅𝑒𝑔 is the grain Reynolds number as: 

 𝑅𝑒𝑔 =  
𝑢∗𝐷50

ν
        (Eq. 2.23) 

and ν is the kinematic viscosity of water.  Gill’s (1971) relation further requires a decision 

about the empirical sediment transport exponent Ƞ.  Gill (1971) suggested it could lie 

somewhere between 3/2 and 3, and stated that most authors suggest a value of 3 is 

appropriate so we follow that here.  Particle settling velocity (ws) in Karim (1995) was 

calculated using Dietrich (1982).  Temperatures were seldom reported by the original 

authors, so we assumed a ν value of 1.307 x 10-6 m2/s and a 𝜌𝑤 of 999.7 kg/m3 for 10°C 

water because we suspect this is a reasonable approximation of the temperature when 

the observations occurred.  We explored the sensitivity of our results to temperature and 
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found varying temperature by 10°C caused < 1 mm changes in our predicted H for 

laboratory flows and < 1 cm scale changes in predicted H for field scale flows. The bias 

is less than the resolution of the observations.   

van Rijn (1984) requires an estimate of D90, but we do not have the grain size 

distribution for these data, so we assume that D90 = D50.  We explored the sensitivity of 

predicted dune heights to this assumption.  For very well sorted sands, D90 can be 

approximated as ~1.2D50 and for poorly sorted sediment, ~3D50 (Folk, 1980).  For D90 = 

1.2D50, predicted H values are ~2% larger than for D90 = D50 and for D90 = 3D50, predicted 

H values are ~16% higher, assuming no scale distortion.  Most of our observations are 

for uniform sand in flume experiments or well sorted sands in the field, so we conclude 

that the variability induced by our assumption of D90 = D50 is relatively small.  We also 

think this is the safest assumption in the absence of grain size distributions.   

  All of the relations predict 90% of the dune height data within a factor of 3.5 

(Figure 2.8, Table 2.3) but this represents a substantial amount of variability.  Most of the 

relations are only able to predict the observations within a factor of 1.5 about 50% of the 

time (Figure 2.8, Table 2.3).  The relations with the fewest predictions within a factor of 

1.5 are from Yalin (1964), and Gill (1971) using the symmetrical dune coefficient, 

whereas the most predictions that fall within a factor of 1.5 occur with Julien and 

Klaassen (1995).  The length scaling relations all have similar predictive capabilities but 

van Rijn (1984) and Julien & Klaassen (1995) better predict L, with 53.6% and 53.2% of 

predictions falling within a factor of 1.5, respectively while Yalin (1964) has 44.8% 

(Figure 2.9, Table 2.4). 
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Figure 2.8. Comparison of observed and predicted dune heights.  Predictions 
are made using (a) Yalin (1964), (b) simplified Yalin (1964), (c) Gill 
(1971) with triangular coefficient (𝜷  = ½), (d) Gill (1971) with 

symmetrical coefficient (𝜷 = 2/𝝅), (e) Allen (1978), (f) van Rijn (1984), 
(g) Julie and Klaassen (1995), (h) Karim (1995), and (i) Karim (1999).  
The 1:1 (perfect prediction) is indicated by the solid black line, the 
dotted line is for a factor of 1.5 and the dashed line is for a factor of 
3.5. 
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Figure 2.9. Comparison of observed and predicted dune length.  Predictions are 
made using (a) Yalin (1964), (b) van Rijn (1984) and (c) Julie and 
Klaassen (1995). The solid black line indicates perfect prediction, 
the dotted line is for a factor of 1.5 and the dashed line is for a factor 
of 3.5. 

The reason for the poor predictive power of the scaling relations is not 

immediately evident.  It is conventional to attribute any variability about these relations to 

dunes adjusting to variable flow conditions (e.g., Holmes & Garcia, 2008).  Yet, dunes in 

flumes exhibit the same order of magnitude variability in H or L for a given h where flow 

conditions are steady and dunes are fully formed.  We might expect that dunes would 

plot above predicted values when they formed and fully adjusted to a flood flow prior to a 

drop in flow intensity.  Conversely, we might expect dunes to form during short duration 

flood flows, but not reach their maximum height for the flow because the flood flow was 

too short.  By removing unsteady flow data from this analysis, we have substantially 

reduced the possibility of either effect.  Clearly, there is some source of variability not 

captured by these scaling relations. 

2.5. Reevaluation of the Data Set 

A more critical examination of the data set provides some insight into why the 

scaling relations do not predict dune dimensions well.  There is evidence that dunes in 

smaller channels conform to a different height scaling than dunes in larger channels, 

which implies a different process control rather than a continuum of processes as depth 

increases. If we reexamine the data as one complete set, we find a more logical division 

can be made between rivers deeper and shallower than 2.5 m.  When probability 

distributions in Figure 2.7 are separated at 2.5 m, the shallower channels maintain a 

distinct peak in h/H between 3 and 5, whereas deeper flows have one defined peak at 
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h/H = 7 to 8 (Figure 2.10a). For h < 2.5 m, 83% of the data plot above the H = h/6 line 

(Figure 2.5a), the mean relation is H = h/4.4 and the median is H = h/3.5. In deeper 

channels (> 2.5 m), 76% of the data plot below the H = h/6 line (Figure 2.5a), the mean 

relation is H = h/11.5, and the median is H = h/7.7. The difference between the mean 

and median arises because the distribution is skewed towards large values of h/H 

(dunes much smaller than the flow depth).  

 

Figure 2.10. Probability histograms of dune (a) height (H) and (b) length (L) 
relative to depth (h), separated by flows < 2.5 m and > 2.5 m deep. 

There is less evidence for a scaling break in the length data, because the shallow 

and deep flow distributions overlap and have lower absolute probabilities than the h/H 

data (Figure 2.10b).  For flows less than 2.5 m deep, L/h peaks between 6 and 8 with a 

mean of 6.2 and a median of 5.9.  The shallow flow data peak at L/h = 4, but dune length 

can reasonably scale anywhere from L/h = 1 to 11 as the distribution has a long tail.  

The mean of 6.9 and median of 5.7 of L/h for deep flows are similar to those in the 

shallow flows.  These results suggest that a scaling break is either not present, or at the 

very least is not obvious, for the length data.  However, there is a noticeable lack of 

length observations in the literature from flows 0.8 to 3.0 m deep.  The gap in data is 

concerning since it may prove to be an important depth range for dune morphology.  

The apparent scaling break in dune height between deep and shallow flows has 

not been formally documented.  However, we know that dunes in bed-load dominant 

shallow channels are commonly asymmetric and angle-of-repose in morphology, while 

dunes in suspension-dominant deep rivers typically have lee angles < 30°, and are more 

rounded and symmetrical (Figure 2.11a) (Smith & Mclean, 1977; Kostaschuk & Villard, 
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1996; Bradley et al., 2013; Hendershot et al., 2016).  Our proposed scaling break depth 

agrees well with observations of lee angle and channel depth since dunes with lee 

angles > 27° are found in flows less than 2.5 m while dunes in deeper flows exhibit lower 

lee angles (Figure 2.11b).  

 

Figure 2.11. a) High angle asymmetric dune (HAD) planform compared to low 
angle symmetric dune (LAD) shape (from Venditti 2013).   b) Reach-
averaged lee angle plotted as a function of reach-averaged depth.  
Flume data are from Robert and Uhlman (2001), Tujinder et al. (2009) 
and Blom et al. (2003).  Field data are from Gabel (1993), Venditti and 
Bauer (2005), Prent and Hickin (2001), Carling et al. (2000), Wilbers 
(2004), Kostaschuk and Ilersich (1995), Bradley et al. (2013), and 
Roden (1998).  Also plotted are unpublished data (open triangles) 
from the Fraser River, the Parana River (provided by Dan Parsons 
and Ray Kostaschuk), and the Mississippi River (provided by Jeffery 
Nittrouer). 

The reason for the different morphology between high-angle dunes (HADs) and 

low-angle dunes (LADs) is not clear, although several hypotheses have been proposed.  

Some researchers (e.g., Carling et al., 2000; Sukhodolov et al., 2006) have observed 

LADs where superposition and amalgamation of bedforms leads to the interception of 

bed-load that would normally avalanche down the lee to maintain a steep face.  

However, this is unlikely a universal control since LADs are frequently observed in 

predominately suspended sediment environments in the absence of superposition 

(Figure 2.1a; Kostaschuk and Villard, 1996; Bradley et al., 2013; Hendershot et al., 

2016).  Best (2005), on the basis of observations by Wan (1982) and Wan and Wang 
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(1994), reasoned that turbulence suppression due to high suspended sediment 

concentrations produces lower amplitude dunes, although it is unclear how turbulence 

damping feedbacks to the LAD morphology.  The most commonly cited hypothesis is 

that suspended sediment bypasses the dune lee and deposits in the trough promoting a 

more rounded morphology since less sediment is available at the crest to maintain a 

steep avalanching lee-side slope for LADs (Smith & McLean, 1977; Kostaschuk & 

Villard, 1996; Kostaschuk et al., 2009; Hendershot et al., 2016).  Recently, Hendershot 

et al. (2016) suggested that the dynamics of sand flows generated by lee side 

avalanching may also play a role in maintaining LAD morphology. They hypothesize that 

as subaqueous dunes get larger, the thickness of leeside grain flows becomes larger.  

This generates higher excess pore pressures in the grains flows, allowing leeside grain 

flows to occur on lower slopes.  Loosely structured deposits formed by suspension 

deposition just past the dune crest may promote the formation of leeside grain flows with 

high excess pore pressures.  Ultimately, all of these hypotheses require critical tests to 

identify why HADs and LADs emerge as distinct morphologies in shallow and deep 

rivers. 

Regardless of the physical processes controlling HADs and LADs, our data 

suggest that different scaling relations are necessary for shallow and deep rivers, with a 

change in height scaling at h ≈ 2.5 m.  Existing scaling relations do not explicitly account 

for this scaling break, which contributes to their poor performance.  Yalin’s (1964) H = 

h/6 scaling relation predicts the dimensions of deep-flow dunes better than the shallow-

flow dunes (Figure 2.8b), whereas Julien & Klaassen (1995) predict shallow-flow dunes 

better than deep flow dunes (Figure 2.8g).   The triangular shape coefficient for the Gill 

(1971) equation performs better in flows less than 2.5 m than in the deeper flows, while 

the sinusoidal coefficient outperforms the triangular coefficient in deep flows (Figure 

8c,d), which might reasonably be expected given the change in morphology observed 

(Figure 11a).   

2.6. Dune-Depth Scaling Revisited 

 The generally poor performance of the scaling relations led us to re-examine 

depth-scaling relations in order to recover a useful methodology for use in the direct 

problem of predicting dune heights and lengths from flow depth, as well as for the 

inverse problem of predicting flow depth from dune heights reconstructed from fossilized 
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dunes.  Simple dune depth-scaling relations are appealing because they require only 

one known input to recreate a flow depth or a dune height.  Furthermore, adding more 

complex variables to the relations does not seem to substantially improve their predictive 

power.  Given the two orders of magnitude variability about the mean relations between 

h and H and in h and L, metrics of uncertainty ought to be incorporated into scaling 

relations.  We propose application of prediction intervals and a probability-based 

approach to carry the inherent variability in the data forward in predictions.  The 

prediction intervals indicate the likelihood (probability) of a future observation falling 

within a range defined by a sample of a population.  They differ from confidence 

intervals, which assign a probability that the true linear regression line of the population 

will lie within the confidence interval of the regression line calculated from a sample of 

the population.  Confidence intervals do not incorporate a metric of the data’s variability 

that can be carried forward in predictions.  Prediction intervals indicate whether a new 

observation will fall within a range defined by our data.  Our interest here lies in 

prediction and carrying the variability of the sample forward as an uncertainty, so we use 

prediction intervals. 

2.6.1. Regression analysis and prediction intervals 

To address the direct prediction problem, regression analysis was applied to both 

flows < 2.5 m deep and > 2.5 m deep to predict H from h (Figure 2.12a).  The analysis 

was also performed to predict L from h but the data set was not separated since a clear 

scaling break with h is less obvious in the L data because of the scarcity of observations 

between h = 0.8 and 3 m (Figure 2.13a).   The analysis reveals power relations, or 

proper scaling relations, that have the form: 

 𝐻 = 𝐵𝐶𝐹 𝑎𝑖ℎ𝑚        (Eq. 2.25) 

 𝐿 = 𝐵𝐶𝐹 𝑎𝑖ℎ𝑚        (Eq. 2.26) 

where 𝑎𝑖 is the intercept, 𝑚 is the slope and 𝐵𝐶𝐹 is the bias correction factor, which 

accounts for the conversion of log-transformed variables back into the original units and 

has the form:   

𝐵𝐶𝐹 = 𝑒𝛼2/2        (Eq. 2.27) 
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where 𝛼 is the standard error of the regression (Miller, 1984).  The resulting power law 

relations are summarized in Table 2.5. The 𝐵𝐶𝐹s for the regressions are low (< 5%) due 

to high correlations and the relations are all significant at the 99% confidence level 

(Table 2.5).  For the prediction of dune height from flow depth, the proportion of the 

variance explained by h is larger for the < 2.5 m data (74%) than for the > 2.5 m data 

(49%).  The lower R2 value for the deeper flow is due to the larger range of dune sizes 

that can be found in these flows.  The proportion of the variance in L explained by h is 

86%.  The error in the regression slopes (Table 2.5) is small at < 5% of m at the 90% 

confidence interval for most of the relations.  The error is higher (~10%) for the dune 

height relation in flows deeper than 2.5 m, because the underlying data are more 

variable.  The forward prediction using the range of possible slopes would fall within the 

prediction interval range for all relations. 

 

 

Figure 2.12. Relations and prediction intervals with BCF applied between flow 
depth and dune height derived from (a) regression analysis and (b) 
calculation of the median relations (see Section 2.6.2).   
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Figure 2.13. Relations and prediction intervals with BCF applied between flow 
depth and dune length derived from (a) regression analysis and (b) 
calculation of the median relation (see Section 2.6.2).  The entire 
data set is presented here without any separation by flow depth. 

 

Table 2.5. The scaling relations and summary statistics from the linear 
regression analysis. 

 
Scaling 
Relation 

Bias 
Correction 

Factor 
(BCF) 

Slope Range 
at 90% 

Confidence 
Interval R2 

p-
value 

Approximate Prediction Interval 
Intercept (ai) 

50% 80% 90% 95% 

Height Prediction (Fig. 2.12)         

< 2.5 m 𝐻 =  0.23ℎ0.91 1.02 0.87-0.96 0.74 < 0.001 
0.17-
0.32 

0.13-
0.43 

0.11-
0.51 

0.09-
0.64 

> 2.5 m 𝐻 =  0.13ℎ0.94 1.04 0.84-1.03 0.49 < 0.001 
0.08-
0.20 

0.06-
0.31 

0.05-
0.38 

0.04-
0.46 

Length Prediction (Fig. 2.13)         

All Data 𝐿 =  5.22ℎ0.95 1.05 0.92-0.97 0.86 < 0.001 
3.43-
8.40 

2.10-
12.99 

1.62-
16.83 

1.30-
21.07 

Flow Prediction (Fig. 2.14)         

Field ℎ =  6.96𝐻0.95 1.04 0.89-1.00 0.69 < 0.001 
4.44-
10.90 

2.96-
16.35 

2.32-
20.84 

1.87-
25.95 

 

Regression analysis allows us to assign prediction intervals to the relations using 

a parametric approach that indicates the probability of a future observation falling within 
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the range.  The regression prediction intervals are calculated using log-transformed 

height and depth data that are then transformed back to linear units. The dune height 

(𝐻𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) and length (𝐿𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) prediction intervals can be calculated as:  

𝐻𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  =  𝐻𝑝𝑟𝑒𝑑 ±  𝑡∝ 𝑆𝐸𝐻      (Eq. 2.28) 

𝐿𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  = 𝐿𝑝𝑟𝑒𝑑 ± 𝑡∝ 𝑆𝐸𝐿      (Eq. 2.29) 

where 𝐻𝑝𝑟𝑒𝑑 and 𝐿𝑝𝑟𝑒𝑑 are the log-transformed predicted dune height and length, 

respectively, using the scaling relations in Table 2.5, 𝑡∝ is the two-tailed Student’s t-test 

value for a given prediction interval and number of degrees of freedom, and 𝑆𝐸𝐻 and  

𝑆𝐸𝐿 are the standard error for height and length prediction.  Standard error for height and 

length prediction are determined as: 

 𝑆𝐸𝐻 = 𝑆𝐸𝐸ℎ𝐻 √1 +
1

𝑁
+

(ℎ𝑖−ℎ𝑙𝑜𝑔
̅̅ ̅̅ ̅̅ )2

 (𝑁−1)𝜎ℎ
     (Eq. 2.30) 

𝑆𝐸𝐿 = 𝑆𝐸𝐸ℎ𝐿  √1 +
1

𝑁
+

(ℎ𝑖−ℎ̅𝑙𝑜𝑔)2

(𝑁−1)𝜎ℎ
     (Eq 2.31) 

where 𝑆𝐸𝐸ℎ𝐻 is the standard error of estimate for the regression between h and H, 𝑆𝐸𝐸ℎ𝐿 

is the standard error of estimate for the regression between h and L, N is the number of 

data of points, ℎ𝑙𝑜𝑔
̅̅ ̅̅ ̅̅  is the mean of the log-transformed depth values, ℎ𝑖 is the log-

transformed depth for which the prediction is being made, and 𝜎ℎ is the standard 

deviation of the log-transformed depth.  A prediction interval must be determined for a 

selected probability using Equations 2.28-2.31 and the data provided in Table 2.6.  

However, prediction intervals are nearly linear, so they have a slope that is 

approximately equal to the derived scaling relations.  We have provided approximate 

prediction interval intercepts for a given level of probability in Table 2.5 by setting ℎ𝑖 = 0 

in Equations 2.30 & 2.31.  For a given level of probability, the prediction interval can be 

estimated using the scaling relation slope and these approximate intercepts.     
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Table 2.6. Variables needed to calculate a prediction interval. 

Scaling Relation 

Number of  

Data Points 

N 

Degrees 

of 

Freedom 

Mean of Log-

transformed Depth 

𝒉̅ or Height 𝑯̅ (m) 

Standard Error 

of Estimate 

𝑺𝑬𝑬 

 Standard 

Deviation 

𝝈  

Dune height from 

flow depth < 2.5 m 
391 389 -0.4958 0.2026 0.3689 

Dune height from 

flow depth > 2.5 m 
273 271 1.0261 0.2689 0.2372 

Dune length from 

flow depth 
498 496 0.7431 0.3078 0.8279 

Flow depth from 

dune height 
382 380 -0.1610 0.2886 0.4556 

 

It is common practice to simply use the inverse of the forward relations to 

reconstruct past flow depths from dune heights extracted from the rock record, however, 

this is not appropriate when using regressions.  Regression analysis assumes all the 

error lies in the independent variable, so they cannot be inverted without introducing a 

bias.  So we derive a relation using H as the independent variable and h as the 

dependent variable for use in the inverse problem (Figure 2.14a).  We do not derive a 

relation for L because H is more practically estimated from cross-strata (e.g., Paola & 

Borgman, 1991; Bridge & Best, 1997; Leclair & Bridge, 2001; Jerolmack & Mohrig, 

2005).  We have also only included field data because the large number of flume 

experiments creates a substantial bias as most of the flume data plot above the h/6 

scaling relation.  Dunes in natural channels are responsible for the features preserved in 

the rock record and the inclusion of data from idealized flume experiments may not be 

appropriate.  We do not separate the data based on shallow and deep flows since this 

information would not be known a priori in a paleo-environmental reconstruction.  

Furthermore, we cannot separate the data into small dunes and large dunes, since there 

is no evidence for a scaling break when H is used as the independent variable (Figure 

2.14).   
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Figure 2.14. Relations and prediction intervals with BCF applied between dune 
height and flow depth derived from (a) regression analysis and (b) 
calculation of the median relations using field data only.  

The power relation for inverse prediction has the form: 

ℎ = 𝐵𝐶𝐹  𝑎𝑖𝐻𝑚       (Eq. 2.32)  

The resulting power law relation and statistics are summarized in Table 2.5 and the 

relation is plotted in Figure 2.14a.  The proportion of the variance in h explained by H is 

69%.  The flow depth prediction interval (ℎ𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) is: 

 ℎ𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  = ℎ𝑝𝑟𝑒𝑑 ±  𝑡∝ 𝑆𝐸ℎ       (Eq. 2.33)  

where ℎ𝑝𝑟𝑒𝑑 is the log-transformed predicted flow depth using the scaling relation in 

Table 2.5, and 𝑆𝐸ℎ is the standard error for depth prediction as: 

 𝑆𝐸ℎ  = 𝑆𝐸𝐸𝐻ℎ  √1 +
1

𝑁
+

(𝐻𝑖−𝐻𝑙𝑜𝑔̅̅ ̅̅ ̅̅ ̅)2

(𝑁−1)𝜎𝐻
      (Eq. 2.34) 

where 𝑆𝐸𝐸𝐻ℎ is the standard error of the estimate for the regression between H and h, N 

is the number of data of points, 𝐻𝑙𝑜𝑔
̅̅ ̅̅ ̅̅  is the mean of the log-transformed dune heights, 𝐻𝑖 

is the log-transformed dune height for which the prediction is being made, and 𝜎𝐻 is the 

standard deviation of the log-transformed dune height.  As with the direct approach, any 

prediction interval level can be calculated using the data in Table 2.6 and Equation 2.34 
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or estimated using the scaling relation slope and the approximate prediction interval 

intercepts provided in Table 2.5.   

2.6.2. Non-parametric approach 

 While adding prediction intervals to the regressions is appealing, a Shapiro–Wilk 

test reveals that the h/H, L/h and H/h data are not normally or log-normally distributed.  

The regression prediction intervals do not properly represent the long tails of the 

distributions.  An alternative to the parametric approach is to use the cumulative 

distributions derived from the probability histograms (e.g., Figures 2.7 & 2.10) to 

characterize the scaling relations and their inherited uncertainty.  Ranges of uncertainty 

can be added as percentages of the total distribution around the median that reveal the 

likelihood of an observation falling within the range defined by the bounds.    

Cumulative probability plots (Figure 2.15) were used to add uncertainly ranges 

about the median relation for dune height predictions from flows less and greater than 

2.5 m deep, predictions of length from flow depth and predictions of flow depth from 

dune height.  The level of uncertainty is set by the probability (p) of a value falling within 

a range of values.  The median was found on the cumulative probability curve and 

becomes the new scaling relation.  A range was determined as ± p/2 about the median 

as in Figure 2.16.  For example, for a 50% probability the h/H value at 0.75 provided the 

upper limit, while the relation at 0.25 provided the lower limit.  The range is symmetric 

about the median for a normal distribution but asymmetric for non-normal distributions. 

 

Figure 2.15. Cumulative probability plots of (a) h/H with data separated at depths 
< 2.5 m and depths > 2.5 m, (b) L/h using the entire data set and (c) 
h/H for field data only. 
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Figure 2.16. Idealized cumulative probability plots that demonstrate how the 
prediction intervals about the median were determined. 

The median relations run through the center of the data (Figures 2.12b, 2.13b, 

2.14b) while the ranges about them captures the variability (Table 2.7).  Conventional 

uncertainly intervals such as 90% or 95% produce ranges that are too wide to be useful 

for any prediction.  For example, a 1 m high dune could be could be formed by flows 

ranging from 2.8 to 23.9 m at the 90% prediction interval.  A more reasonable range 

occurs with a lower probability, although the likelihood of a correct prediction is 

decreased.  There is a 50% chance that a 1 m high dune is formed by a flow that is 4.4 

to 10.1 metres deep.   

Table 2.7. Median scaling relations and their associated uncertainty range 
bounds. 

 

Scaling 

Relation 

Scaling 

coefficient 

(ε) 

Range of ε for various levels of uncertainty  

50% 80% 90% 95% 

Height Prediction (Figure 2.12)     

< 2.5 m 𝐻 =  ℎ/ε  3.5 2.8-4.9 2.3-7.8 2.1-9.9 1.9-11.8 

> 2.5 m 𝐻 =  ℎ/ε 7.7 6.1-11.8 4.6-19.4 3.9-26.3 3.4-57.9 

Length Prediction (Figure 2.13)     

All Data 𝐿 =  εℎ 5.9 3.6-8.4 2.1-10.6 1.6-13.0 1.0-17.3 

Flow Prediction (Figure 2.14)     

Field ℎ =  ε𝐻 6.7 4.4-10.1 3.1-14.6 2.8-23.9 2.7-29.5 
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The parametric and non-parametric approaches provide new scaling relations.  

While there is significant variability about them, it is comparable to that observed when 

using both the simple (e.g., Yalin, 1964; Julien & Klaassen, 1995) and more complex 

(e.g., Gill, 1971; Allen, 1978; Karim, 1995; van Rijn, 1984; Karim, 1999) scaling relations 

in the literature.  The relations presented here improve on those by requiring only one 

simple input, but also by allowing a variability metric.  The method provides a tool to 

assign an error estimate to prediction of modern dune dimensions from flow depth, as 

well as in paleo-environmental reconstructions of flow from preserved dunes. 

2.7. Synthesis 

 Scaling relations generally predict dune dimensions poorly.  The simplified depth 

scaling attributed to Yalin (1964) is the worst at predicting the observations, partially due 

to natural variability of dunes but it also does not acknowledge the scaling break at 2.5 m 

depths.  Adding grain size to depth-scaling relations (Julien & Klaassen, 1995) improves 

accuracy modestly, but it could hardly be considered a physically based data collapse.  

Using more complex variables (Shields number, Froude number, suspension criteria) 

may more faithfully reflect the actual dynamics of dunes as they grow from lower stage 

plane beds, then washout to upper stage plane beds.  However, these more complex 

relations do not substantially improve predictive power (Table 2.3; Table 2.4).  Our 

revised H to h scaling relations that include uncertainty estimates are an improvement 

over the existing simple scaling relations because they recognize the scaling break 

between dunes in deep and shallow rivers and because they are fit to a more extensive 

data set than all previous relations.  The percent of H observations within a factor of 1.5 

is 67% and 63% for our shallow water regression and median relations, respectively, 

and 59% and 57% for our deep water relations.  This is comparable to the accuracy 

obtained with the depth and grain-size scaling relations (e.g., Julien & Klaassen, 1995), 

which performed best in our testing.  Yet the magnitude of the variability about all scaling 

relations, including our own, suggests that we still do not understand the fundamental 

controls on dune dimension scaling.  Several critical questions emerge: Are dunes depth 

controlled? What are the fundamental controls on dune dimensions?  Why do dunes 

appear to scale with depth? 
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2.7.1. Are dunes depth-controlled? 

At some level, depth must exert some limitation on how large dunes can get.  

Dunes cannot grow out of the water surface.  Furthermore, it is intuitive that there is 

some maximum height a dune can reach before streamline compression causes 

sufficient flow acceleration over the dune crest to prevent further deposition on the crest 

and dune growth.  Our data set suggests that the highest dunes observed are ~40% of 

the flow depth (H = h/2.5), but dunes very rarely reach this hypothetical maximum height.  

Most dunes exist in equilibrium with the flow at heights much less than h/2.5 (Figure 

2.5a).  So we examine the arguments that have been put forward to support a depth 

control on dunes. 

Dune dimensions have traditionally been linked to ‘boundary layer thickness’, 

under the belief that boundary layer thickness somehow prevents dunes from getting 

larger (e.g., Jackson, 1975).  The physical mechanism for this control has never been 

fully elucidated, but the idea that dunes scale with boundary layer thickness in rivers is 

so pervasive, that it has led aeolian geomorphologists, sedimentologists and physicists 

to propose scaling of giant desert dunes with atmospheric boundary layer depth (cf., 

Andreotti et al., 2009) and oceanographers to seek boundary layer depth controls on 

continental shelf dunes for decades without much success (see recent review in 

Franzetti et al. (2013) and references therein to earlier work).   

A boundary layer thickness control on dune height seems unlikely because 

boundary layers do not fully form in rivers, at least in the classical sense.  Flow in rivers 

is depth-limited insofar as turbulence is anisotropic through the full flow depth due to bed 

roughness effects (Nowell & Church, 1979).  By contrast, there is an atmospheric 

boundary layer limit defined where turbulence is isotropic and no longer affected by the 

Earth’s surface (Oke, 1978).  Rivers are too shallow for a similar boundary layer to fully 

develop since mean flow fields are dominated by large-scale, macroturbulent coherent 

flow structures that form at the bed and upwell through the water column where they 

may emerge at the surface as boils (Jackson, 1976; Kostaschuk & Church, 1993; 

Bradley et al., 2013).  Because boundary layers do not ever fully form, boundary layer 

thickness is solely controlled by flow depth, which as noted above, does not appear to 

be the fundamental control on fully developed dune dimensions. 
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It has been speculated that dunes grow until the area above the crest is planed 

off because flow conditions are similar to those over an upper-stage plane bed (cf., 

Bennett & Best, 1996).  The theory would suggest that given enough time, all dunes 

would grow to the height required to accelerate the flow over the dune crest towards 

critical Froude number conditions that produce upper-stage plane beds.  Yet, there is 

little evidence in the literature to support the idea.  Critical Froude number conditions are 

rare in rivers in general and certainly do not exist in large rivers where the Froude 

number is commonly 0.1 to 0.3 (e.g., Julien, 1992; Kostaschuk &Villard, 1996; Holmes & 

Garcia, 2008).  For example, Bradley et al. (2013) reports dune heights of 1.5 m in flow 

11 m deep and moving at 2.2 m/s.  The Froude number for the flow is 0.21 and Fr = 0.22 

over the crest.  In order to produce critical flow conditions over the Bradley et al. (2013) 

dune crest, the dune would have to be ~7 m high, reducing the flow depth to ~4 m, a 

condition obviously impossible.  In deep rivers where lower Froude number flows are 

common, dunes are relatively smaller in height which cannot be due to erosion at the 

crest.  While we cannot exclude the possibility that critical Froude number conditions can 

occur over a dune crest in shallow flows, this cannot be the universal explanation for 

what controls the height of dunes. 

The idea that flow depth is the fundamental control on dune heights is further 

flawed because it ignores the role of flow strength in controlling dune height.  

Experimental work by Venditti et al. (2005b) showed that dunes formed at constant flow 

depths, but with different flow strengths, vary in size when fully adjusted to the flow.  

Bedform growth curves (Figure 2.17) reveal that the fully developed equilibrium dune 

size decreases with decreasing flow strength at a constant flow depth.  This suggests 

that the fundamental control on dune dimensions is something other than flow depth. 
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Figure 2.17. Dune growth curves for height (H) and length (L) from experiments 
by Venditti et al. (2005b).  For each flow, the average depth was held 
constant at 0.15 m but the mean flow velocity was different.  He and 
Le are average equilibrium heights and lengths, respectively. 

2.7.2. What are the fundamental controls on dune dimensions?   

The work of Yalin and collaborators (Yalin, 1972; Yalin & Karahan, 1979) and 

Allen (1982) showed that dune steepness (H/L) varies with the transport stage.  They 

showed that H/L increases from BLD to MXD conditions and declines to SSD conditions 

as the dunes wash out to an upper stage plane bed.  A similar pattern can be observed 

in our data compilation overlain onto the data cloud from Yalin (1972), which roughly 

reveals the hyperbolic relation between transport stage and H/L (Figure 2.18a).  The 

hyperbolic behavior of dune steepness with transport stage also emerges when the ratio 

of shear velocity 𝑢∗ to settling velocity 𝑤𝑠 is examined rather than transport stage (Figure 

2.18b).  Dune steepness increases with the suspension criteria (𝑢∗/𝑤𝑠) until around a 

value of 1, where substantial suspension begins (Bagnold, 1966).  There is also a group 

of field data that shows a decrease in steepness at higher values of 𝑢∗/𝑤𝑠 than the flume 

data.  Nashband et al. (2014) argued that in high Froude number flume experiments, 

dunes wash out to USPB at smaller values of  𝑢∗/𝑤𝑠 than in deeper flows where Froude 

numbers are typically smaller (e.g., Julien, 1992; Kostaschuk &Villard, 1996; Holmes & 

Garcia, 2008).  This suggests that transport stage (or mode) and the free surface 
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interaction with the bed are two important controlling factors in determining dune 

dimensions as previously recognized in scaling relations.   

It is difficult to discern what is happening to the height and length separately as 

𝜏∗/𝜏∗𝑐  or 𝑢∗/𝑤𝑠 increase because both dimensions could be covarying to give the 

variation in H/L.  However, recent work by Venditti et al. (2016), showed that the pattern 

emerges because H increases then decreases as more sediment goes into suspension, 

against a background of continuously increasing L (Figure 2.19).  At higher transport 

stages, L continues to grow while H decreases as dunes wash out to upper stage plane 

beds.  Similar observations were made by Nashband et al. (2014), who shows that 

length continually increased with 𝑢∗/𝑤𝑠.   

 

Figure 2.18. The aspect ratio (H/L) of the dune in the data compilation plotted as 
a function of (a) transport stage (𝝉∗/𝝉∗𝒄) and (b) suspension criterion  

(𝒖∗/𝒘𝒔).  The shaded area (drawn by Venditti, 2013) in (a) represents 
the data cloud from Yalin (1972) for dunes.  Data included here are 
254 points from flume experiments and 99 from field observations. 
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Figure 2.19. Results of flume experiments by Venditti et al. (2016) showing (a) 
dune aspect ratio, (b) dune height, and (c) dune length plotted as a 
function of transport stage (𝝉∗/𝝉∗𝒄).  Blue diamonds, red squares and 
green triangles are reach averaged values from individual runs 
under bedload (BLD), mixed load (MXD), and suspended sediment 
(SSD) conditions, respectively.  The black circles represent the 
averages of all the runs for each condition. 

The observations of Venditti et al. (2016) highlight an issue with defining the 

controlling conditions for dune dimensions.  The data that underlie their results (Figure 

2.19) are observations obtained over 16-hour flume runs, after fully developed dunes 

formed.  While the mean of the observations at any one transport stage reveal 

underlying relations, the individual observations, all taken under the same hydraulic 

conditions, vary substantially.  This exposes a potential problem with defining dune 

scaling relations from individual observations in that inadequate averaging through time 

may result in substantial variability at constant hydraulic conditions. 

In spite of this caveat, it is clear that metrics of shear stress, transport stage and 

mode, surface and bed topography interaction, and the scale of the flow are important 

for what ultimately controls dune dimensions.  It is also clear that further meta-analysis is 

unlikely to clarify the controlling mechanisms because there may be substantial 

variability introduced to the empirical data simply from inadequate averaging.  Yet there 

are practical reasons to recover some mechanistic reasoning for why depth scaling is 

acceptable. 

2.7.3. Why do dunes appear to scale with depth? 

 While there is evidence to suggest that depth is not the fundamental control on 

dune dimensions, we cannot ignore that dune dimensions have been long observed to 
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increase with the scale of the system.  There are physically-based reasons why dunes 

may appear to scale with depth.  Smith (1970) reasoned that the distribution of shear 

stress and bedload sediment flux over a dune controlled whether it would grow, be 

stable or erode.  If the maximum flux (qmax) is upstream of the crest, deposition is 

occurring in the lee of the crest and the dune is growing.  Conversely, if qmax is 

downstream of the crest, the crest is eroding and the dune height is lowering.  Only 

when the topographic maximum and qmax coincide is the dune fully adjusted to the 

imposed shear stress causing downstream migration of a dune with a constant height 

through an equal balance of erosion of the stoss and deposition in the lee.  Building on 

Smith (1970), Nelson et al. (1993) further proposed that increased flow acceleration 

related to a growing dune moves the maximum sediment flux towards the crest.  The 

increased acceleration also damps the turbulence field, decreasing the turbulence 

intensity, and further promoting the sediment flux maximum to move towards the crest 

because the local mean flow properties have greater correlation with local sediment flux 

than fluctuating components.  This would suggest that dune height should scale with the 

shear stress, insofar as the stress distribution is controlled by the total applied shear 

stress (𝜏), which itself is dependent on the flow depth because 𝜏 = 𝜌𝑔ℎ𝑆.  Flow depth 

may not be a fundamental control on dune dimensions but it certainly is involved with the 

dynamics of the shear stress distribution. 

We may have also recovered an indirect correlation between flow depth and the 

appearance of HAD and LAD morphologies in rivers (Figure 2.11).  This change in dune 

morphology and the scaling break coincide with a greater propensity for suspension in 

deeper rivers, which causes particles to escape the dune crest and deposit in the trough, 

thus lowering the dune height (e.g., Hendershot et al., 2016).  Flemming and 

collaborators (Flemming, 2000; Bartholdy et al., 2005; Bartholdy et al., 2010) have 

proposed that grain size is important in setting the height of deep sea dunes since shear 

velocity at a dune crest determines whether a dune will be dominated by bedload or 

suspension.  The scaling break can be linked to flow depth, insofar as the threshold for 

suspension is controlled by the ratio of the shear velocity  𝑢∗ =  √𝑔ℎ𝑆  to the settling 

velocity of particles. 

Ultimately, our development of dune-depth scaling relations is born of a need to 

link dune dimensions to some flow variable. The physical controls on the height of dunes 

are not yet clear even though there has been a long history of scaling relations that have 
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attempted to identify flow variables that are important to dune dimensions.  

Reconstruction of paleo-depth is not fully limited by our ability to interpret dune heights 

from the rock record and our ability to predict flow depths is not limited by how we 

measure topography.  Forecasting of formative flows or prediction of dune heights is 

hindered by our knowledge of how flows in rivers shape dune geometry, indicating that 

we require a better understanding of the mechanisms that control dune height. The 

apparent scaling of dunes with flow depth may be an indirect correlation and arise 

because the shear stress and shear velocity are dependent on depth.   

2.8. Application 

The application of our new depth-scaling relations to engineering, 

geomorphological or sedimentological problems involves four steps.  For the direct 

approach, we suggest the following procedure:  

(1) Determine reach-averaged flow depth; 

(2) Use the median relation (Figure 2.12b; Table 2.7), selecting the relation for 

flows < 2.5 m or > 2.5 m deep to predict a dune height; 

(3) Use the median relation for dune length (Figure 2.13b; Table 2.7) if desired;   

(4) The potential range of dune heights and lengths at a depth should then be 

estimated for a desired uncertainty level using the non-parametric approach 

(Figure 2.12b; Figure 2.13b; Table 2.7).   

We recommend the application of non-parametric scaling relations over the derived 

regression relations because the data are not normally or log-normally distributed.  The 

regressions are formal scaling relations and provide information about the scale factor 

and scale distortion, which may be useful for further research.  But, the non-parametric 

relations and the uncertainty ranges about them better represent the variability in the 

data set.  The amount of uncertainly applied in Step 4 depends on the specific problem.  

Using a smaller uncertainly range, provides a more reasonable spectrum of possible 

dune heights, but there is a lower probability of a predicted dune falling within the range.  

When larger uncertainly bounds are applied, there is a much higher probability that the 

observed dune will appear in that range, but the range of possibilities is so large that it 

may not be useful.  For example, for roughness estimates from dune heights, a lower 

uncertainty range could be applied in order to constrain the possible estimates.  
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However, for higher risk engineering purposes where the depth of scour related to dunes 

is required, such as at pipeline, tunnel or bridge crossings, a larger uncertainty range is 

recommended in order to capture all the possible dune sizes.  Ultimately, it is up to the 

user to evaluate what is an appropriate level of uncertainly for the problem at hand.  

 For the inverse problem we recommend the following procedure:  

(1) Estimate dune heights from exposed dunes or from preservations in cross 

strata using either a theoretical (Paola & Borgman, 1991; Bridge & Best, 

1997) or empirical (cf. Bridge, 1997; Leclair et al., 1997; Leclair & Bridge, 

2001; Leclair, 2002; Leclair, 2011) model; 

(2) Use the median relation for predicting flow depth that was derived from the 

field data (Figure 2.14b; Table 2.7); 

(3) Apply a reasonable level of uncertainty using the non-parametric approach 

(Figure 2.14b; Table 2.7). 

As in the direct approach we recommend using the non-parametric median relation 

because it better represents the data and makes no assumptions about the data 

distribution.  We do not provide a dune length-depth relation because there is limited use 

for this in paleo-environmental reconstructions since length is not easily recovered from 

cross-strata.  We have made no distinction between dunes in shallow (< 2.5 m) and 

deep (> 2.5 m) flows because there is no way to determine whether the flow was deep or 

shallow from cross-strata.  Ultimately, the recommended relation (Figure 2.14b; Table 

2.7) is derived from field observations solely, because inclusion of laboratory 

observations, all of which are made in shallow flows, would bias the relation intended to 

predict flows at field scale.   

There is clear advantage to using our ranges of uncertainty rather than relying on 

seemingly arbitrary ranges of H/h derived from other data compilations. Our ranges are 

based on the largest data set ever compiled and the ranges are objectively determined 

using probability theory.  When applying our relations and the associated uncertainty, 

predicted flow depth ranges will be smaller when a 50% probability is applied, but the 

chance of the flow being outside of the range is greater than if a higher probability range 

is used.  However, selecting the appropriate level of uncertainty for the inverse problem 

is more complex than this.  Application of our non-parametric uncertainty estimates 

assumes that dune heights can be accurately reproduced from the rock record but 
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bedforms are rarely entirely preserved.  Cross-sets more often represent the erosional 

remains of bedforms so only a fraction of bedform heights are preserved.  The 

uncertainty associated with the theoretical and empirical models for reconstructing dune 

heights needs to be combined with the uncertainty derived from our relations.  If the 

uncertainty derived from a cross-set thickness to dune height model is high, adding 

uncertainty from our flow depth-dune height relation would, at best, be a conservative 

estimate of uncertainty.  If the prediction of dune height from cross-strata can be better 

constrained (based on many observations of well-preserved cross-strata), then some 

uncertainty of that prediction can be developed which should then be combined with the 

uncertainty from our relations. 

2.9. Conclusions 

We compiled all known observations of dune dimensions and flow characteristics 

from both laboratory flume experiments and field observations in order to assess dune 

scaling relations available in the literature.  So far as we are aware, this is the most 

extensive data set compiled to date.  Our assessment of previously proposed dune 

scaling relations reveals that none of them predict dune dimensions particularly well.  

Only about 50% of the predicted dune dimensions are within a factor of 1.5 of the actual 

dune height and length.  Approximately 90% of the predictions are within a factor of 3.5 

of the observed dune dimensions.  The dataset reveals that the reason for the poor 

predictive power is the order of magnitude variability in dune dimensions for any 

particular flow condition, regardless of how the flow is parameterized.  Furthermore, 

there is evidence that dunes in smaller channels conform to a different height scaling 

than dunes in larger channels.  This scaling break in dune height between deep and 

shallow flows has not been formally documented.  However, the emergence of the 

scaling break reflects a change in dune morphology from strongly asymmetric dunes 

with high lee angles in flows < 2.5 m deep to more symmetric, lower lee angles dunes in 

flows > 2.5 m deep. 

In order to recover scaling relations for application in paleo environmental 

reconstructions and prediction for dune dimensions in modern flows, we develop a 

series of simple relations between dune dimensions and flow depth that include 

uncertainty bounds derived from our dataset.  These simple depth-scaling relations 

remain useful because they require only one observable quantity to predict bed 
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roughness from flow depths, or only one estimate (dune height) from cross-strata to 

reconstruct paleoflows.  By providing separate relations for dunes in flow depths greater 

and less than 2.5 m, the relations recognize that high angle dunes grow relatively higher 

in shallow flows than low angle dunes in deeper flows.  Our proposed depth-scaling 

relations further improve on previous relations by including uncertainty that allows first-

order estimates of the variability to be carried forward in predictions. 

There remains no clear mechanistic explanation for how flow depth could be 

responsible for setting the equilibrium dimensions of dunes, despite the observation that 

dunes clearly increase in size with the scale of the river system.  We have proposed that 

the apparent scaling of dunes with flow depth may be indirect and emerge because 

shear stress and shear velocity, which are both dependent on depth, are important 

physical controls on dune morphology.  Until critical tests of the hypotheses for what 

controls the height and length of dunes can be made, our newly developed relations 

better represent the available data for both forward prediction of dune height from flow 

depth and inverse prediction of flow depth from dune height. 
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Chapter 3. The Transport Scaling of Dunes 

Abstract 

Dune dimensions in sand-bedded rivers are often thought to scale with flow 

depth (h), with height (H) scaling as 1/6h and length (L) as 5h, even though substantial 

scatter about the relations has been observed.  Transport stage has been shown to 

affect bedform geometry, but this control is usually ignored in favor of depth-scaling 

relations.  Here, we use a series of flume experiments to systematically test controls on 

dune dimensions and variability.  Experiments involved three sets of runs under five 

constant transport stages, ranging threshold to washout conditions, at three different 

flow depths. The mobile bed was repeatedly scanned during a 10-hour equilibrium 

period to derive mean values and quantify the variability.  The results show that dune-

depth scaling is not consistent because of a transport stage effect.  Dune height 

increases with transport stage until a point when H decreases.  Length remains nearly 

constant with transport stage until further increases in transport stage leads to 

lengthening.  In general, dunes grow higher when significant bedload transport occurs, 

but become flatter and longer in the presence of substantial suspension.  Ultimately, 

dunes scale with transport stage, which is a function of slope, grain size and h.  The 

results are used to derive transport stage relations to guide predictions of dune 

dimensions in rivers and reconstructions of paleoflows based on dimensions estimated 

from cross-strata.  The relations incorporate the non-linear response of dune dimensions 

with transport stage and provide metrics of uncertainty to include in predictions.   

3.1. Introduction 

The interaction between water and sediment at the Earth’s surface creates 

bedforms in sand-bedded channels that range in size, scale and morphology.  Dunes 

are bedforms that typically range anywhere from a few centimetres to several metres in 

height and can be up to 1000 m in wavelength/spacing (herein referred to as length).  

Dunes in small channels and flumes display an asymmetric shape with a stoss slope 

ranging from 2-6° and a high lee slope at the angle of repose (~30°).  Dunes in rivers 

with depths > 2.5 m display a symmetrical shape with low lee side slopes, often < 10° 

(Venditti, 2013; Bradley & Venditti, 2017; Chapter 2).  Modern river managers are 
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interested in the prediction of dune dimensions because they are important mechanism 

of bed material transport and are major sources of flow resistance.  Dunes are also 

preserved in the rock record as cross-strata, so there is interest in using extracted 

dimensions from preserved features to hindcast their formative flows. 

The ability to accurately predict dune dimensions and hindcast flows is limited by 

a poor understanding of what controls their size and shape in rivers.  Yalin (1964) first 

linked dune dimensions to flow depth (h) and suggested that dune heights (H) scale as 

h/6 and lengths (L) scale as 5h.  These simple conventions have become so pervasive 

that many authors argue dunes not following the scaling are out of equilibrium with the 

flow (e.g., Carling et al., 2000; Bridge, 2003; Holmes & Garcia, 2008).  However, Bradley 

& Venditti (2017; Chapter 2) recently complied all available published dune dimensions 

from a range of rivers and showed that H and L were poorly predicted by the Yalin 

relations.  Dune size does increase with flow depth, but H and L vary by up to two orders 

of magnitude for a given h, even when data are filtered to ensure dunes were fully 

adjusted to the flow.  The substantial scatter indicates that depth is not the fundamental 

control on dune dimensions and, despite decades of research, we still do not understand 

what sets dune size.   

A depth control has also been invoked, albeit less directly, in discussion 

surrounding the Froude number (𝐹𝑟 = 𝑈̅/√𝑔ℎ, where 𝑈̅ is the mean flow velocity and g 

is gravitational acceleration).  Decades of experimental work (e.g., Simons & 

Richardson, 1966; Southard & Boguchwal, 1990; Cartigny et al., 2014; Naqshband et al., 

2017a) and theory (e.g., Englund, 1970; Fredsøe, 1974; Colombini & Stocchino, 2008) 

have shown that Fr is important in controlling whether a dune field will transition to an 

upper stage plane bed, but the physical mechanism that links dune dimensions to Fr is 

tenuous.  It has been proposed that dunes grow up into the flow until the area above the 

crest is planed off because the flow conditions are similar to an upper staged plane bed 

(Bennett & Best, 1996).  However, dunes in deep rivers, where Fr is consistency sub-

critical (< 0.3), do not grow as relatively high in the flow as dunes in shallower channels 

(Naqshband et al., 2014; Bradley & Venditti, 2017; Chapter 2).  Instead, they adopt a 

low-angle symmetrical morphology (e.g., Smith & McLean, 1977; Kostaschuk & Villard, 

1996; Hendershot et al., 2016; Hu et al., 2018) during high flows without any obvious 

relation to the Fr.  Critical Fr conditions may limit growth in shallow channels, where flow 
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interaction with the water surface promotes planing of dune crests, but dunes do not 

necessarily grow to a constant fraction of flow depth (Venditti et al., 2016).  Thus, the Fr 

control is not universal since it does not explain why dunes can adopt different heights at 

different flow strengths in shallow flows or why dunes in deep channels generally do not 

grow as high as in shallower flows.   

The evidence that multiple dune dimensions can emerge for a given h, and that 

all dunes are not limited by the Froude number, suggests that something else acts as a 

control on dune dimensions.  Early work (e.g., Yalin, 1972; Yalin & Karahan, 1979; Allen, 

1982; Fredsøe, 1982) showed that transport stage can control the shape of a dune.  

Transport stage can be quantified as the ratio of the non-dimensional Shields stress (𝜏∗) 

to the critical Shields number for sediment entrainment (𝜏∗𝑐).  Shields stress is defined 

as 

𝜏∗ =  
𝜏

(𝜌𝑠−𝜌𝑤)𝑔𝐷
        (Eq. 3.1) 

where 𝜏 is the shear stress at the bed, 𝜌𝑠 and 𝜌𝑤 are the sediment and water densities, 

respectively, and 𝐷 is the representative grain size of the sediment, usually taken as the 

median grain size 𝐷50.  Values of 𝜏∗𝑐 vary with grain size (e.g., Shields, 1936; Brownlie, 

1981).   

Transport stage can alternatively be quantified using a suspension threshold as 

the ratio of the shear velocity (𝑢∗) to settling velocity of the sediment (𝑤𝑠), which is a 

variant of the Rouse Number.  Although 𝑢∗ 𝑤𝑠⁄  is directly proportional to 𝜏∗/𝜏∗𝑐 for a 

given grain size, the former provides a boundary for when suspension occurs.  It has 

been shown that particles can be entrained into the flow at 𝑢∗ 𝑤𝑠⁄  values as low as 0.4 

(Van Rijn, 1984; Nino et al., 2003), but a vertical concentration profile of suspended 

sediment starts to develop at 𝑢∗ 𝑤𝑠⁄  = 1 (Bagnold, 1966).   

Dune steepness (H/L) generally increases with transport stage from dominantly 

bedload to mixed load conditions.  As transport stage further increases and more 

sediment moves in suspension, dunes become less steep (Yalin & Karahan, 1979; Allen, 

1982; Naqshband et al., 2014; Bradley & Venditti, 2017; Chapter 2). Using a single flow 

depth and a range of transport stages, Venditti et al. (2016) showed a similar pattern in 
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H/L at a constant flow depth but as 𝜏∗/𝜏∗𝑐 increases, H increases then decreases, while 

L continues to increase asymptotically until dunes wash out to a flat bed.   

Natural variability further complicates our understanding of what controls bedform 

dimensions.  Observations from flume experiments (e.g., Nordin, 1971; Venditti et al., 

2016) and field studies (e.g., Hendershot et al., 2016; Ma et al., 2017) show tremendous 

natural variability in dune dimensions within and between reaches, but it is not entirely 

clear what drives this variability.  At the dune scale, variability has been linked to 

merging and splitting causing dunes to increase or decrease in size (e.g., Gabel, 1993; 

Swanson et al., 2017; Hendershot et al., 2018).  Others have related variability to the 

formation of lobe- and saddle-shaped crestlines (Venditti et al., 2005) and locally-

controlled dune trough scour depth (cf., LeClair, 2002).  Ultimately, it is variation in 

sediment flux that drives local changes to dune morphology, with some treating this 

variability as a stochastic process (e.g., Paola & Borgman, 1991; Leclair & Bridge, 2001; 

Jerolmack & Mohrig, 2005; McElroy & Mohrig, 2009).       

How dune variability within dune fields responds to bulk flow changes is also not 

well known.  van der Mark et al. (2008) suggested that in deep natural channels, overall 

variability is constant between dune fields regardless of flow conditions, and variability is 

only reduced in small narrow channels such as flumes.  However, Venditti et al. (2016) 

showed that variability in bedform dimensions is inherently linked to transport stage with 

considerably more variability occurring at higher 𝜏∗/𝜏∗𝑐.  Improved prediction of dune 

dimensions will require a deeper understanding of what sets bedform variability. 

The scaling of dune dimensions with flow depth is generally accepted despite 

both weak evidence to support the scaling and observations that show different 

equilibrium dune dimensions for a given flow depth at different transport stages.  

However, evidence of a transport control on dimensions has been limited to H/L (e.g., 

Yalin & Karahan, 1979; Allen, 1982; Bradley & Venditti, 2017) or to a single flow depth at 

a few different transport stages (Venditti et al., 2005; Venditti et. al., 2016).  Bradley and 

Venditti (2017) recently tested a series of scaling relations that indicate potential 

controls, including transport stage, grain size, and Fr, but found that the relations poorly 

predicted dimensions.  This highlights our limited understanding of the governing 

controls on dimensions and may also indicate that theoretical and empirical predictive 

relations should account for inherent variability.  
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 Here, bedform dimensions and morphologies were examined under different 

transport conditions at different flow depths. Our experiments involved 3 sets of runs.  

Each set of runs had a different initial flow depth.  In each run, a constant flow was 

applied over a flattened bed until the emergent bedforms remained in equilibrium for 10-

hours.  For runs within a set, a different constant flow was applied to achieve 

observations ranging from just above the threshold for sediment motion to a near 

complete washout of dunes.  The bed was scanned repeatedly in each run to derive 

mean values, remove uncertainty and quantify the variability about them.  We set out to 

explore the role of depth on dune dimensions, how dune dimensions and morphology 

are affected by transport stage and what controls variability in dune dimensions.  Our 

overarching goal is to answer the question: What sets dune dimensions in rivers?  

3.2. Methods 

Laboratory experiments were conducted in the River Dynamics Laboratory (RDL) 

at Simon Fraser University, Canada.  The 15 m long, 1 m wide and 0.6 m deep RDL 

flume has a slope that can be adjusted from -0.5 to 2% and recirculates both sediment 

and water.  Well-sorted sand that had a D50 = 550 um was used in the experiments 

(Figure 3.1).  The sand was 99.9% quartz with trace amounts of sillimanite, garnet, 

sphalerite, muscovite and gold.   

 

Figure 3.1. Grain-size distribution of sediment used in experiments 
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3.2.1. Experimental Design 

The experiments involved three sets of runs and each set had a different initial 

flow depth of 15 cm, 20 cm, and 25 cm (Table 3.1).  Each set included individual runs at 

different transport stages that were achieved by increasing the pump discharge.  The 

recirculating flume was first filled to the designed depth then the pump was started to 

induce flow.  The bed was flattened before each run and constant flow was then applied 

for 10-25 hours.  This allowed the bed to reach a stable configuration with no apparent 

increase or decrease in the characteristic bedform dimensions, although later analysis 

showed that this was not entirely true for some of the lowest transport stage runs.  For 

the 15 cm and 20 cm sets, observations were made at five different transport stages, 

ranging from just above the threshold for sediment motion to a near the washout of the 

bedforms.  The runs are named Threshold (THLD), Bedload (BDLD), Lower Mixed 

(LMIX), Upper Mixed (UMIX), and Suspension (SPSN) based on visual observations of 

sediment transport.  Only THLD and BDLD conditions were possible for the 25 cm depth 

because higher discharges were outside of the capacity the flume pumps.  The initial 

flow depth for each run is identified in the run name herein (e.g., 15-THLD, 20-THLD, 25-

THLD).  The initial flume slope for each run was set so that it matched the water surface 

slope over the flat bed when the pumps were initially turned on.  As the bed evolved 

through time, the water surface and bed slope changed, and they became emergent 

properties that responded to the imposed flow conditions.   

Table 3.1. Initial experimental conditions. 

Condition 

Depth 

(m) 

Discharge 

(m3s-1) 

Initial Flume 

Slope 

Water 

Temp (°C) 

No. of 

Scans 

15-THLD 0.15 0.060 0 14 59 

15-BDLD 0.15 0.075 0.00047 18 53 

15-LMIX 0.15 0.090 0.00084 22 60 

15-UMIX 0.15 0.110 0.00149 25 57 

15-SPSN 0.15 0.130 0.00199 25 59 

20-THLD 0.20 0.086 0 14 59 

20-BDLD 0.20 0.100 0.00045 25 57 

20-LMIX 0.20 0.120 0.00081 27 57 

20-UMIX 0.20 0.140 0.00113 27 59 

20-SPSN 0.20 0.167 0.00194 27 55 

25-THLD 0.25 0.100 0 25 59 

25-BDLD 0.25 0.125 0.00081 27 57 
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3.2.2. Measurements 

Measurements of water surface and bed topography profiles were made using a 

Swath Mapping System (described in Venditti et al. (2016)).  A stepper motor on the 

system allows the cart to run along rails mounted on top of the flume tank.  The cart is 

equipped with a 32- transducer Seatek Instruments echo-sounding system mounted in a 

Plexiglas beam oriented across the channel.  Each transducer is spaced 2.5 cm apart 

and a mechanical stepper motor moves the sensors vertically to ensure they could be 

positioned immediately below the water surface.  Three MassaSonic ultrasonic sensors 

are also mounted on the cart to measure water surface elevations at positions of 20.6 

cm, 49.9 cm and 80.5 cm across the channel from the right-hand flume wall looking 

downstream.  An onboard computer records the Seatek and Massa sensor signals and 

positions.   

Measurements were made in the along stream direction from 4.5 to 10 m to 

ensure no entrance or exit effects.  The speed of the cart was set to maximize the 

number of scans that could be performed while providing high density measurements in 

the downstream direction.  The downstream spacing of the Seatek measurements were 

1.29 cm and the Massa measurements were 12.4 cm.  The Seatek sensors were placed 

a few mm below the water surface so that they did not have any interaction with the 

labile bed.  Individual scans were made approximately every 10 minutes.  Data 

presented herein for each run are from a 10-hour period, consisting of 53 to 60 scans, 

after the bed had fully adjusted to the flow (Table 3.1). 

3.2.3. Sediment Transport Measurements 

A syphon system with an L-shaped copper tube, a nylon tube and a variable 

speed pump were used to isokinetically collect suspended sediment samples over the 

bed.  The system was mounted to a point gauge positioned in the center of the channel 

and samples were collected 4 cm above dune crests to ensure a consistent sample 

location between measurements.  Because downstream velocity profiles have a 

logarithmic form at the crest (e.g., Nelson et al., 1993), measurements can be converted 

to provide the least biased flux values.  Flow velocity at 4 cm above the bed was 

estimated assuming a logarithmic velocity profile which was then used to set the siphon 
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pump speed to ensure isokinetic samples.  Samples were filtered using glass microfiber 

filters with a pore size of 1.6 μm and weighed to derive sediment concentrations.   

Measured ‘at-a-point’ sediment concentrations were converted to depth 

integrated total fluxes using the Rouse equation (Rouse, 1939): 

𝐶

𝐶𝑎
= (

ℎ−𝑧

𝑧
 

𝑧𝑎

ℎ−𝑧
)

𝑤𝑠
𝛿𝑘𝑢∗       (Eq. 3.2) 

where C is the concentration of suspended sediment at height z above the bed, Ca is the 

reference concentration measured at elevation  𝑧𝑎 = 4 cm above the bed, 𝛿 is a 

coefficient that describes the difference in diffusion between a sediment particle and a 

fluid particle (assumed to be 1), and 𝑘 is the von Karman constant (0.41). Suspended 

sediment flux (𝑞𝑠𝑠) is then estimated per unit width as: 

𝑞𝑠𝑠 =  𝑈ℎ
̅̅̅̅  ∙  𝐶ℎ̅ℎ       (Eq. 3.3)  

where 𝑈ℎ
̅̅̅̅   and 𝐶ℎ̅ are the mean depth-averaged streamwise velocity and concentration 

of suspended sediment, respectively.   

Even though narrowly graded sand was used, the bed material contained much 

less than 1% of fine silt sediment (Figure 3.1).  The fine sediment remained in 

suspension and did not interact with the bed.  A correction for this washload component 

was performed to remove it from the calculated bed material suspended sediment flux.  

Washload was quantified using the siphon samples from the THLD condition where no 

bed material was in suspension (Venditti et al., 2016).  Three washload concentrations 

were calculated from the 15 cm, 20 cm and 25 cm THLD conditions and subtracted from 

the measured suspended sediment concentrations from the other runs at the same flow 

depths.   

Miniaturized Helley-Smith samplers scaled down to a 20 mm square mouth 

(Dietrich & Smith, 1984; Mohrig & Smith, 1996; Venditti et al., 2016) with a 75 μm 

meshbag were used to measure bedload flux.  Bedload samples were collected by 

setting the samplers on the bed at dune crests.  Three samples were collected at 

positions ¼, ½, and ¾ the channel width, but some sample sets contain only two 

samples because the measurement dunes migrated too quickly to identify the crest for 

the third sample.  Bedload flux 𝑞𝑏𝑙 was calculated for each set of samples by adding the 
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weight of the three samples and dividing by the total collection time, and then multiplying 

by 50 to provide a per unit width value.  Sediment carried in intermittent suspension in 

the near bed region (< 20 mm above the bed) was also collected in the Helley-Smith 

samplers, introducing a bias in the bedload measurements.  A correction was applied to 

separate suspended load from the bedload when sediment was transported above the 

saltation layer.  To split the loads, the Van Rijn (1984) saltation model was used to 

calculate saltation height, and a linear vertical concentration profile was assumed from 

the bed to z = 20 mm.  The contribution to the suspended sediment collected in the 

Helley-Smith samplers was removed from the bedload component and added to the 

suspended bed material flux calculated with Equation 3.3.  The total measured flux is not 

affected by the correction. 

3.2.4. Filtering method 

A filtering method was required to remove noise from the Seatek data (e.g., 

Figure 3.2a), especially at higher transport stages when large volumes of bed material 

were in transport.  Most noise appeared as positive excursions above the bed, induced 

by sediment moving in suspension (e.g., Figure 3.2a,c).  A simple smoothing filter such 

as a moving average, polynomial or spline could not be used because, while they did 

remove some of the noise, they ultimately smoothed out troughs. Given the extra noise 

at high transport stages, and difficulties recovering troughs, noise was removed using (1) 

an along stream profile filter, (2) a cross stream filter and (3) a smoothing moving 

window.  A detailed step-by-step explanation of the method is available in Appendix 3 

but the general steps are: 

1. A data point (i) in an along stream profile was removed if the difference in vertical 

elevation (z) between the upstream point (i+1) and downstream point (i-1) was 

greater than 1 cm or less than -1 cm.  A 9-point moving average (i-4:i+4) was 

then run through the profile and i was removed if it was -0.5  > z < 0.5 cm from 

the calculated average.  

2. At high flow conditions (UMIX and SSPN), up to 5 sensors failed to return a 

useable signal (Sensors #9, 18, 23, 26, 31) because they had higher sensitivity 

to suspended sediment concentrations than the other transducers.  Transducer 

sensitivity could only be adjusted for all sensors rather than individually, so these 

profiles were ultimately removed.  Each point on the removed profile was 
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replaced with the mean value of the data points from the two nearest sensors in 

the cross-stream direction.  A cross stream filter then removed any remaining 

noise by removing data points that had z > 1.2 cm from the mean value of two 

adjacent data points in the cross stream. A removed data point was replaced with 

the mean value of the two adjacent points. 

3. A moving average with a 5-point window was calculated and run through the 

downstream profiles.  Any data that were had z > 0.50 cm from the average of 

the window were replaced with the average value. 

Figure 3.2b shows an example of the bed after the filter has been applied and Figure 

3.2c provides a comparison between a noisy raw profile and a profile after the filtering 

method is applied.  Despite the noise due to the increased sediment in suspension 

during this high transport stage (Figure 3.2a), profiles and bed structures are recovered. 
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Figure 3.2. (a) Example of a contour map generated from Seatek raw data and 
(b) a contour map using the same data after the filter has been 
applied.  (c)  Unfiltered (red) and filtered (black) data from the center 
Seatek sensor.  Data are from a Run 15-UMIX, when increased 
sediment in suspension added extra noise in the raw data.   

3.2.5. Data Analysis 

Depth was calculated for three profiles as the difference between the water 

surface profile and the bed profile (Seatek Sensors #7, 17, 24) located directly below the 

Massa sensors. This required data points from each profile to have identical along 

channel spacing so data from the water surface profiles were linearly interpolated to the 
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same spatial position as the data points in the bed profile.  An average depth was 

calculated for each profile and the average of the three was used to derive a reach 

averaged depth (hR) for each scan.  Seatek Sensors #7, 17, 24 were also used to 

calculate the bed slope of each profile which were then averaged to derive a reach bed 

slope (SbR).  The slope for each Massa profile was calculated as the sum of the slope of 

the flume and the water surface slope, and a reach water surface slope (SwR) was 

calculated as the average from the three profiles.  In the UMIX and SPSN conditions, 

where Fr > 0.60, disturbances to the water surface, larger dunes in the channel affected 

the water surface profile.  For example, a large dune near the end of the measurement 

range interacted with the flow such that the water surface was drawn down as it 

accelerated over the dune (Figure 3.3).  To capture slopes that better characterized the 

shear stress, we manually selected a section of the center profile that was unaffected by 

large water surface disturbance (Figure 3.3).  The SwR and SbR values for the UMIX and 

SPSN runs are limited to the center profile since it was too labor intensive to visually 

inspect all three profiles. 

 

Figure 3.3. Example of a center profile from a 20-UMIX scan.  Data in the shaded 
box have been excluded from the slope calculation to remove the 
effect of the water surface being drawn down over the large dune. 

In most scans, SbW and SbR were well within +/- 0.005 of each other but some 

scans had slopes that deviated +/-0.008, even though the mean dune dimensions were 

not systematically increasing or decreasing.  To account for this convective acceleration, 

we used the 1-D shallow-water momentum equation to calculate the total bed stress that 
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includes a convective acceleration term as (for full derivation see Le Bouteiller & Venditti 

(2014)):  

𝜏𝑡𝑜𝑡 = 𝜌𝑤𝑔ℎ𝑅𝑆𝑤𝑅 + 𝜌𝑈𝑅
2(𝑆𝑏𝑅 − 𝑆𝑤𝑅)     (Eq. 3.4) 

where UR is the reach-averaged mean flow velocity.  Sidewall correction was made 

using the Williams (1970) method: 

𝜏𝑟𝑒𝑎𝑐ℎ =
𝜏𝑡𝑜𝑡

(1+0.18ℎ𝑅/𝑤2)
       (Eq. 3.5) 

where w is the width of the flume.  The reach-averaged shear stress,  𝜏𝑅, was used to 

quantify transport stage 𝜏∗/𝜏∗𝑐𝑅 where 𝜏∗ is defined by Equation 3.1 and a value of 𝜏∗𝑐 = 

0.03 was approximated using the Shields curve.  The suspension number (𝑢∗ 𝑤𝑠⁄
𝑅
) was 

also calculated where 𝑢∗ is the reach bed shear velocity defined as:  

𝑢∗ = √
𝜏𝑅

𝜌
        (Eq. 3.6) 

and 𝑤𝑠 was calculated using Dietrich (1982).   

3.2.6. Automated bedform dimension method 

Bedform dimensions were calculated using an automated method developed by 

McElroy (2009) (see Venditti et al. (2016) for a review of the method).  This allowed 

spatially-averaged bedform height and lengths to be estimated from each of the 32 

profiles.  The method requires evenly spaced measurements along profiles, so the 

profiles were detrended and linearly interpolated to the approximate spacing of the 

measurements. Venditti et al. (2016) noted a consistent bias when they compared 

manually measured bedforms to those estimated with the automated method.  To test 

for a bias in our data, bedform dimensions were manually measured for the center 

profile using the detrended center profiles to allow comparison with the automated 

method.  In the manual method, dune heights were measured from trough to peak in the 

lee side and length from the lowest point in the upstream and downstream trough. A 

spatially averaged value from the manual method was determined by dividing the 

dimensions by the number of bedforms in the profile. Reach-averaged dune height (HR) 
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and length (LR) are reported as the mean values of the 32 spatially averaged dimensions 

for a scan.  

3.2.7. Equilibrium Test 

Observations were made as bedforms emerged from a flat bed until they grew 

into a stable bed configuration when the bedforms were not systematically increasing or 

decreasing in size.  Equilibrium conditions were required to ensure that a mean height 

(𝐻̅) and mean length (𝐿̅) value derived from HR and LR of individual scans were 

representative of the transport stage being observed.  At least ten hours of data were 

collected for each run during this equilibrium phase based on visual assessment, 

however, we applied a Nonstationary Mean Value (NSMV) technique (Bendat & Piersol, 

1966) to ensure the bedform fields were not systematically growing or getting smaller 

during this period.  The ratio of a subsample mean height 𝐻̂ or length 𝐿̂ is compared to 

the mean value of all scans during the observation period by calculating:  

𝛽𝐻 =  
𝐻̅

𝐻̂
         (Eq. 3.6) 

𝛽𝐿 =  
𝐿̅

𝐿̂
         (Eq. 3.7) 

𝐻̂  and 𝐿̂ are incrementally calculated using an additional scan until 𝛽𝐻 or 𝛽𝐿 enters and 

remains within a given confidence interval.  The 95% confidence intervals for height 

(CIH) and length (CIL) are calculated for the observation time using  

𝐶𝐼𝐻(𝑁) =  (1 ± 𝜁 [
𝜎𝐻𝑅

√𝑁𝐻
])

−1
      (Eq. 3.8) 

𝐶𝐼𝐿(𝑁) =  (1 ± 𝜁 [
𝜎𝐿𝑅

√𝑁𝐿
])

−1
      (Eq. 3.9) 

where 𝜎𝐻𝑅 and 𝜎𝐿𝑅 are the standard deviation of the HR and LR data, respectively, N is 

the number of scans included and 𝜁 is a constant that changes with distribution and 

confidence interval (here set to 2 for a normal distribution at a 95% interval).  As N 

increases the confidence interval bounds decrease, and the mean value will move to a 

stable saturation level within the confidence intervals if the mean is stationary and the 

bedforms are in equilibrium.  The scan number at which 𝛽𝐻 or 𝛽𝐿 enters and remains 
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within the confidence interval indicates the number of scans needed to achieve a stable 

mean value that is representative of the long-term mean.  We used this NSMV technique 

on the 10-hour window that ended on the last scan in the time series for each run. 

3.3. Observations 

3.3.1. Automated Method Comparison 

Figure 3.4 shows the comparison between the manual and McElroy (2009) 

automated method for measuring averaged bedform height (Hp) and length (Lp) using 

profiles from the center Seatek (#16).  The average bias associated with the method for 

most runs is less than 10% for Hp and Lp so no correction is required. However, our 

SPSN runs showed that the average bias in Hp and Lp ranged from approximately 10 to 

20% because the automated method underestimates the reach-averaged dimensions.  

The automated method assumes the measured bedforms have the classical asymmetric 

triangular planform shape.  However, bedforms from the SPSN transport condition had 

much lower H/L values than the method was designed for, so the increased error during 

this condition is not surprising.  Therefore, we present the manually measured Hp and Lp 

for the centerline, as values for HR and LR for the SPSN condition.  Only the center line is 

presented since it was too laborious to manually measure the dimensions for all 32 

profiles in the runs.  Occasionally measurements from the automated method 

substantially deviated from manual measurements in the UMIX runs, because some of 

the profiles showed bedforms with H/L values too low for the automated method.  To 

remove these false extreme values from the reach-averaged values, we calculated the 

mean value from the 32 profiles, then removed the values that exceeded two standard 

deviations to provide the most accurate HR and LR.   
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Figure 3.4 Comparison between Hp at (a) 15 cm, (b) 20 cm, (c) 25 cm initial flow 
depths and Lp at (d) 15 cm, (e) 20 cm, (f) 25 cm initial flow depths for 
the manual method and the McElroy (2009) automated method. 

3.3.2. Equilibrium Identification 

The NSMV analysis was applied to time series of bedform HR and LR to 

determine if the time series was statistically stationary within the 10-hour measurement 

period.  Statistically stable 𝐻̅ and 𝐿̅ values were achieved < 25 scans in almost all runs, 

suggesting stability in the mean values after ~ 4 hours (Appendix D).  One exception to 
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this was the THLD conditions when a few larger- or smaller-than-average dunes in the 

channel could have a lasting impact on the mean values because they require more time 

to migrate through the measurement window than at higher flows.  Despite this caveat, 

the 10-hr periods (50-60 scans) achieved statistically stable 𝐻̅ and 𝐿̅ values. 

3.3.3. Mean flow conditions 

Mean flow conditions derived from the reach-averaged values from each scan 

are given in Table 3.2.  Mean depth (ℎ̅) for the 10-hour observation period was ~10% 

less than the initially imposed depth as the bed adjusted to the flows.  Runs with the 

highest mean flow velocity 𝑈̅ had lower ℎ̅ values because dunes were smaller in height 

and had smaller flow recirculation cells that would extract less momentum from the 

mean flow.  Average Froude number (𝐹𝑟̅̅ ̅) increased with discharge from 0.30 to 0.85, 

providing observations from the subcritical to near critical conditions.  Mean shear stress 

𝜏̅ also increased with discharge creating mean suspension threshold (𝑢∗/𝑤𝑠
̅̅ ̅̅ ̅̅ ̅̅ )  and 

transport stage (𝜏∗/𝜏∗𝑐
̅̅ ̅̅ ̅̅ ̅̅  ) values from 0.50 to 1.22 and 4.36 to 25.61, respectively, which 

represents a range from mostly bedload transport to beyond significant suspension 

transport conditions (e.g., Bagnold, 1966; Van Rijn, 1984; Nino et al., 2003). 

Table 3.2. Mean flow conditions and bedform dimensions for the 10-hour 
statistically stationary observation period.  

Condition 
𝒉̅  

(m) 

𝑼̅ 
 (m2s-1) 

𝑭𝒓̅̅̅̅  
𝝉̅  

(Nm-2) 

𝒖∗ 

 𝒘𝒔

̅̅ ̅̅
 

𝝉∗ 

 𝝉∗𝒄

̅̅ ̅̅̅
 

𝑯̅ 
(m) 

𝑳̅ 
 (m) 

𝑯

𝑳

̅
 

15-THLD 0.139 0.443 0.38 1.17 0.511 4.392 0.038 1.01 0.039 

15-BDLD 0.141 0.547 0.47 3.54 0.882 13.26 0.063 0.945 0.064 

15-LMIX 0.139 0.660 0.57 4.16 0.948 15.85 0.065 1.11 0.058 

15-UMIX 0.129 0.854 0.76 4.98 1.04 19.03 0.051 1.22 0.041 

15-SPSN 0.135 0.965 0.84 6.15 1.15 23.51 0.050 1.67 0.032 

20-THLD 0.182 0.474 0.35 1.42 0.553 5.494 0.045 0.897 0.041 

20-BDLD 0.176 0.575 0.44 2.86 0.779 10.69 0.070 1.07 0.066 

20-LMIX 0.179 0.673 0.51 3.97 0.935 15.69 0.069 1.15 0.062 

20-UMIX 0.174 0.805 0.62 5.55 1.10 21.22 0.065 1.38 0.049 

20-SPSN 0.158 1.06 0.85 7.07 1.21 26.45 0.058 1.79 0.034 

25-THLD 0.227 0.444 0.30 2.41 0.721 8.992 0.062 1.21 0.049 

25-BDLD 0.221 0.569 0.39 3.62 0.891 13.51 0.066 1.19 0.059 

The time series for the 10-hr observation period show that reach-averaged flow 

characteristics are marked by substantial variability, that increases with transport 
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condition (Figures 3.5 & 3.6).  At lower transport stages, hR varied < 1 cm between 

scans but at the higher transport stage runs, hR varied up to 2 cm between scans (Figure 

3.5a).  Since Q is held constant over the run period, this pattern in variability is reflected 

in the reach averaged mean velocity UR (Figure 3.5b) as hR and UR covary.  More 

variability is present in the 𝑢∗/ 𝑤𝑠𝑅
 (Figures 3.6a-c) and 𝜏∗/𝜏∗𝑐𝑅

 time series (Figures 7d-

f), because the variability in SwR, SbR, and UR are incorporated into the calculation of 𝜏𝑡𝑜𝑡 

(Equation 3.4).  Almost all scans in the THLD and BDLD conditions have 𝑢∗/ 𝑤𝑠𝑅
 < 1 

while the LMIX, UMIX and SPSN conditions frequently often have 𝑢∗/ 𝑤𝑠𝑅
 > 1 (Figures 

3.7a-c).  

 

Figure 3.5. Time series of (a) reach averaged flow depth (hR) and (b) reach 
averaged mean velocity (UR) for all conditions. 
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Figure 3.6. Time series of 𝒖∗ 𝒘𝒔⁄
𝑹
 separated by initial depths of (a) 15 cm, (b) 20 

cm and (c) 25 cm and 𝝉∗/𝝉∗𝒄𝑹
 for (d) 15 cm, (e) 20 cm and (f) 25 cm.  

The dashed line indicates the suspension threshold 𝒖∗ 𝒘𝒔⁄  = 1. 

3.3.4. Sediment Transport 

The calculated bedload (qbl), suspended (qss), and total bed material flux as qs = 

qbl + qss corrected for the saltation layer shown in Figure 3.7 (data available in Appendix 

E; Supplementary Table E1).  Bedload flux qbl increases with transport stage (Figure 

3.7a,f) and generally follows the Fernandez-Luque and van Beek (1976) bedload relation 

where 𝑞𝑏𝑙 = 5.7(𝜏∗ − 0.037)1.5.  No qss was observed at the THLD and BLD stage but qss 

increased with transport stage at beginning LMIX 𝑢∗ 𝑤𝑠⁄  > ~0.9 and 𝜏∗/𝜏∗𝐶 > ~15 (Figure 

3.7b,g).  Nino et al. (2003) showed that suspension can occur at u⁎/ws = 0.4 but 

measurable suspension did not occur until 𝑢∗ 𝑤𝑠⁄  > ~0.9 in our experiment, likely due to 

the presence of well-developed bedforms and narrowly graded sand.  They also 

observed significant volumes of sediment transported in suspension 𝑢∗ 𝑤𝑠⁄  =1 which is 

entirely consistent with our observations.  Total load flux qs increases with transport 
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stage and substantial increases in flux occurred when 𝑢∗ 𝑤𝑠⁄  > ~0.9 and 𝜏∗/𝜏∗𝐶 > ~15 

due to the large volume of bed material moving in suspension (Figures 3.7c,h).  Our 

measurements show that qss/qs (Figures 3.7d,e) and qs/qbl (Figures 3.7i,j) decreased with 

transport stage (Figures 3.7i,j).   

 

Figure 3.7. (a) Bedload qbl, (b) suspended load qss, (c) total load flux qs, (d) qss/qs 
and (e) qs/qbl versus 𝒖∗ 𝒘𝒔⁄ .  (f) Bedload qbl, (g) suspended load qss, 
(h) total load flux qs (i) qss/qs and (j) qs/qbl versus 𝝉∗/𝝉∗𝑪.  The black 
line in (a) and (f) is the Fernandez-Luque and van Beek (1976) 
bedload relation. 

3.3.5. Bedform Morphology and Dimensions 

All bedforms displayed angle of repose lee sides, but the general morphology 

and bed patterns were distinct for the different transport stages, regardless of initial 

depth.  Characteristic examples of bed morphology are provided in Figure 3.8, while bed 

maps for all individual scans from each run can be found in Appendix F (Supplementary 

Videos F1-F12).  Bedforms at the THLD stage (Figure 3.8a) had relatively shallow 

troughs and did not grow as high in the flow as at higher transport stages.  Smaller 

secondary bedforms that were < 10% of the height of primary bedforms commonly 

migrated on the back of the larger dunes.  At the BDLD transport stage, dunes clearly 

displayed angle-of-repose geometry with fewer individual secondary dunes migrating 

over larger dunes (Figure 3.8b). At the LMIX stage, when some sediment was moving in 

suspension, bedforms were higher in the flow and had deeper trough scour than at lower 
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transport stages.  During the UMIX stage, bedforms were longer and crests were planed 

off, however, stoss and lee slopes, as well as troughs, were still well defined (Figure 

3.8d).  At the highest transport stage, when the bed was close to washing out to a plane 

bed, avalanching lee faces and shallow troughs were still evident on the bed (Figure 

3.8e).  The low-angle dunes observed in deep rivers were not observed.  These 

morphological characteristics are reflected in the mean dimensions (Table 3.3).  In each 

of the initial depth set of runs (e.g., 15 cm, 20 cm, 25 cm), 𝐻̅ increases for each transport 

stage condition, up until the LMIX runs when 𝐻̅ decreases.  From the THLD to LMIX 

condition, 𝐿̅ remained constant for each run during the THLD to LMIX condition but was 

larger during the UMIX than the SPSN runs.  
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Figure 3.8. Examples from the time series of bed configurations between two 
scans (0.3 hrs) from (a) 15-THLD (Appendix F; Supplementary Video 
F1), (b) 15-BLD (Appendix F; Supplementary Video F2), (c) 15-LMIX 
(Appendix F; Supplementary Video F3), (d) 15-UMIX (Appendix F; 
Supplementary Video F4), and (e) 15-SPSN (Appendix F; 
Supplementary Video F5). 
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Table 3.3. Mean bedform characteristics and Coefficient of Variation (CV). 

 Height Length  

Condition 𝑯̅ (m) CV 𝒉/𝑯̅̅ ̅̅ ̅̅  𝑳̅ (m) CV 𝑳/𝒉̅̅ ̅̅ ̅
 𝑯/𝑳̅̅ ̅̅ ̅̅

 

15-THLD 0.036 0.074 3.73 1.01 0.209 7.34 0.039 

15-BDLD 0.063 0.096 2.28 0.96 0.186 7.11 0.064 

15-LMIX 0.065 0.104 2.17 1.11 0.174 8.28 0.058 

15-UMIX 0.050 0.156 2.61 1.22 0.254 9.95 0.041 

15-SPSN 0.049 0.239 2.85 1.38 0.280 12.53 0.032 

20-THLD 0.046 0.118 4.12 1.06 0.319 6.10 0.041 

20-BDLD 0.070 0.120 2.55 1.07 0.223 6.21 0.066 

20-LMIX 0.071 0.128 2.61 1.15 0.222 6.47 0.062 

20-UMIX 0.065 0.208 2.73 1.38 0.416 8.03 0.049 

20-SPSN 0.053 0.229 2.90 1.46 0.320 11.26 0.034 

25-THLD 0.063 0.123 3.72 1.13 0.216 5.70 0.049 

25-BDLD 0.065 0.134 3.39 1.13 0.304 5.16 0.059 

 

Time series visually confirm that the bedform fields were in an equilibrium state 

as dimensions were not systematically changing over the 10-hour averaging window 

(Figure 3.9).  A striking contrast between the THLD and SPSN runs was observed as 

values of HR and LR during the SPSN runs were much different between scans because 

the rapid evolution of the bed results in a new bedform configuration between scans 

(Figure 8e).  There is no autocorrelation in the time series.  However, during THLD runs, 

bedforms had a lower migration rate leading to more subtle changes in the bed between 

scans (e.g., Figure 3.8a).  For example, in the 25-THLD condition (Figure 3.5c), from 4-

10 hours HR is relatively stable, but this is preceded by a 3-hour period with smaller than 

average dunes.  Despite this observation, NSMV analysis confirmed that a stable mean 

value was achieved within the 10 hours of observations.   
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Figure 3.9. Time series of HR at initial depth of (a) 15 cm, (b) 20 cm, (c) 25 cm, 

and LR at (d) 15 cm, (e) 20 cm, (f) 25 cm.   

3.3.6. Variability in Dimensions 

The time series of dune dimensions are marked by tremendous variability 

between scans, especially at the higher transport stage (Figure 3.9).  This is reflected in 

the coefficient of variability for 𝐻̅, which systematically increases in runs with larger 

transport stage and depth (Table 3.3).  The pattern in median bedform height from the 

10-hr equilibrium periods (Figure 3.10a) follows that of 𝐻̅ (Table 3.3), but the 25th and 

75th percentile and the 5th and 95th percentile ranges are systematically larger for the 

runs at higher transport stages (Figure 3.10a).  Variability increases because the 

distributions are narrower at lower transport stage runs than higher transport stages 

within the same initial flow depth (Figures 3.10b-d).  The range of HR values is so wide in 

the SPSN runs that it encompasses values observed in all conditions (Figures 3.10b,c).  

Flow depth also appears to influence the variability as the HR distributions for the 15 cm 

initial flow depth (Figure 3.10b) are generally narrower and have higher peaks in the 
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normalized frequency when comparing the 20 cm and 25 cm runs (Figure 3.10c,d). 

There is a less clearly defined pattern to the coefficient of variability for LR (Table 3.3) but 

the 25th and 75th percentile and the 5th and 95th percentile ranges about the median 

length increase with runs at higher transport stages (Figure 3.10e).  There is less 

evidence for a depth effect on the LR variability but overall LR distributions are narrower 

and have higher peaks in the normalized frequency for the 15 cm initial flow depth 

(Figure 10f) than for deeper flows (Figures 3.10g,h). 
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Figure 3.10. (a) Box and whisker plots showing median H, 25th and 75th 
percentile, and the 5th and 95th percentile.  Normalized frequency 
plots of HR for the (b) 15 cm (c) 20 cm and (d) 25 cm runs.  (e) Box 
and whisker plots showing median L, 25th and 75th percentile, and 
the 5th and 95th percentile.  Normalized frequency plots of LR for the 
(b) 15 cm (c) 20 cm and (d) 25 cm runs.    

3.3.7. Bedform Response to Flow 

A wide range of HR and LR values are possible for a given hR (Figures 3.11a,b).   

For example, where hR = 0.13 m, bedforms could have HR anywhere from 0.03 to 0.10 
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m.  The average dune height, 𝐻̅, for each transport stage condition was different even 

though they shared similar flow depths (Figure 3.11a; Table 3.3).  However, 𝐻̅ from 

same transport stage increases at a deeper initial flow depth (Figure 3.11a) because 

there is simply more room in the water column for the bedforms to grow.  A wide range 

of LR values is also possible for a given hR (Figure 3.11b), although LR values from the 

THLD, BDLD, and LMIX stage are often similar within the same initial depth range, with 

more scatter appearing during the UMIX and SPSN stages for larger 𝐿̅ values.  Bedform 

steepness is largely unaffected by the depth (Figure 3.11c). 
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Figure 3.11. Relations between (a-c) dune height (H), (d-f) length (L) and (g-i) 

steepness (H/L) and flow characteristics, including depth (h), mean 
velocity (U) and Froude number (Fr). Circles, Squares and diamonds 
are from runs with the initial depths of 15 cm, 20 cm, and 25 cm, 
respectively. Smaller symbols are reach-averaged values and larger 
symbols are mean values for a run.   

The effect of flow velocity (Figure 3.11e-f) and the Froude number (Figures 

3.11g-i) on dune dimensions in these experiments are similar because, while different 

initial depths are used, a wider h range would be required to observe substantial 

variation in the Froude number.  Dune height increases and then decreases from runs at 

lower 𝑈̅ and Fr to runs at higher 𝑈̅ and Fr (Figures 3.11d,g).  Runs with 𝑈̅ ~ 0.45 to ~ 

0.55 ms-1 and Fr ~ 0.30 to 0.40 have dunes that increase in height from 0.035 to 0.063 

m.  Dune height remains stable until runs when 𝑈̅  > 0.80 ms-1 (Fr > 0.60) where 𝐻̅ 
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decreases at a gentler slope than the initial increase in 𝐻̅ (Figure 3.11d,g).  Mean dune 

length is consistent in runs with 𝑈̅ < 0.80 m/s and Fr  <  0.75, but runs beyond these 

values have longer dunes (Figure 3.11e,h).  These patterns in 𝐻̅ and 𝐿̅, lead to 𝐻/𝐿̅̅ ̅̅ ̅̅  in 

runs that increase with mean velocity until ~0.80 m/s (Fr = 0.50) where 𝐻/𝐿̅̅ ̅̅ ̅̅ begins to 

decrease (Figures 3.11f,i).   

Dune dimensions are affected by both 𝑢∗ 𝑤𝑠⁄  (Figure 3.12a-c) and 𝜏∗/𝜏∗𝐶 (Figure 

3.12d-f).  Individual scans show tremendous scatter in reach averaged values, 

particularly where 𝑢∗ 𝑤𝑠⁄  > 1 and  𝜏∗/𝜏∗𝐶  > 10.  However, mean values for each condition 

show that 𝐻̅ increases until 𝑢∗ 𝑤𝑠⁄  ~  0.8 or 𝜏∗/𝜏∗𝐶~10 and remains at a steady 𝐻̅ until 

𝑢∗ 𝑤𝑠⁄  = 1 or  𝜏∗/𝜏∗𝐶~ 17, where 𝐻̅ decreases (Figure 3.12a,d).  Mean bedform length 

remains constant with 𝑢∗ 𝑤𝑠⁄  until 𝑢∗ 𝑤𝑠⁄  = 1 or 𝜏∗/𝜏∗𝐶~ 15, when 𝐿̅ increases with 

increasing transport stage (Figure 3.13b,e).  These patterns create a parabolic trend in 

𝐻/𝐿̅̅ ̅̅ ̅̅
 as 𝐻/𝐿̅̅ ̅̅ ̅̅  increases until 𝑢∗ 𝑤𝑠⁄  ≈ 0.9 and 𝜏∗/𝜏∗𝐶 ≈ 16, when it then begins to decrease 

(Figure 3.12c,f). 
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Figure 3.12. Relation between (a-b) dune height (H), (b-c) length (L) and (c-d) 

steepness (H/L) and transport stage defined as 𝒖∗ 𝒘𝒔⁄  and 𝝉∗/𝝉∗𝑪. 
Circles, Squares and diamonds are from runs with the initial h of 15 
cm, 20 cm, and 25 cm, respectively. Smaller symbols are reach-
averaged values and larger symbols are mean values for a run.   

3.4. Dune-scaling 

3.4.1. Depth-scaling 

The 𝐻̅ and 𝐿̅ values are close approximations of the true mean dimensions and 

not samples of a larger population.  Additional samples would have a negligible effect on 

𝐻̅ and 𝐿̅ values or the level of variability observed.  The true mean values allow for an 

assessment of dune scaling relations.  Dunes in these experiments did not follow the 

depth-scaling relations commonly attributed to Yalin (1964) since all dunes grew larger 

than H=h/6 and most were longer than L=5h (Figure 3.11a,b).  This phenomenon was 
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documented previously by Bradley and Venditti (2017) for dunes developed in small 

channels.  For flow where h < 2.5 m, they proposed H=h/3.5 and L=5.9h as better fits to 

observations of reach-averaged dune dimensions and flow depth.  Some HR and LR data 

from these experiments are predicted using the Bradley and Venditti (2017) relations, 

but substantial deviation from the relations occurred due to the applied transport stage 

(Figure 3.13).  The THLD runs are within ~10% of H=h/3.5 but, with the exception of 25-

BDLD, deviation is much larger (~50%) for the BDLD and LMIX runs.  Deviation from the 

H=h/3.5 relations declines for the higher UMIX (~30%) and SUSP (~20%) (Figure 3.13).  

Deviation from L=5.9h is low for the THLD and BDLD (< 20%) and increases up to ~65% 

for the runs with substantial suspended sediment flux.  This suggests that the empirical 

depth-scaling relations of Bradley and Venditti (2017) best represent lower transport 

stages.  The dune dimensions for runs at higher transport stages, particularly where 

substantial suspended sediment flux was observed, are underpredicted. 

 

Figure 3.13. (a) Dune height and (b) length plotted against depth for each scan.  
Circles, Squares and diamonds are from runs with the initial h of 15 
cm, 20 cm, and 25 cm, respectively. The solid lines are Bradley and 
Venditti’s (2017) depth-scaling relations for flows < 2.5 m deep.  
Dashed and Dotted lines are their 50% and 95% uncertainty bounds, 
respectively. 

Bradley and Venditti (2017) also note substantial variability about the proposed 

relations that they attributed to natural variability in bedforms and a transport stage 

effect.  They suggest uncertainty ranges to capture variability so that simple depth-

scaling relations could be used in paleo-environmental reconstructions and flow 

roughness predictions. The uncertainty ranges were derived by setting bounds about the 
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median relations such that 50% of the data (25th and 75th percentile) and 90% (5th and 

95th percentile) were captured within the ranges.  Figure 3.13 shows the 50% and 90% 

uncertainty intervals from Bradley and Venditti (2017) overlaid on the true mean height 

(𝐻̅) and length (𝐿̅) values and the natural variation about the true means represented by 

the reach-averaged height (HR) and length (LR) values from individual scans.  The HR 

data more often plot above H=h/3.5 than below, yet ~50% of the data fall within the 

Bradley and Venditti (2017) 50% uncertainty bounds and nearly all the scans are within 

the 90% intervals (Figure 3.13a).   Many individual observations of LR for the dune fields 

plot above L=5.9h, although 68.5% of those data lie within the 50% uncertainty bounds 

and almost all the scans are within the 90% intervals (Figure 3.13a).   

3.4.2. Transport stage scaling  

Following his early work (Yalin, 1964), Yalin argued that ripple and dune aspect 

ratios (H/L) are controlled by transport stage, an idea that has been supported by 

various data compilations (Yalin, 1972; Yalin & Karahan, 1979; Bradley & Venditti, 

2017).  Others have used data compilations to also propose that H is a non-linear 

function of transport stage (cf., Allen, 1982; van Rijn, 1984; Karim, 1995; Naqshband et 

al., 2014).  Venditti et al. (2016) suggest H/L increases and then decreases with 

transport stage because H increases, then decreases with increasing transport stage 

and L constantly increases until the bed washes out to an upper-stage plane bed.   

We have derived the true mean values of the bedform dimensions in our 

experiments, allowing identification of the underlying relation between transport stage, 

and H, L and H/L.  The mean values remove the inherent natural variability in dune fields 

and remove differences in measurement techniques or inadequate sampling of the dune 

fields that limit data compilation exercises.  While the scaling of dunes by depth has poor 

predictive power (Figure 3.13), there is a depth effect on dunes; they get larger with the 

scale of the flow.  To remove the depth effect, we scale dune dimensions by flow depth 

as H/h and L/h. This has the added benefit of producing relations that may be applicable 

outside the range of observations in our small-scale experiments.  

The underlying relation between H/L, H/h and L/h and transport stage is a 

parabolic function (Figure 3.14).  Regression analysis yields relations that have the 

following form: 
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𝐻 

𝐿
=  𝑎𝐻/𝐿 ∗  (𝑥 − 𝑏𝐻/𝐿)

2
+ 𝑐𝐻/𝐿     (Eq. 3.10a) 

𝐻 

ℎ
=  𝑎𝐻/ℎ ∗  (𝑥 − 𝑏𝐻/ℎ)

2
+ 𝑐𝐻/ℎ     (Eq. 3.10b) 

𝐿 

ℎ
=  𝑎𝐿/ℎ ∗ (𝑥 − 𝑏𝐿/ℎ)

2
+ 𝑐𝐿/ℎ      (Eq. 3.10c)  

where x is transport stage (𝑢∗ 𝑤𝑠⁄  or 𝜏∗/𝜏∗𝐶), the coefficient 𝑎 is the shape of the 

parabolic function, and b and c are the horizontal and vertical position of the curve 

inflection point, respectively.  The results of the regressions are presented in Table 3.4.  

Values from the 25-BDLD were omitted from the H/h regressions (Figures 3.14b,e) 

because it was a conspicuous outlier in the data set (see Figure 3.13).  The R2 values for 

the regression range from 0.70-0.81 (Table 3.4) suggesting that a substantial proportion 

of the variance amongst the mean dimensions is predicted by transport stage.  The 

relations capture the observation that bedforms grow higher in the flow at moderate 

transport stages and that length remains relatively constant until the higher transport 

stages produce longer bedforms (Figure 3.12).   

Using 𝑢∗ 𝑤𝑠 ⁄ as a measure of transport stage collapses the data over a narrow 

range of 𝑢∗ 𝑤𝑠 ⁄ (Figures 3.14a-c) when compared to regression using 𝜏∗ 𝜏∗𝑐  ⁄  (Figures 

3.14d-f).  The value of the inflection point, 𝑏, in Equations 3.10a, 3.10b, and 3.10c 

represents an important change in the scaling of dunes.  The transport stage at b in 

Equation 3.10b indicates when H begins to decrease, rather than increase, with 

transport stage (Figures 3.14b,e).  The value of b in Equation 3.10c shows the transport 

stage when L begins to increase with transport stage (Figures 3.14c,f).   Dune height 

relative to depth increases until 𝑢∗ 𝑤𝑠 ⁄  = 0.96 (𝜏∗ 𝜏∗𝑐  ⁄ = 18), suggesting the point when H 

begins to decrease is coincident with the threshold for substantial suspension.  Length 

scaling decreases slightly or remains constant until 𝑢∗ 𝑤𝑠 ⁄ = 0.72 (𝜏∗ 𝜏∗𝑐  ⁄ = 9).   
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Figure 3.14. Relations between mean dune dimensions and mean flow variables: 

(a) 𝑯/𝑳̅̅ ̅̅ ̅̅  (b) 𝑯/𝒉̅̅ ̅̅ ̅̅ , (c) and 𝑳/𝒉̅̅ ̅̅ ̅ versus 𝒖∗/𝒘𝒔
̅̅ ̅̅ ̅̅ ̅̅

 and (d) 𝑯/𝑳̅̅ ̅̅ ̅̅ , (e) 𝑯/𝒉̅̅ ̅̅ ̅̅ , (f) and 

𝑳/𝒉̅̅ ̅̅ ̅ versus  𝝉∗/𝝉∗𝒄
̅̅ ̅̅ ̅̅ ̅̅

 .  The red circle in (b) and (e) indicate the outlier 

𝑯/𝒉̅̅ ̅̅ ̅̅  value from the 25-BDLD stage that was omitted from the 
regression. Circles, Squares and diamonds are from runs with the 
initial h of 15 cm, 20 cm, and 25 cm, respectively.  The dotted lines 
represent the 95% confidence limits of the regression relations. 
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Table 3.4. Results of regression analysis using mean values and Equation 
3.10. 

Figure y x a b c R2 

3.14a 𝐻

𝐿
 

𝑢∗

𝑤𝑠
 -0.2257 0.8338 0.0606 0.81 

3.14b 𝐻

ℎ
 

𝑢∗

𝑤𝑠
 -0.8595 0.9640 0.4085 0.70 

3.14c 𝐿

ℎ
 

𝑢∗

𝑤𝑠
 26.27 0.7159 5.837 0.79 

3.14d 𝐻

𝐿
 

𝜏∗

𝜏∗𝑐
 -0.0208 

x 10-2 
13.91 0.0588 0.73 

3.14e 𝐻

ℎ
 

𝜏∗

𝜏∗𝑐
 -0.0010 17.69 0.4169 0.71 

3.14f 𝐿

ℎ
 

𝜏∗

𝜏∗𝑐
 0.0192 8.459 6.226 0.75 

The regression analysis using mean values (Figure 3.14, Table 3.4) 

demonstrates the underlying relations between transport stage and dune scaling.  

However, there is no representation of the variability about the mean relations.  The 

intervals in Figure 3.14 indicate 95% confidence that the underlying relation lies between 

them; they do not explicitly provide a measure of the variability observed in the reached 

averaged dimensions from individual scans (Figure 3.12).  The inherent variability can 

be important in circumstances where only single transects of a dune field or individual 

observations of cross-strata in the rock record are made.  Since variability changes with 

transport stage and the functions are nonlinear, it is not possible to rigorously assign 

uncertainty ranges using the regression method in Figure 3.14 and Table 3.4.  As an 

alternative, we do the following: 1) calculate the median H/L, H/h, L/h, 𝑢∗ 𝑤𝑠 ⁄  and 𝜏∗ 𝜏∗𝑐  ⁄ ; 

2) calculate the 25th and 75th and 5th and 95th percentiles about the median values, and 

then 3) estimate the relations for the median values and the lines bounding the 

percentile ranges (Figure 3.15).  The resulting relations have the same form as the 

underlying true mean relations (Equations 3.10a-c) and the median relations are nearly 

identical (Appendix E; Table E2).  The estimated fits to the percentile ranges have no 

statistical predictive power, however they do provide continuous functions (Appendix E; 

Table E2) that envelope an estimated range of variability about the median relations.  In 

this sense, they are analogous to the non-parametric uncertainty ranges generated by 

Bradley and Venditti (2017) for depth-scaling relations.  They provide a range of values 

between which approximately 50% and 90% of the data will lie about the median 

relations.   
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Figure 3.15. Relations between the median dune dimensions and median flow 
variables: (a) H/Lmed, (b) h/Hmed, (c) and L/hmed versus 𝒖∗ 𝒘𝒔⁄

𝒎𝒆𝒅
 and 

(d) H/Lmed, (e) h/Hmed, (f) and L/hmed versus 𝝉∗/𝝉∗𝑪𝒎𝒆𝒅. 

3.5. Discussion 

3.5.1. Depth-Scaling Revisited 

The notion that H scales as h/6 and L scales as 5h as originally proposed by 

Yalin (1964) has become so widely accepted that these depth-scaling relations are 

commonly listed in sedimentology and engineering textbooks as the definitive 

equilibrium dune size (e.g., Bridge, 2003; Garcia, 2008).  While depth scaling is 

traditionally linked to some boundary layer thickness (e.g., Jackson, 1975), the boundary 

layer process that limits dune dimensions has never been fully elucidated (see 

discussion in Bradley & Venditti, 2017).  It is concerning that depth-scaling relations are 

so widely applied given the substantial scatter about the relations in the original Yalin 

(1964) work and subsequent data compilations (e.g., Yalin, 1972; Yalin & Karahan, 

1979; Allen, 1982; Bradley & Venditti, 2017).  Furthermore, bedforms in shallow flows 

with depths < 2.5 m generally grow higher in the flow while dunes in flows > 2.5 m are 

relatively lower in the flow, indicating that h/6 cannot describe all dunes (Bradley & 

Venditti, 2017). 
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Some experimental work has shown that different equilibrium dune sizes can 

emerge at the same flow depth (Venditti et al, 2005; Venditti et al., 2016).  Venditti et al. 

(2016) used three sets of experiments at the same initial depth but with different 

transport stages to show that each transport stage had a different 𝐻̅ and 𝐿̅.  Our results 

expand on these observations by providing a systematic evaluation of dune-depth 

scaling through an examination of equilibrium bedform dimensions under three different 

initial flow depths and multiple transport stages.  Dunes in deeper flows, under the same 

transport condition, are generally larger than observed in the shallower flows (Table 3.3, 

Figure 3.13), indicating that depth plays some role in setting the absolute values of dune 

dimensions.  For example, dune dimensions at the 15-UMIX transport stage are 𝐻̅ = 

0.050 m and 𝐿̅ = 1.11 m while increasing to an initial flow depth of 0.20 m produces 

larger dunes of 𝐻̅ = 0.065 m and 𝐿̅ = 1.31 m.  It may be expected that H would be 

influenced by h since there is more volume in the flow for a dune to grow vertically.  

Dunes also do not grow above the water surface, so this defines an upper limit of dune 

growth based on depth.  However, dune-depth scaling suggests that bedforms from the 

same flow depth, regardless of transport stage, should all have similar dimensions.  In 

our experiments, different characteristic depth-scaling relations emerge for runs with the 

same depth.  This variation indicates that it is not appropriate to use one depth-scaling 

relation to predict bedform dimensions.   

3.5.2. The Role of Transport Stage on Bedform Dimensions 

While depth has been the traditional focus of dune scaling, transport stage has 

been shown to have an influence on dune shape.  Yalin (1972), Yalin & Karahan, (1979), 

and Allen (1982) all showed that dune steepness (H/L) increased with transport stage 

(𝜏∗/𝜏∗𝐶) up to a point when further increases in 𝜏∗/𝜏∗𝐶 led to dune flattening.  This pattern 

of steepness occurs in our data as well (Figure 3.12c,f) as the steepness changes with 

the non-dimensional values of transport stage.  Regression analysis shows that 

steepness increases with transport stage until a maximum where 𝑢∗ 𝑤𝑠⁄  ~ 0.85 and 

𝜏∗/𝜏∗𝐶 ~14 (Figure 3.14a,d) after which further increases to the transport stage lead to a 

decrease in H/L as the bed transitions to an upper stage plane bed.   

It had never been fully elucidated how H and L change with transport stage since 

both dimensions covary in the steepness term.  Venditti et al. (2016) showed that the 
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increasing then decreasing pattern in H/L with transport stage occurs because height 

increases then decreases while L continually increases.  However, the experiments were 

limited to a single flow depth and three transport stages so the threshold when dunes 

change from increasing to decreasing in size could not be identified. Our results confirm 

that height increases then decreases with transport stage (Figure 3.13a) but further 

show that this transition occurs when 𝑢∗ 𝑤𝑠⁄  ~ 0.96 and 𝜏∗/𝜏∗𝐶  ~ 18 (Figure 3.15b,e; 

Table 3.6).  These transport stages are near values that have been shown to promote 

substantial transport bed material through suspension (Bagnold, 1966; Van Rijn, 1984; 

Nino et al., 2003).   

Decreases in dune height have been linked to increased sediment in suspension.  

Using stability analysis, Fredsoe (1979, 1982) argued that as large volumes of bed 

material are transported through suspension, less sediment is supplied to the crest and 

the avalanching slip face, causing a decrease in H.  Amsler & Schreider (1999) and 

Damen et al. (2018) observed a decrease in H in natural bedform fields when 

suspension relative to bedload increased and Naqshband et al. (2014a) showed 

experimentally that a significant amount of sediment can bypass a dune crest, resulting 

in decrease in height.  Our experiments confirm that as more sediment is moved through 

suspension, H is decreased.  

It less clear why dunes under the lowest transport stage (THLD; when 𝑢∗ 𝑤𝑠⁄  < 

0.7) do not grow as high in the flow as moderate transport stages (BDLD, LMIX).  During 

the THLD stage we observe no suspension, so sediment bypassing the crest cannot 

explain the lower heights. Bedforms during the THLD stage have shallower troughs 

(Figure 8a) than those developed in the BDLD stage (Figure 3.8b), likely due to 

decreased turbulence associated with lower mean flow velocity. Dunes may have had a 

lower H at the low transport stages because a strong recirculation cell, necessary for 

deep trough scour, did not development.  This hypothesis requires require detailed 

measurements of the flow and sediment transport which were beyond the scope of this 

study.   

Length does not vary much with transport stage until when 𝑢∗ 𝑤𝑠⁄  ~ 0.72 and 

𝜏∗/𝜏∗𝐶 ~ 8.5 is surpassed and significant lengthening occurs.  The pattern of dune length 

remaining nearly constant through TLHD and LMIX conditions until UMIX has not been 

previously observed and is difficult to explain.  Much less attention has been focused on 



100 

the controls of L compared to H.  Venditti et al. (2016) showed a linear increase in length 

with transport stage but they did not capture the transport range that we used in the 

present experiments.  Our results suggest that length scaling is nearly unaffected by 

transport stage until sediment begins to be moved through suspension.  It may be 

possible that particles are fully bypassing individual dunes and depositing downstream 

when 𝑢∗ 𝑤𝑠⁄  > 1.  Dune length may then scale with particle excursion length when 

excursion length exceeds dune length.  Some recent progress has been made in 

defining particle excursion lengths (Naqshband et al. 2017b) but these are poorly 

defined over bedforms and it is unknown how these could affect dune dimensions.   

3.5.3. Controls of Bedform Dimension Variability 

Natural variability is a characteristic of bedforms (e.g., Nordin, 1971; Gabel, 

1993; Leclair, 2002; Jerolmack & Mohrig, 2005) and is inherently built into methods to 

reconstruct dunes from the rock record (Paola & Borgman, 1991; Leclair & Bridge, 

2001), but what sets the scale of the variability is not known.  van der Mark et al. (2008) 

argue that variability in dune dimensions is nearly constant in large rivers, and only 

decreases in smaller narrow channels.  They propose a positively skewed distribution 

with one constant coefficient of variation to quantify variability in bedform field geometry.  

Our experiments show that variability is affected by flow depth since larger ranges of H 

and L are possible in deeper flows (Figure 3.11).  The increased variability with depth 

can be attributed to increased flow volume of the flow providing more space for the 

bedforms to grow and decrease in size.  While our observations are confined to a 

relatively small flow-depth range, it seems likely that dune dimension variability would 

increase in even deeper flows compared to shallower channels.    

Venditti et al. (2016) showed that, under the same flow depth, variability 

increased with transport stage, suggesting that a single coefficient of variation is not 

appropriate to describe all bedform variability.  Our results also show that variability in 

bedform height and length increases with transport stage (Figure 3.10; Table 3.3), 

suggesting that it is another source of variability in addition to depth.  The scatter about 

our mean values is so substantial, especially at higher transport stages, that individual 

dunes could be formed at virtually any transport stage.  We were only able to uncover 

the underlying trends in bedform scaling with transport stage because of the number of 

scans (~55) that were made to derive a mean value.  It is important to recognize 
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variability in bedform data, especially when only limited measurements of a bedform field 

can be made or when only a few bedforms are used in a paleo-reconstruction.  

Uncertainty must be included in prediction when temporally and spatially resolved 

measurements cannot be made to derive true means.   

3.5.4. A physically realistic method for predicting bedform 
dimensions in rivers 

We propose that scaling relations using transport stage should guide future 

prediction of bedform dimensions.  Some authors have attempted to include measures 

of transport stage in scaling relations (e.g., van Rijn, 1984) but these poorly predict dune 

dimensions and do not include uncertainty to guide prediction (Bradley & Venditti, 2017).  

Regression analysis using mean dimensions (Figure 3.14; Table 3.4) allows for the best 

estimate of the mean relations, but they cannot be used to add uncertainty to 

predictions.  Our relations based on the median transport stage and dimensions (Figure 

3.15; Appendix E (Supplementary Table E2)) are the best method to calculate dune 

dimensions in rivers or flow depth from the rock record because the relations provide a 

metric of uncertainty. 

For the direct prediction of dimension in modern rivers, Equation 3.10 requires 

that flow depth, water surface slope, and grain size be measured or calculated.  These 

values allow a transport stage calculation using  𝜏∗ =  
𝜌𝑤𝑔ℎ𝑆

(𝜌𝑠−𝜌𝑤)𝑔𝐷
   and 𝜏∗𝑐 from Shields-

type curves (e.g., Yalin, 1972; Brownlie, 1981; Garcia, 2008).   Alternatively, the 

suspension threshold can used by calculating 𝑢∗ = √𝑔ℎ𝑆 and 𝑤𝑠 using Dietrich (1982) or 

the simplified method of Ferguson and Church (2004).  The indirect approach of 

reconstructing a flow depth from dune dimensions in the rock record is similar, but 

involves the following steps: (1) measure cross set thickness and estimate dune height 

using methods that statistically link cross-set thickness to dune height (e.g., Paola & 

Borgman, 1991, Leclair & Bridge, 2001); (2) measure channel slope in outcrop or 

reconstruct slope using methods such as that described by Lynds et al (2014); and (3) 

measure grain size.  Because h exists on both the right- and left-hand side in Equation 

3.10, it must be solved iteratively.  A measure of uncertainty can be added by applying 

the 50% or 90% uncertainty ranges provided in Appendix E (Supplementary Table E2) 

for a particular transport stage.  
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The application of the relations defined herein requires some caution since they 

require testing with more extensive data from flumes and rivers.  While numerous flume 

data sets exist in the literature, our results suggest that care must be exercised when 

measuring and reporting experimental data.  A single measurement from an equilibrium 

dune field does not capture equilibrium dimensions as many measurements are required 

to establish true mean dimension values for a particular transport stage.  Dunes in rivers 

with depths > 2.5 m still represent an unknown since they adopt low-lee angles and do 

not grow as high in the flow (Bradley & Venditti, 2014).  In these experiments, depth and 

transport stage affect the level of variability in dune dimensions, but it is unclear whether 

this is true in deep rivers.  The range of variability could be affected in large rivers since 

there are substantial volumes of bed material that can be moved during hydrologic 

events.   

3.6. Conclusions 

We systematically examined the response of bedform dimensions to different 

flow depths and transport stages.  We used three sets of runs, each with a different 

initial flow depth of 15 cm, 20 cm and 25 cm.  Each set had five different runs and each 

run had a different discharge applied and held constant until the bed remained in a 

statistically steady state for 10 hours.  Each run had a larger discharge applied than the 

previous to achieve conditions ranging from just above the threshold for motion to 

substantial bed material in suspension.  Fifty-three to sixty scans of the bed were made 

during the 10-hour period to reveal the true underlying mean relations and to quantify the 

variability about them.  The results indicate that: 

1. A wide range of dune heights and lengths are possible for a given flow depth.  Mean 

dune heights at moderate transport stages are larger than predicted by depth-scaling 

relations and mean lengths are longer at the higher transport stages than predicted 

by depth-scaling relations. 

2. Dunes grow larger with flow depth, but dune scaling with depth is not consistent 

because of a transport stage effect. 

3. Dune steepness increases and then decreases with transport stage.  This pattern 

occurs because dune height increases until 𝑢∗ 𝑤𝑠⁄  ~ 0.96 and 𝜏∗/𝜏∗𝐶 ~ 18 when it 
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begins to decrease while length remains relatively constant until 𝑢∗ 𝑤𝑠⁄  ~ 0.72 and 

𝜏∗/𝜏∗𝐶 ~ 8.5 when they start to become longer. 

4. Variability in dune dimensions increases with transport stage and depth.  Care 

should be taken when measuring and reporting dune dimensions since many 

samples are required to determine true underlying relations. 

5. Dune scaling relations with uncertainty included can be estimated using transport 

stage relations based on the median values and the variability about them.  The 

relations developed here should be used to guide predictions of dune dimensions in 

rivers and reconstruction of past flows based on dune heights estimated from cross-

strata.  The relations require further testing using data from flumes and especially 

large rivers. 
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Chapter 4. Dune Growth from a Flat Bed 

Abstract 

Dune response to variable flow has been well documented, but there is no 

universal model to predict dune dimensions as they respond to imposed flows.  Here, we 

use a series of flume experiments to explore dune growth in response to constant flow to 

better understand the form of dune growth curves.  Observations of dune growth from a 

flat sand bed were made at three flow depths, under five different constant transport 

stages in a laboratory flume.  The transport stages ranged from the sediment 

entrainment threshold to suspension conditions.  The bed was flattened before each run 

and topography was continually mapped, providing observations of dune growth and 

morphology at each distinct transport stage condition.  The results show that dune 

growth curves exhibited three different behaviors: 1) exponential growth, 2) punctuated 

growth, when a period of initially linear growth was abruptly interrupted by exponential 

growth and 3) instantaneous growth, when bed evolution happened so quickly that we 

were unable to take measurements of the phenomenon.  Growth behaviour is dependent 

on the applied transport stage and the time for a growing dune field to reach equilibrium 

decreases non-linearly with transport stage. Observations of evolving dunes and the 

time required to achieve an equilibrium bed state are used to propose a series of 

relations that can predict dune dimensions through time. 

4.1. Introduction 

The bottom boundary of sand-bedded alluvial channels is often characterized by 

bedforms that display a range of geometries at scales smaller than bar forms.  Dune 

bedforms are important sources of flow resistance and sediment transport in rivers and, 

as such, their dynamics are important in river engineering and management problems.  

The migration of dunes also leaves characteristic signatures in the rock record; however, 

our ability to interpret cross strata and reconstruct past flows is limited by our 

understanding of how these features respond to flows.  Previous observations have 

shown that dunes grow and shrink in response to changes in flow induced by tides, 

synoptic-scale storm events and seasonal hydrographs (e.g., Allen, 1974; Terwindt & 

Brouwer, 1986; Julien et al., 2002; Hendershot et al., 2016).  Dune response to changes 
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in flow is not instantaneous because substantial volumes of sediment need to be moved 

as bedform fields adjust.  There is presently no universal method to predict dune 

response to changes in flow.  To address this problem, we will explore how dunes grow 

in response to a constant flow to better understand the time required to reach a 

statistical steady state (referred to as equilibrium) and the form of bedform growth 

curves. 

Dune growth towards equilibrium from a flat sand bed has been examined 

previously.  Bedform initiation from a flat bed has been linked to small bed defects that 

cause flow separation, allowing the defects to grow into a bedform field by downstream 

propagation (e.g., Grass, 1970; Gyr & Schmidt, 1989; Best, 1992).  Others (e.g., Lui, 

1957; Venditti et al., 2006) have argued that an instability at the water-sediment interface 

causes bedforms to instantaneously initiate everywhere on the bed.  At the scale of 

individual bedforms, growth has been linked to the position of the sediment flux 

maximum relative to the topographic maximum (e.g., Smith, 1970; Fredsoe, 1982; 

Venditti, 2013; Naqshband et al., 2017).  Dunes grow when the maximum sediment flux 

is upstream of the crest, leading to deposition on the stoss and crest.  At a broader 

spatial scale, bedform field growth has been attributed to the coalescence of smaller, 

faster-migrating bedforms to form larger, slower-migrating dunes (Raudivi & Witte, 1990; 

Coleman & Melville, 1994) and slow downstream stretching of bedform fields (Venditti et 

al., 2005a).  Coalescence appears to dominate in experimental investigations with 

flumes that have relatively small widths that may mask or suppress spatial adjustments 

and accelerations.  Furthermore, bedform growth does not always occur when smaller 

sand waves are present in bedform fields (Ditchfield & Best, 1990; Venditti et al., 2005a).  

Bedform fields likely grow through a combination of coalescence and stretching 

processes, but the relative importance of each is unknown.   

Some experimental work has focused on dune growth in response to incremental 

increases in flow.  Leeder (1983) originally proposed that when flow velocity is increased 

over a stable ripple field, a ‘rogue ripple’ will appear and coalesce with smaller ripples to 

form larger bedforms.  Once a rogue ripple gets large enough, growth is enhanced, as 

greater height enhances leeside turbulence and trough scour.  Later work suggested 

that rogue ripple emergence may be associated with small, local fluctuations in sediment 

transport caused by flow separation dynamics (Bennett & Best, 1996) and a transition 

from two-dimensional (2D) to three-dimensional (3D) planform (Schindler & Robert, 
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2005).  Whether this form of punctuated growth occurs in a constant flow has not been 

explored. 

Predicting bedform dimensions during growth requires knowledge of: 1) 

equilibrium dimensions for a given flow, 2) the form of the underlying growth relation, 

and 3) the time required to reach equilibrium.  Bradley and Venditti (2017; Chapter 3) 

provide a series of empirical functions that can be used to predict bedform dimensions 

from either flow depth or transport stage.  Transport stage is defined using the ratio of 

shear velocity to particle settling velocity, or the ratio of the Shields number (non-

dimensional shear stress) to the critical value for particle entrainment (𝜏∗𝑐).  The Shields 

number is defined as 

𝜏∗ =  
𝜏

(𝜌𝑠−𝜌𝑤)𝑔𝐷50
       (Eq. 4.1) 

where 𝜏 is the shear stress at the bed, 𝜌𝑠 and 𝜌𝑤 are the sediment and water densities, 

respectively, and g is the gravitational acceleration.   Values of 𝜏∗𝐶 vary with grain size 

(e.g., Shields, 1936; Brownlie, 1981).  

Nikora and Hicks (1997) proposed that the growth of bedform fields follows a 

power function: 

𝐻

𝐻𝑒
=  (

𝑡

𝑡𝑒𝐻
)

𝛾
        (Eq. 4.2a) 

𝐿

𝐿𝑒
=  (

𝑡

𝑡𝑒𝐿
)

𝛾
        (Eq. 4.2b) 

where 𝑡 is time, 𝐻 and 𝐿 are the bedform height and length, respectively, at 𝑡, 𝐻𝑒 and 𝐿𝑒 

are the equilibrium bedform height and length respectively, 𝑡𝑒𝐻 and  𝑡𝑒𝐿 are the times to 

achieve 𝐻𝑒 and 𝐿𝑒, and 𝛾 is the growth exponent.  These power relations were fit to data 

from five experiments reported in Iseya (1984).  Coleman et al. (2005) used a larger data 

set from flume experiments to quantify the growth exponents and found different 

exponents for height (𝛾𝐻) and length (𝛾𝐿) of 0.37 and 0.32, respectively. While Equations 

4.2a & 4.2b allow prediction of growth from a flat bed, they do not saturate at equilibrium 

dimensions.  Instead, these equations are only applicable from initiation to te, which is 

defined when equilibrium dune size is first reached.   
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The application of Equations 4.2a and 4.2b requires separate functions for the 

equilibrium and growth phase.  Defining te is relatively straightforward for experiments in 

narrow flumes where temporal variability is low.  In the Iseya (1984) data set, equilibrium 

times were defined using mean length time series derived from infrequent 

measurements of the number of dunes in the flume divided by the flume length.  This 

approach masks the variability in dune fields and does not necessarily reflect when the 

bed has reached a statistical steady 𝐻 (Figure 4.1a,b; Appendix G (Supplementary 

Figure G1)).  Determining when the power growth phase ends can be challenging given 

natural variability observed within bedform fields (Venditti et al., 2005a; Venditti et al., 

2016; Chapter 3).  For example, there is no objective way to define when the growth 

phase ends using measurements of individual dunes migrating past a particular point 

(e.g., Figure 4.1c,d; Appendix G (Supplementary Figure G2)), without defining 

equilibrium dimensions as a statistically steady state.  Furthermore, power relations 

(Equations 4.2a,b) generally under predict dimensions in the Iseya data (Figure 4.1a,b; 

Appendix G (Supplementary Figure G1)) and indicate much faster initial growth from a 

flat bed where high temporal resolution data are available (Figure 1c,d; Appendix G 

(Supplementary Figure G2)).   
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Figure 4.1. Examples of bedform (a) height and (b) length growth time series 
data from Iseya (1984; Run 3) and (c) height and (d) length growth 
time series data from Venditti et al. (2005a; Flow B). The power 
relations are defined by Equations 4.2a and 4.2b, and the 
exponential relations are Equations 4.3a, and 4.3b. 

Recognizing these limitations, others have suggested that bedform growth is an 

exponential function (Baas, 1999; Venditti et al., 2005a).  Venditti et al. (2005a) 

expressed growth as: 

𝐻 = 𝑎𝐻(1 − 𝑒−𝑏𝐻∗𝑡)       (Eq. 4.3a) 

𝐿 = 𝑎𝐿(1 − 𝑒−𝑏𝐿∗𝑡)       (Eq. 4.3b) 

where 𝑎𝐻 and 𝑎𝐿, are asymptotes that describe the equilibrium height and length, 

respectively, and 𝑏𝐻 and 𝑏𝐿 are growth constants.  The exponential relations better 

capture growth phases than power functions and saturate at equilibrium dimensions 

(Figure 4.1; Appendix G (Supplementary Figures G1 & G2)), eliminating the need for a 

piece-wise solution and subjective determination of 𝑡𝑒.  However, the relations need to 

be fit to data and cannot be used to predict evolving dune dimensions with respect to 
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equilibrium dimensions.  In order to predict bedform growth, Equations 4.3a & 4.3b must 

be recast in the form of Equations 4.2a and 4.2b as: 

𝐻

𝐻𝑒
=  1 − 𝑒

(−𝑏𝐻∗
𝑡

𝑡𝑒𝐻
)
       (Eq. 4.4a) 

𝐿

𝐿𝑒
=  1 − 𝑒

(−𝑏𝐿∗
𝑡

𝑡𝑒𝐿
)
.       (Eq 4.4b) 

The application of Equations 4.4a and 4.4b requires an objective determination of teH or 

teL.  Coleman et al. (2005) proposed that: 

 𝑡𝑒
𝑢∗

𝐷50
= 𝑓 (

𝐷50

ℎ
,

𝜏∗

𝜏∗𝑐
)       (Eq. 4.5) 

where 𝑢∗ is shear velocity (𝑢∗ = √𝜏/𝜌𝑤  ), 𝐷50 is the median grain size and 𝜏∗/𝜏∗𝐶 is the 

transport stage.  Coleman et al. (2005) used some empirical data to define the relation 

as: 

𝑡𝑒
𝑢∗

𝐷50
= 𝛼 (

𝐷50

ℎ
)

−3.5
(

𝜏∗

𝜏∗𝑐
)

−1.12

      (Eq. 4.6) 

where 𝛼 = 0.00205.  The 𝑡𝑒 values used by Coleman et al. (2005) in the derivation of 

Equation 4.6 were defined when the equilibrium dune size was first reached, rather than 

when a statistical steady state was achieved.  It is unclear how widely Equation 4.6 can 

be applied since much of the data used to define it was mostly limited to a few, low 

transport stages when sediment transport occurred mostly as bedload.  

Here we examine bedform growth from a flat sand bed at three flow depths, 

under five different constant transport stages in a laboratory flume.  The transport stages 

range from the threshold for sediment motion to suspension conditions, when dunes 

begin to wash out to an upper-stage plane bed.  The bed was screed flat before each 

run and topography was repeatedly mapped, providing measurements of bedform 

growth and morphology at each distinct transport stage condition.  Our fundamental 

questions are: 1) How do bedform morphodynamics and dimensions change as they 

grow under different transport conditions? and 2) Can dimensions and time to 

equilibrium be predicted during dune growth using Equations 4.4 and 4.6? 
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4.2. Methods 

Experiments were performed in the River Dynamics Laboratory (RDL) at Simon 

Fraser University, Canada.  The 15 m long, 1 m wide and 0.6 m deep RDL flume 

recirculates sediment and water, and has a slope that can be adjusted from -0.5 to 2%. 

Well sorted quartz sand, (D50 = 550 μm) with trance amounts of sillimanite, garnet, 

sphalerite, muscovite and gold, was used in the experiment.  The experimental design, 

setup and conditions follow that of Chapter 3 which examined the fundamental 

underlying relations between equilibrium dune dimensions, flow depth and metrics of 

transport stage.  Chapter 3 focused on a 10-hr equilibrium period and specifically 

excluded observations in which the bedform field was systematically growing from the 

flat bed.  Here, we focus on observations during the growth phase.  Our methodology is 

briefly outlined below; see Chapter 3 for more specific details.  

4.2.1. Experimental Design 

The experiments involved three sets of runs with each set having initial flow 

depths of 15, 20, and 25 cm (Table 4.1).  Before each run, the flume was filled with 

water and the bed was screed flat using an aluminum angle attached to a beam on a 

cart that runs on rails above the flume.  The cart was moved up and down the length of 

the flume until the uncompacted bed was completely flat.  The flow depth was then set to 

the desired initial condition.  For each run, a pump discharge was applied and held 

constant for 25 hours, allowing the bed to reach a statistically stable equilibrium 

condition in which bedform dimensions were not systematically changing.  During the 

equilibrium period, any changes in bedform dimensions were due to internal dynamics of 

the bedform field.  The initial flume slope for each run (Table 4.1) was set so that it 

matched the water surface slope immediately after the pumps were turned on.  This 

allowed the water surface and bed slope to coevolve through time, so they became 

emergent features during each run.     
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Table 4.1. Initial experimental and equilibrium conditions (see Chapter 3 for 
details). 

 Initial Conditions Equilibrium Conditions 

 

Depth 

(m) 

Discharge 

(m3 s-1) 

Flume 

Slope 

Water 

Temp 

(°C) 

Depth 

(m) 

Mean 

Velocity 

(m s-1) 

Froude τ*/τ*c  Bedload 

Flux 

(g s-1 m-1) 

Suspended 

Flux 

(g s-1 m-1) 

Total Flux 

(g s-1 m-1) 

15-THLD 0.15 0.060 0 14 0.139 0.443 0.38 4.39 8.43 0 8.43 

15-BDLD 0.15 0.075 0.00047 18 0.141 0.547 0.47 13.3 14.8 0 14.8 

15-LMIX 0.15 0.090 0.00084 22 0.139 0.660 0.57 15.9 21.3 70.8 92.1 

15-UMIX 0.15 0.110 0.0015 25 0.129 0.854 0.76 19.0 59.6 161 220 

15-SPSN 0.15 0.130 0.0020 25 0.135 0.965 0.84 23.5 113 242 355 

20-THLD 0.20 0.086 0 14 0.182 0.474 0.35 5.50 11.1 0 11.1 

20-BDLD 0.20 0.100 0.00045 25 0.176 0.575 0.44 10.7 21.9 0 33.6 

20-LMIX 0.20 0.120 0.00081 27 0.179 0.673 0.51 15.9 30.9 89.9 121 

20-UMIX 0.20 0.140 0.0011 27 0.174 0.805 0.62 21.2 56.3 158 214 

20-SPSN 0.20 0.167 0.0019 27 0.158 1.06 0.85 26.5 113 251 364 

25-THLD 0.25 0.100 0 25 0.227 0.444 0.30 9.00 8.94 0 8.94 

25-BDLD 0.25 0.125 0.00081 27 0.221 0.569 0.39 13.5 35.5 0 35.5 

 

Five different transport stages, ranging from just above the threshold for 

sediment motion to a near washout of bedforms, were achieved for the 15 and 20 cm 

runs.  The runs are qualitatively named Threshold (THLD), Bedload (BDLD), Lower 

Mixed (LMIX), Upper Mixed (UMIX), and Suspension (SPSN) in order of increasing 

𝜏∗/𝜏∗𝐶 based on visual observations of the characteristic sediment transport 

mechanisms.  Only THLD and BDLD stages were possible for the 25 cm depth because 

higher discharges were beyond the capacity of the flume pumps. The initial flow depth 

for each run is identified in the run name herein (e.g., 15-THLD, 20-THLD, 25-THLD).  

Average flow and sediment flux conditions from a 10-hour equilibrium period are 

reported in Table 4.1.  All flows were subcritical and final equilibrium depths were less 

than the initial flow depths after the bed adjusted to the imposed flows.  No suspended 

sediment flux was observed during the THLD and BDLD stages during equilibrium.   

4.2.2. Measurements 

The RDL Swath Mapping System was used to record bed topography profiles 

(Venditti et al., 2016; Chapter 3).  The system includes a cart powered by a stepper 

motor that runs on rails mounted on top of the flume side walls.  A Plexiglas beam 

oriented across the channel is attached to the cart, and contains thirty-two Seatek 

Instruments echo-sounding transducers spaced 2.5 cm apart in the across stream 
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direction.  The beam is attached to a mechanical motor that allows it to move vertically 

such that the sensors can be placed immediately below the water surface.  This allows 

measurements that have minimal disturbance to the flow and does not affect the mobile 

bed.  Signals and positions from the Seatek Instruments were recorded by an onboard 

computer.  Noise in the Seatek data were filtered using the method described in Chapter 

3. 

Measurements were made in the along stream direction from 4.5 to 10 m from 

the flume headbox to avoid entrance or exit effects on the observations.  However, later 

analysis showed defects propagated from the headbox during the 25-THLD and 25-

BDLD runs and affected the evolution of the bed.  The speed of the cart was set to 

maximize the number of scans that could be performed while ensuring high density 

measurements in the downstream direction.  The cart speed resulted in scans of 32 

along stream profiles with observations every 1.29 cm.  A scan of the bed was made 

before the pumps were turned on and then approximately every 10 minutes after the 

flow was applied.  Data presented herein are from the initial evolution of the flat bed for 

up to 10 hours.  If an equilibrium bedform field was not achieved in a 10-hour window, 

we provide a longer series of observations until equilibrium was achieved.  

During the LMIX, UMIX and SPSN runs, intense erosion in dune troughs after the 

first few scans produced a thick sediment transport layer that prevented the Seatek 

sensors from locating the solid bed.  In order to fill in these gaps in the LMIX and UMIX 

time series, additional, redundant runs were undertaken with changes to the sensitivity 

of the Seatek sensors.  During redundant runs, the cart speed was increased, and scans 

were made from 7.65-9.50 m from the headbox approximately every 1.5 minutes until 

bedform lengths exceeded the measurement window.  This created a downstream 

spacing in individual measurements of 1.9 cm, but allowed for quicker scans, providing 

observations of the more rapid bed evolution.  Evolution of the bed during the SPSN 

runs made additional measurements during redundant runs impossible.  

4.2.3. Data Analysis 

Bedform dimensions from each Seatek profile were calculated using an 

automated method developed by McElroy (2009), which has been verified using manual 

measurements of bedform dimensions (Venditti et al., 2016; Chapter 3).  The automated 



113 

method estimates spatially-averaged bedform height and lengths for each of the 32 

profiles in a scan.  Reach-averaged bedform heights (H) and lengths (L) are reported as 

the mean values of the 32 spatially-averaged heights and lengths for each scan. Chapter 

3 showed that the automated method was not appropriate for the long and relatively flat 

bedforms of SPSN runs.  For the SPSN runs, the dimensions of individual dunes were 

manually measured along the centerline.  Dune heights were measured from trough to 

peak in the lee side and length between the lowest points in the upstream and 

downstream troughs.  Reach-averaged bedform heights (H) and lengths (L) were 

determined by adding the heights and lengths of individual bedforms and diving by the 

number of bedforms in the profile.  The automated method could also not be applied to 

the redundant LMIX and UMIX runs because the along stream distance of the profiles 

was too short.  For these scans, we present manually measured bedforms along the 

center profile to characterize H and L.   

4.3. Results 

4.3.1.  Dimensions through Time 

Figure 4.2 shows reach-averaged bedform height and length through time.  

Thirteen hours of data for 20-THLD and 23 hours for 25-THLD are shown since this 

observation period was required for the bed to reach a stable configuration (Figure 4.2a 

& 4.2f).  In general, the duration of the bedform growth phase decreased with higher 

transport stages.  Equilibrium bedform dimensions did not scale with depth (e.g., Yalin, 

1964; Bradley & Venditti, 2017) but, rather, they scaled with transport stage (Chapter 3).  

Bedforms grew higher in the flow with transport stage until the LMIX condition, at which 

H began to decrease.  Length remained about the same in each transport stage until the 

UMIX runs, at which L began to increase (Chapter 3).  Variability between scans 

increased with transport stage with a nearly different bed configuration appearing 

between scans in the SPSN runs (Chapter 3).  The initial flat bed evolved rapidly during 

the LMIX and UMIX stage due to intense scour of the bed, so shorter and more frequent 

scans were required to capture the evolution. 
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Figure 4.2. Bedform height (a-e) and length (f-i) through time for the different 
transport stage conditions.  The lighter blue and grey symbols are 
from the redundant scans for the 15 and 20 cm runs, respectively.   
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4.3.2. Phenomenology of Bedform Growth 

Videos that detail the topography for each bed scan in Figure 4.2 are available in 

Appendix H (Supplementary Videos H1-H12).  Here, we present examples of distinct 

stages of bed evolution for the observed transport conditions under the initial flow depth 

of 15 cm.  The examples in Figures 4.3-4.8 are from different time intervals because the 

bed evolution occurred faster with increasing transport stage, so distinct growth phases 

appeared at separate times between runs at different transport stages.  The patterns of 

bed evolution are similar for the 20 cm initial flow depth, with some subtle differences in 

when distinct patterns occur in the time series.  The 25 cm initial flow depth runs are 

distinct from the 15 and 20 cm runs because they were influenced by a defect that 

formed at the headbox.  The defect growth process observed in 25-THLD and 25-BDLD 

is discussed further below.  

Growth from the flat bed was relatively slow during the 15-THLD run.  After 0.17 

hrs, bedforms with H < 1 cm and L < 10 cm began to emerge from the plane bed (Figure 

4.3a).  The appearance of bedforms was widespread over the bed and appeared to 

follow the instantaneous initiation mechanism described by Venditti et al. (2006).  This 

instantaneous initiation process was consistent for all runs except for 25-THLD and 25-

BDLD.  After initiation, the bedforms grew steadily through time, becoming 3D with H  ~ 

2 cm and L ~ 30 cm (Figure 4.3b) at t = 1.00 hr.  The bed underwent a relatively rapid 

transition between t = 1.25 and 1.42 hrs when some of the 3D features organized into 

larger 2D features (Figure 4.3c).  These 2D features remained characteristic of the field 

and grew longer through time (Figure 4.3d).  During the final growth stage, smaller 3D 

features passed through the dune field as crestline defects and spurs (Swanson et al., 

2017).  Small-scale bedforms (H < 1 cm) were also observed to be superimposed on the 

stoss of larger features. 
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Figure 4.3. Bed topography for the Threshold Stage at an initial depth of 15 cm 
(15-THLD) at (a) 0.17, (b) 1.25, (c) 1.42 and (d) 6.93 hrs. (Appendix H, 
Supplementary Video H1).   

During the initial scans of the 15-BDLD stage, the bed organized into small, 2D, 

channel-spanning features (H < 1 cm, L < 10 cm) (Figure 4.4a).  As the bedforms 

increased in size, they became more 3D (Figure 4.4b) and a period of rapid growth 

occurred from t = 0.5 to t = 1.17 hrs (Figure 4.4c).  This phase was marked by intense 

scour of dune troughs and produced larger 2D bedforms with smaller 3D features 

passing through the field.  Growth of the bedforms then continued via scouring of the 

bedform troughs (Figure 4.4d).   
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Figure 4.4. Bed topography for the Bedload Stage at an initial depth of 15 cm 
(15-BDLD) at (a) 0.17, (b) 0.50, (c) 1.17 and (d) 5.18 hrs (Appendix H, 
Supplementary Video H2).   

 The 15-LMIX (Figure 4.5) and 15-UMIX (Figure 4.6) beds underwent similar 

processes, although the bedform field developed more slowly during the LMIX run.  

Small bedforms (H < 1 cm, L < 10 cm) with 2D planforms appeared immediately after 

flow was applied (Figures 4.5a & 4.6a).  As the bedforms reached H > 1 cm and L > 10 

cm, they transitioned to a more 3D shape (Figures 4.5b & 4.6b) and began to grow 

rapidly (Figure 4.5c).  The equilibrium bed state for the LMIX stage had dunes with deep 

troughs that grew relatively high into the flow, sometimes with flattened crests (Figure 

4.5d).  Bedforms in the UMIX stage more rapidly transitioned from small features (Figure 

4.6b) to dunes that had smaller equilibrium heights and longer equilibrium lengths than 

observed during the LMIX stage (Figure 4.6c).  Growth from the flat bed happened so 

quickly during the 15-SPSN run (Figure 4.7) that we were unable to capture the growth 

phenomenon.  However, the equilibrium bed state was characterized by longer and 

flatter bedforms (Figure 4.7b).   
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Figure 4.5. Bed topography for the Lower Mixed Stage at an initial depth of 15 
cm (15-LMIX) at (a) 0.05, (b) 0.24, (c) 0.58 and (d) 0.92 hrs (Appendix 
H, Supplementary Video H3,H3b).   

 

 

Figure 4.6. Bed topography for the Upper Mixed Stage at an initial depth of 15 
cm (15-UMIX) at (a) 0.03, (b) 0.2, and (c) 0.58 hrs. (Appendix H, 
Supplementary Video H4, H4b).   
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Figure 4.7. Bed topography for the SPSN at an initial depth of 15 cm (15-SPSN) 
at (a) 0 and (b) 0.17 hrs (Appendix H, Supplementary Video H5).   

The patterns of bedform growth were consistent for similar transport stage 

conditions, except during the 25 cm initial flow depth runs (25-THLD and 25-BDLD) 

when defects that initiated at the headbox propagated through the bedform field and 

influenced growth.  The defects propagated downstream through flow separation 

processes promoting bedform field growth (e.g., Grass, 1970; Gyr & Schmidt, 1989; 

Best, 1992) rather than through the instantaneous initiation observed during the other 

runs.  During the 25-THLD runs, there was a period of ~2 hrs when only small sand 

waves appeared on the bed (Figure 4.8a), suggesting the applied flow conditions were 

below the threshold for dune development.  After this period, sand that built near the 

head box, began to migrate through the observation range as larger-than-average 

bedforms (Figure 4.8b) and the bedforms continued to grow in H and L as they traveled 

the length of the flume (Figure 4.8c).  The initial defect bedforms exited the channel after 

~11 hrs (Figure 4.8d), but the bedforms that followed persisted and grew (Appendix H 

(Supplementary Video H11)). The initial defects in the 25-BDLD run passed through 

more quickly (~1 hr), leaving a developed bedform field that continued to grow to 

equilibrium dimensions (Appendix H (Supplementary Video H12)). 
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Figure 4.8. Bed topography for the Threshold Stage at an initial depth of 25 cm 
at (a) 1.59, (b) 2.92, (c) 4.76 and (d) 10.94 hrs (Appendix H11, 
Supplementary Video H11).   

4.3.3. Shape of Growth Curves 

Growth curves exhibited three different behaviors (Figure 4.9): 1) exponential 

growth, 2) punctuated growth, when a period of initially linear growth was abruptly 

interrupted by exponential growth and 3) instantaneous growth, when bed evolution 

happened so quickly that we were unable to take measurements of the phenomenon.  

Exponential functions (Equations 4.3a & 4.3b) were fit to the data in Figure 4.2 except 

for the SPSN runs, in which the bed instantaneously achieved equilibrium.  In the cases 

of punctuated growth, the exponential function was fit to the curve beginning at the time 

when growth became nonlinear.  Table 4.2 gives the distinct types of growth observed 

and the associated exponential model fits.  Figure 4.10 shows how the models fit the 

data for the 15 cm runs (fits for the 20 and 25 cm deep flows are in Appendix G 

(Supplementary Figures G4.3 & G4.4). 
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Figure 4.9. Example growth curves of H/He of L/Le plotted with t/te.    
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Table 4.2. Model fitting results.   

Height Growth Type a (m) b 

Initial H at 
exp growth 

(m) 

t when exp 
growth 

begins (hr) 
99% Sat 

(hr) 
He 
(m) te (hr) 

15-THLD Exponential 0.035 0.610    0.035 7.55 

20-THLD Exponential 0.043 0.368    0.043 12.5 

25-THLD Defect/Exp 0.058 0.194 0.007 1.75 23.74 0.066 25.5 
         

15-BDLD Punctuated 0.050 1.36 0.009 0.668 3.39 0.058 4.06 

20-BDLD Punctuated 0.056 1.69 0.013 0.501 2.73 0.069 3.23 

25-BDLD Exponential 0.068 0.558    0.068 8.25 
         

15-LMIX Punctuated 0.046 5.44 0.017 0.284 0.847 0.063 1.13 

20-LMIX Punctuated 0.052 7.32 0.020 0.356 0.639 0.072 0.985 
         

15-UMIX Exponential 0.053 4.10    0.053 1.12 

20-UMIX Exponential 0.067 3.18    0.067 1.45 
         

15-SPSN Instantaneous      0.051 0.251 

20-SPSN Instantaneous      0.059 0.501 

Length Growth Type a (m) b 

Initial L at 
exp growth 

(m) 

t when exp 
growth 

begins (hr) 
99% Sat 

(hr) Le (m) te (hr) 

15-THLD Exponential 1.14 0.468    1.14 9.84 

20-THLD Punctuated 0.922 0.698 0.306 1.34 6.60 1.23 7.94 

25-THLD Defect/Exp 1.17 0.391 0.190 1.09 11.78 1.36 12.9 
         

15-BDLD Punctuated 0.763 2.52 0.200 0.668 1.83 0.96 2.50 

20-BDLD Exponential 1.03 1.03    1.03 4.49 

25-BDLD Exponential 1.35 1.06    1.35 4.36 
         

15-LMIX Punctuated 0.788 4.83 0.359 0.284 0.95 1.15 1.24 

20-LMIX Punctuated 0.827 8.90 0.387 0.402 0.52 1.21 0.920 
         

15-UMIX Exponential 1.22 4.66    1.22 1.00 

20-UMIX Exponential 1.47 2.30    1.47 2.00 
         

15-SPSN Instantaneous 1.70 4.83    1.70 0.251 

20-SPSN Instantaneous 1.72 2.30    1.72 0.501 
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Figure 4.10. Curve fits to the height (a-e) and length (f-j) time series data until 
equilibrium is achieved in the runs with 15 cm initial flow depths.  
Two hours of data are shown for the SPSN time series (e,j) since 
equilibrium was instantaneously achieved.  The grey circles are 
from the short scans and the black are from the long scans. 
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The type of growth curve was mostly consistent for the same transport stage 

regardless of depth.  The THLD height data followed an exponential curve (Figure 4.10a) 

while the BDLD and LMIX data displayed a period of linear growth until H was ~ 0.01 to 

0.02 m, when growth became exponential (Figure 4.10b,c).  It is more challenging to 

characterize the UMIX height curve (Figure 4.10d).  There is some evidence for 

punctuated growth but a distinct transition from linear to exponential growth is difficult to 

define since the bed evolved quickly.  We applied an exponential curve starting from the 

beginning of the run, but there was a short linear growth phase.  In the 25-THLD and 25-

BDLD stage, growth was exponential despite the presence of a defect that passed 

through the field from the headbox (Appendix G (Supplementary Figures G4a & G4b)).  

The general shapes of the L curves were consistent with the shape of the H curves with 

some exceptions.  The 20-THLD length curve (Appendix G (Supplementary Figure G4f)) 

showed some evidence of punctuated growth while the 15-THLD was exponential 

(Figure 4.10f).  The 20-BDLD length curve exhibited no punctuated growth (Appendix G 

(Supplementary Figure G4g)), but the 15-BDLD length showed a period of linear growth 

before an exponential phase (Figure 4.10g).   

4.3.4. Time to Equilibrium 

Bedforms are usually considered to be in equilibrium when there is no systematic 

change in dimensions through time.  Coleman et al. (2005) suggested that the time to 

equilibrium (teq) is defined when bedform dimensions become constant.  This definition is 

subjective because dimensions can only become constant in a statistical sense.  A 

single point on a growth curve where dimensions are statistically constant is hard to 

define due to substantial variation in bedform dimensions through time (Chapter 3).  

Following Baas (1994) and Venditti et al. (2005a), teq was defined as the time required 

for the exponential growth curve to reach 99% of the asymptote.  This definition provides 

an objective method to quantify teq that is entirely consistent between growth curves.  In 

the case of punctuated growth, teq is the time required for the exponential growth period 

to reach 99% of the asymptote, plus the time of the linear growth phase.  The SPSN 

runs likely reached equilibrium sometime before our first measurements but, we do not 

have these data so teq is defined by our first measurement.  In almost all runs, teq was 

achieved well within the observation range except for the 25-THLD height data in which 

the 99% value of the asymptote lies outside our measurement period of 23 hrs.  We 
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omitted the 25 cm runs from further analysis of teq because they followed a defect growth 

process.   

Time to equilibrium for both H (teH) and L (teL) decreased nonlinearly with 

equilibrium transport stage (𝜏∗/𝜏∗𝐶) in our experiments (Figure 4.11).  The observation of 

a nonlinear decrease in teH and teL with 𝜏∗/𝜏∗𝐶 agrees well with the data from Iseya (1984) 

and Venditti et al. (2005a) (Figure 4.11).  Including these data, the relation between teH 

and 𝜏∗/𝜏∗𝐶 is a power function: 

𝑡𝑒𝐻 = 106
τ∗

τ∗𝑐

−1.39
       (Eq. 4.7a) 

with an R2 value of 0.53.  The relation between teL and Le is also a power function: 

𝑡𝑒𝐿 = 69.5
τ∗

τ∗𝑐

−1.22
       (Eq. 4.7b) 

with an R2 value of 0.42.  While Equations 4.7a & 4.7b fit the data reasonably well, there 

is some evidence that variability about the relations could be related to a depth effect.  

Many, but not all, deeper flow runs had longer teq values compared to runs at shallower 

flow depths under similar 𝜏∗/𝜏∗𝐶 values.  The longer teq can be attributed to the larger 

volume of bed material that must be transported to form the larger features.   

 

Figure 4.11. Equilibrium transport stage against te for (a) height and (b) length 
using data from the experiments presented here plus data of Iseya 
(1984) and Venditti (2005a).   
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4.3.5. Bedform Growth Constant 

Exponential growth was observed for nearly all transport stages, which allows for 

robust estimates of the growth constants, 𝑏𝐻 and 𝑏𝐿, in Equation 4.4.  There is 

remarkably little variation in 𝑏, with an average value of 4.57 for 𝑏𝐻 (Equation 4.4a) and 

4.60 for 𝑏𝐿 (Equation 4.4b) (Table 4.3), when Equation 4 was fit to our data (Appendix G 

(Supplementary Figure G4-G7)).  The average 𝑏𝐻 and 𝑏𝐿 differ by < 1%, suggesting that 

the growth constant 𝑏 may be universal, with a value of 4.59, calculated as the grand 

average of all 𝑏𝐻 and 𝑏𝐿 values.  Equation 4 plotted with b = 4.59 (Figure 4.12) visually 

represents the Iseya (1984) and Venditti et al. (2005a) data better than the regressions 

in Figure 4.1. 

Table 4.3. Height and length growth constants from Equations 4.4.    

 

  

 Height growth 
constant, 𝒃𝑯 

Length growth 
constant, 𝒃𝑳 

15-THLD 4.56 4.57 

20-THLD 4.59 4.69 

25-THLD 4.77 4.66 
   

15-BDLD 4.30 4.74 

20-BDLD 4.59 4.55 

25-BDLD 4.50 4.55 
   

15-LMIX 4.58 3.67 

20-LMIX 4.66 4.62 
   

15-UMIX 4.60 4.65 

20-UMIX 4.55 5.29 
   

Average 4.57 4.60 
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Figure 4.12. Examples of exponential fits using Equations 4.4 with b = 4.59 to 
bedform (a) height and (b) length growth time series data from Iseya 
(1984; Run 3) and (c) height and (d) length growth time series data 
from Venditti et al. (2005a; Flow B). 

4.4. Discussion 

4.4.1. Morphodynamics of bedforms growth  

Bedform growth from a flat bed has been attributed to the coalescence of smaller 

features (Raudkivi & White, 1990; Coleman & Melville, 1994) while others have argued 

for growth by bedform field stretching through subtle downstream acceleration of 

bedforms (Venditti et al., 2005a).  Coalescence has been invoked to explain power-law 

growth (Coleman & Melville, 1994), while bedform field stretching has been observed for 

exponential growth (Venditti et al., 2005a).  Our results show that growth processes and 

the functional form of growth curves are more complex than these explanations and are 

dependent on transport stage.   

Our observations indicate that there are three distinct types of growth patterns: 1) 

Exponential, 2) Punctuated and 3) Instantaneous.  Exponential growth occurs at low 

transport stages due to a combination of bedform field stretching and individual bedform 
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coalescence.  Bedforms appear as small 2D features in the initial stages of bed 

development but relatively quickly change to 3D as they grow and pass defects through 

crestlines.  Three dimensional bedforms coalesce and form 2D features with crestlines 

that span the entire width of the flume within t < 10 mins.  The larger 2D features grow 

more slowly through the downstream stretching process.  In later growth stages, 

coalescence is limited to 2D sand sheets supplied to the crest (e.g., Venditti et al., 

2005b).   

Punctuated growth is characterized by relatively slow linear growth of bedforms, 

followed by a period of exponential growth.  The initial growth is characterized by an 

organization of small 2D features, that gradually transitions to 3D features.  The 

presence of initial linear growth opens the possibility of linear growth to equilibrium 

dimensions, but this does not occur in our experiments.  Once bedforms reached heights 

of 1 to 2 cm, large volumes of bed material began to move as a thick layer of bedload 

and suspension as troughs were scoured, leading to an exponential growth phase.  In 

many respects, this is similar to the ‘rogue ripple’ process (Leeder, 1983; Bennett & 

Best, 1996) that has been used to explain the transition from ripples to dunes as velocity 

increases.  Indeed, Schindler and Robert (2005) noted a similar process where 2D 

ripples transitioned into 3D ripples when flow velocity was increased, leading to the 

generation of a rogue ripple.  Our observation of increased trough scour when H reaches 

1 to 2 cm, suggests that this may represent a critical height at which the separation zone 

in the lee is large enough to enhance turbulence at the bed, promoting exponential 

bedform growth by trough deepening.  The process occurs simultaneously over the 

entire bed rather than through one single ‘rogue ripple’.   

It remains unclear what occurs in the initial stages of evolution when there is 

substantial suspension.  In the UMIX runs, the linear growth phase appeared to happen 

but was sufficiently short that it was difficult to characterize.  Bedforms emerged at their 

equilibrium H and L so quickly in the SPSN runs that it was perceived as instantaneous.   

4.4.2. Towards a method for predicting bedform growth in rivers 

The exponential relations in Equations 4.4a and 4.4b are powerful tools for 

predicting bedform response to an imposed flow.  Dune height and length can be 

predicted as a function of time if 𝐻𝑒, 𝐿𝑒, 𝑡𝑒 and b are known.  The growth exponent b is 
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4.59 for our experiments, and comparison with data from Iseya (1984) and Venditti et al. 

(2005a) indicates that it is universal.  Traditionally, 𝐻𝑒 and 𝐿𝑒 are predicted with simple 

depth-scaling relations (e.g., Yalin, 1964), but these have been shown to have 

tremendous variability about them (Bradley & Venditti, 2017). Chapter 3 showed that 𝐻𝑒 

and 𝐿𝑒 scale with transport stage as: 

𝐻𝑒 

ℎ
=  𝑎𝐻/ℎ ∗ (

τ∗

τ∗𝑐
− 𝑏𝐻/ℎ)

2
+ 𝑐𝐻/ℎ     (Eq. 4.8a) 

𝐿𝑒 

ℎ
=  𝑎𝐿/ℎ ∗ (

τ∗

τ∗𝑐
− 𝑏𝐿/ℎ)

2
+ 𝑐𝐿/ℎ.     (Eq. 4.8b) 

where 𝑎𝐻/ℎ  = -0.0014, 𝑏𝐻/ℎ = 16, 𝑐𝐻/ℎ  = 0.42, 𝑎𝐿/ℎ  = 0.031, 𝑏𝐿/ℎ  = 9.6, and 𝑐𝐿/ℎ  = 5.7, 

representing coefficients derived from individual data sets of median values.  The 

coefficients vary slightly depending on whether the mean or the median values are used 

to derive the relation.  The median relations are convenient because they can include 

metrics of variability in forward predictions (Chapter 3).  The scaling relations in 

Equations 4.8a and 4.8b require some further testing in larger channels, which may 

result in some refinement of the coefficients.  However, the parabolic form of Equations 

4.8a and 4.8b is consistent with the largest data compilation of dune data assembled to 

data (Bradley & Venditti, 2017).  It is likely that Equations 4.8a and 4.8b, with the 

coefficients presented here, can be applied in other small channels since the underlying 

data are from flume experiments. 

The more difficult variable to predict in Equations 4.4a and 4.4b is 𝑡𝑒.  We have 

shown that 𝑡𝑒 decreases non-linearly with transport stage in our experiments (Figure 

4.11) and the underlying functions are power laws described by Equations 4.7a and 

4.7b.  Coleman et al. (2005) used dimensional analysis to show that 𝑡𝑒 was a function of 

depth, grain size and transport stage, resulting in Equation 4.6.  However, Equation 4.6 

underpredicts 𝑡𝑒 from our experiments and those of Venditti et al. (2005a), and 

overpredicts 𝑡𝑒 in Iseya (1984) (Figure 4.13).  The poor fit of Equation 4.6 to these data 

either confirms our opening critique that 𝑡𝑒 was defined subjectively by Nikora and Hicks 

(1997) and Coleman et al (2005), or suggests that the equation is not appropriate.  We 

regard the former explanation for the poor fit as more likely because Coleman et al. 

(2005) achieve an impressive data collapse, even if it is not reproducible with our data 
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sets. Equation 4.6 also assumes the same 𝑡𝑒 for bedform height and length, which we 

have shown is not generally the case.   

 

Figure 4.13. Time to equilibrium plotted against transport stage using the same 
non-dimensional variables presented in Coleman et al. (2005). The 
lighter and darker shades are height and length data, respectively. 

Nevertheless, the Coleman et al. (2005) relation correctly identifies a scale 

dependence of 𝑡𝑒.  Larger scale dunes take longer to achieve equilibrium dimensions 

than smaller scale dunes simply because more bed material must be mobilized to alter 

their size.  It is not clear why grain size is in the dimensionless groupings of Equation 4.6 

but it appears to be included to define universal relations for 𝑡𝑒 that are separate for 

ripples and dunes.  There is no evidence that grain size affects dune dimensions, but 

ripple dimensions are thought to scale with grain size (Yalin, 1985; Baas, 1994).  

Assuming that grain size affects only transport stage, and not dune dimensions, the 

Coleman et al. (2005) relation may be recast to remove scale effects as either 𝑡𝑒
𝑢∗

ℎ
=

𝑓 (
𝜏∗

𝜏∗𝑐
)  or 𝑡𝑒

𝑈̅

ℎ
= 𝑓 (

𝜏∗

𝜏∗𝑐
), where 𝑈̅ is the mean velocity.   

The non-dimensional time to equilibrium dimensions decreases nonlinearly with 

transport stage, regardless of whether 𝑡𝑒
𝑢∗

ℎ
  (Figure 4.14a, b) or 𝑡𝑒

𝑈̅

ℎ
 (Figure 4.14c, d) is 

used.  The difference between the two functions for all our data set is minimal, because 

our observations are for shallow flows and ~0.5 mm sand, including those from Iseya 

(1984) and Venditti et al. (2005a).  We suspect that 𝑡𝑒
𝑈̅

ℎ
= 𝑓 (

𝜏∗

𝜏∗𝑐
) is the more appropriate 
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relation because 𝑈̅ and h are fundamental scales of flow and the use of 𝑢∗ to make 𝑡𝑒 

non-dimensional results in metrics of shear stress on both sides of the relation.  The 

relation for the time to equilibrium made non-dimensional with mean velocity for dune 

height is a power law that has the form: 

𝑡𝑒𝐻 (
𝑈̅

ℎ
) = 283

τ∗

τ∗𝑐

−1.34
       (Eq. 4.9a) 

and the relation for length is: 

𝑡𝑒𝐿 (
𝑈̅

ℎ
) = 185

τ∗

τ∗𝑐

−1.15
       (Eq. 4.9b) 

with R2 values of 0.71 and 0.54 for 𝑡𝑒𝐻 and 𝑡𝑒𝐿, respectively.  Using 𝑢∗ to make 𝑡𝑒 non-

dimensional produces similar R2 values (Figure 4.14a,b).  While the Equations 4.9a and 

4.9b fit the data reasonably well, the exponents are close to 1, suggesting that a linear 

relation may also be appropriate.  However, more data are required to fully test the 

relation. 
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Figure 4.14. Equilibrium transport stage against the non-dimensional time to 

equilibrium for (a) 𝒕𝒆𝑯 (
𝒖∗

𝒉
), (b) 𝒕𝒆𝑳 (

𝒖∗

𝒉
), (c) 𝒕𝒆𝑯 (

𝑼̅

𝒉
) and (d) 𝒕𝒆𝑳 (

𝑼̅

𝒉
) using 

data from the experiments presented here, Iseya (1984) and Venditti 
(2005a).   

The series of relations formed by Equations 4.4, 4.8 and either 4.7 (dimensional 

version) or 4.9 (non-dimensional version) constitute powerful tools for predicting the 

response of dunes to imposed flows.  They allow for the prediction of dune dimensions 

given the magnitude and duration of flows.  The relations are especially useful because, 

in many circumstances, dunes may not reach equilibrium dimensions during a flood flow.  

The exponential form of the growth curves in our experiments does not appear to be 

affected by whether growth occurs from a flat bed or a field composed of smaller 

bedforms.  It is, therefore, likely that the series of relations presented here can be 

applied to field situations.  However, the series of relations is based on observations 

made in a small channel with a constant grain size (~0.5 mm), so they require testing 

against field observations, particularly for deep rivers.  We suspect that the relations can 

be applied in all channels, but that the coefficients will need to be adjusted for deep 

rivers.  There is a pressing need for spatially-resolved observations of dune 
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development during flood flows that will provide the data necessary to test these 

empirical relations. 

4.5. Conclusions 

We have systematically examined the response of bedform dimensions and 

morphodynamics as bedform fields evolved from a flat bed under different flow depths 

and transport stages.  We used three sets of runs, each with a different initial flow depth 

of 15, 20 and 25 cm. The 15 and 20 cm sets had five different discharges applied over a 

flat bed and the bed was continually mapped as it evolved towards an equilibrium state. 

Each run had a larger discharge applied to achieve transport stages ranging from just 

above the threshold for sediment mobility to conditions in which substantial volumes of 

bed material moved in suspension.  Only two of the lower transport stages could be 

achieved for the 25 cm depth.  The results indicate that: 

1. At low transport stages, growth curves are exponential.  The bed initially evolved 

through coalescence of smaller features and then grew through a slow stretching 

process.   

2. At higher transport stages, when punctuated growth curves were observed, small 

bed features appeared on the bed and grew linearly until heights were > 2 cm.  At 

this height, a thick transport layer developed due to intense trough erosion, and 

growth became exponential.  

3. Instantaneous growth was observed at the highest transport stage, as the bed 

rapidly evolved.   

4. The time for a growing bedform field to reach equilibrium decreases non-linearly 

with transport stage. 

5. The dimensions of evolving dunes through time can be predicted with the 

proposed series of relations.   It is likely that the relations can be applied in all 

channels, but they will need to be tested with field data, particularly in large 

rivers, to refine the coefficients. 
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Chapter 5. Synthesis and Conclusions 

This dissertation sought to identify what controls dune height (𝐻) and length (𝐿) in 

rivers through a meta-analysis of published dune dimension data and a series of flume 

experiments in the River Dynamics Laboratory at Simon Fraser University.  An empirical 

approach was used to improve the current understanding of the fundamental controls on 

dune dimensions, and the results help guide and refine existing theory.  The overarching 

research question of ‘What controls dune dimensions and growth in rivers?’ was 

addressed through a series of objectives introduced in Chapter 1.  In this Chapter, the 

findings of the dissertation are synthesised in the context of the proposed objectives. 

5.1. Predictive power of dune scaling relations 

Simple depth-scaling relations are often used to predict both dune dimensions in 

rivers and paleoflows using cross-stratification thicknesses measured in the rock record.  

Depth-scaling relations imply that flow depth (ℎ) is the control on 𝐻 and 𝐿.  The 

implication of a depth control was examined in Chapter 2 through an analysis of 

previously published dune and flow characteristics data.  The compiled data set is the 

most extensive of its kind, allowing for a critical re-evaluation of the widely used 𝐻 = ℎ/6 

and 𝐿 = 5ℎ relations attributed to Yalin (1964).  Ultimately, these relations proved to be 

poor predictors of dune dimensions. The substantial scatter about the relations may not 

be surprising given that the mechanistic, physical reasoning for a depth control has 

never been fully elucidated.   

 Even though depth may not be the fundamental control on dunes, size does 

increase with the scale of rivers.  This makes depth-scaling relations attractive because 

only one easily measured variable is required to predict dimensions.  The data set in 

Chapter 2 showed that dunes in deep channels do not grow as high relative to water 

depth as they do in shallow channels.  The data revealed that 𝐻 in channels where ℎ < 

2.5 m scale as 

𝐻 = ℎ/3.5        (Eq. 5.1)  

while dunes where ℎ > 2.5 m follow: 
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 𝐻 = ℎ/7.7         (Eq. 5.2)  

These relations are much better fits to the underlying data than 𝐻 = ℎ/6.  They also 

separate dunes in shallow and deep channels, which often display distinct morphologies.  

Dunes in shallow channels are always asymmetric and have angle-of-repose lee sides, 

while dunes in deep channels commonly have low lee angles, with a more symmetrical 

morphology.  The rounder, less steep morphology is reflected in the ℎ/7.7 scaling. There 

was no clear evidence to support a scaling break in the dune length data, so L scales as: 

  𝐿 = 5.9ℎ         (Eq. 5.3) 

for all flow depths. Equation 5.3 is similar to the Yalin (1964) length relation but is refined 

with more underlying data. For the prediction of flow depth from an estimated dune 

height in the rock record, the relation is: 

ℎ = 6.7𝐻.        (Eq. 5.4)  

Equation 5.4 was fit only to field data to remove bias associated with idealized flume 

experiments since dunes in natural channels are responsible for features preserved in 

the rock record.   Furthermore, whether a dune in the rock record was formed in a 

shallow or deep flow is not necessarily known a priori in a paleo-environmental 

reconstruction. 

 There are physically-based reasons that can be invoked to explain why dunes 

appear to scale with flow depth.  The shear stress distribution over dunes has been 

linked to dune growth, suggesting that dune dimensions should scale with the total shear 

stress applied and its distribution over a dune.  Depth may not be the control itself, but it 

is incorporated in the calculation of total shear stress (𝜏 = 𝜌𝑔ℎ𝑆, where 𝜌  is the density 

of water, 𝑔 is gravitational acceleration, and 𝑆 is the slope).  The observation that low-

angle dunes do not grow as high in the flow as shallow-channel dunes can also be 

related to depth since low-angle morphologies are often attributed to suspended 

sediment.  The propensity for suspension depends on the ratio of shear velocity (𝑢∗) to 

settling velocity (𝑤𝑠), which includes flow depth since 𝑢∗ = √𝑔ℎ𝑆.  Combined, these 

physically-based arguments suggest that transport stage (𝜏∗/𝜏∗𝑐) may be an important 

control on dune dimensions because 𝜏 is included in the calculation of 𝜏∗/𝜏∗𝑐, and 𝑢∗/𝑤𝑠 

is directly proportion to 𝜏∗/𝜏∗𝑐, for a given grain size. Yalin (1964) acknowledged a 
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transport stage control in his original work, which was further supported in later data 

compilations by Yalin (1972) and Yalin & Karahan (1979). The underlying data confirm 

that dune steepness (H/L) increases and then decreases with 𝜏∗/𝜏∗𝑐.   

The variability about depth-scaling relations in the compiled data set appears to 

derive from two sources: the transport stage control and natural variability within dune 

fields.  In recognition of this, the data used to derive Equations 5.1, 5.2, and 5.3 were 

used to create uncertainty estimates that encapsulate both sources of variability.  The 

uncertainty ranges offer a method to add error estimates to predictions of dune 

dimensions from flow depth or estimates of flow depth from dune dimensions.  However, 

the two sources of uncertainly are combined in the estimate and cannot be separated 

within the data compilation.  This required new experiments reported in Chapter 3.   

5.2. Depth and transport stage controls on dune 
dimensions and variability  

Flume experiments presented in Chapter 3 were used to better understand the 

role of depth and transport stage in controlling dune dimensions and variability.  Three 

different flow depths (15, 20, 25 cm) were tested.  Each flow depth had a series of runs 

with different transport stages.  The transport stages allowed observations ranging from 

just above the threshold for sediment motion to near complete dune washout.  The bed 

was mapped continuously during a 10-hour equilibrium period to develop dune 

dimension time series.  Continual bed mapping provided observations that were used to 

derive true underlying mean values for each observation period.  Mean values allow for 

an examination of dune-dimension controls while the distributions of data about the true 

means provide insight into the variability.  While natural variability and transport stage 

controls were combined as sources of uncertainty in Chapter 2, the experimental design 

allowed for the controls on dune dimensions and variability to be separated.   

Dune-depth scaling suggests that dune dimensions under the same flow depth 

should be the same regardless of the applied flow.  The results showed that true mean 

dune sizes are larger in deeper flows, because there is more room in the flow for 

bedforms to grow.  However, depth scaling is not consistent because it is affected by 

transport stage.  Mean dune heights at moderate transport stages (e.g., BDLD, LMIX, 

UMIX) were larger than predicted by the scaling relation in Equation 5.1, and mean 
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lengths were longer than predicted with Equation 5.3 at higher transport stages.  The 

range of observed depth-scaling relations indicates that dimensions are controlled by 

transport stage, in addition to the size of the flow, characterized by flow depth.  Dune 

steepness increased and then decreased with transport stage, confirming previous 

observations (Yalin, 1972; Yalin & Karahan, 1979; Venditti et al., 2016; Chapter 2).  

However, the results quantitatively showed that this pattern occurs because H increases 

with transport stage until 𝑢∗/𝑤𝑠 ~ 0.96 and 𝜏∗/𝜏∗𝐶 ~ 18, when H begins to decrease.  

Length remains relatively constant until 𝑢∗/𝑤𝑠 ~ 0.72 and 𝜏∗/𝜏∗𝐶 ~ 8.5, when dunes 

begin to get longer.  

There are physically-based reasons that explain the non-linear response of dune 

dimensions to transport stage.  Dune height has been shown to decrease when large 

volumes of bed-material are moved through suspension.  As suspension increases, less 

sediment is readily supplied to dune crests and slip faces, causing a decrease in dune 

height.  Dune height was observed to decrease when 𝑢∗/𝑤𝑠 ~ 0.96, which is near the 

threshold value of 1, when significant suspension has been shown to occur (Bagnold, 

1966; Nino et al., 2003). Smaller dune heights were also observed at the lowest 

transport stage (e.g., THLD), in the absence of suspension.  Dunes during the lowest 

transport stage displayed shallower troughs, which resulted in lower heights. Trough 

scour may have been limited at the lowest transport stage by a reduction in turbulence 

associated with lower mean flow velocity.  However, detailed measurements of coupled 

flow and sediment dynamics are needed to confirm this reasoning.  It is unclear what 

promotes the lengthening of dunes at higher transport stages, but it may be related to 

increased particle excursion lengths. 

The continual mapping of the bed allowed for an examination of how variability in 

bedform dimensions responded to flow depth and transport stage.  The experiments 

showed that variability increases with flow depth since a larger range of H and L was 

possible at deeper flows.  The increased variability with depth can be attributed to 

increased flow volume, allowing a wider range bedform dimensions within a bedform 

field.  The results also show that variability in H and L increases with transport stage, 

indicating that transport stage is an additional source of variability.   
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5.3. Physically-based scaling relations that include 
uncertainty 

The number of experimental observations in Chapter 3, allowed for the 

development of new parabolic transport stage scaling relations, using true mean values.  

The transport stage scaling relations have the following form: 

𝐻 

ℎ
=  𝑎𝐻/ℎ ∗  (𝑥 − 𝑏𝐻/ℎ)

2
+ 𝑐𝐻/ℎ     (Eq. 5.5) 

𝐿 

ℎ
=  𝑎𝐿/ℎ ∗  (𝑥 − 𝑏𝐿/ℎ)

2
+ 𝑐𝐿/ℎ     (Eq. 5.6)  

where x is transport stage (defined as either 𝑢∗/𝑤𝑠 or 𝜏∗/𝜏∗𝑐), the coefficient a is the 

shape of the parabolic function, and b and c are the horizontal and vertical position of 

the curve inflection point, respectively.  Coefficient values for Equations 5.5 and 5.6 

derived from the true mean using 𝜏∗/𝜏∗𝑐 are  𝑎𝐻/ℎ  = -0.0010, 𝑏𝐻/ℎ = 17.69, 𝑐𝐻/ℎ  = 0.4169, 

𝑎𝐿/ℎ  = 0.0192, 𝑏𝐿/ℎ  = 8.459, and 𝑐𝐿/ℎ  = 6.226.  Values for a, b and c derived using 𝑢∗/𝑤𝑠  

are available in Table 3.4.  

 The relations in Equations 5.5 and 5.6 reflect the observation that H and L 

respond non-linearly to transport stage.  The horizontal inflection point, 𝑏, represents an 

important change in the scaling of dunes. The transport stage at b in Equation 5.5 

indicates when H begins to decrease, rather than increase, with transport stage.  Dune 

height relative to depth increases until 𝜏∗ 𝜏∗𝑐  ⁄ = 18 (𝑢∗ 𝑤𝑠 ⁄  = 0.96), suggesting the point 

when H begins to decrease is coincident with the threshold for substantial suspension.  

The value of b in Equation 5.6 shows the transport stage when L begins to increase with 

transport stage.   Length scaling decreases slightly or remains constant until 𝜏∗ 𝜏∗𝑐  ⁄ = 9 

(𝑢∗ 𝑤𝑠 ⁄ = 0.72) when lengthening occurs. Equations 5.5 and 5.6 represent a significant 

advancement from simple depth-scaling relations because they more realistically 

capture the physical controls on dune dimensions.   

The regression analysis results based on the true mean values (Table 3.4) 

cannot be used with Equations 5.5 and 5.6 to add measures of uncertainty to 

predictions.  However, it is useful to include the inherent variability in dune dimensions in 

circumstances when only single transects of a dune field are available or when 
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observations of cross-strata are made in sedimentary rock outcrop or cores.  The 

coefficients in Equations 5.5 and 5.6 can be defined using the median values 

(Supplementary Table E2) rather than the true mean values, which allows for envelopes 

of variability about the median relations.  Equations 5.5 and 5.6 should be used if grain 

size, slope, and flow depth can be measured or estimated because transport stage can 

be calculated using 𝜏∗ =  
𝜌𝑤ℎ𝑆

(𝜌𝑠−𝜌𝑤)𝐷
   and 𝜏∗𝑐 from Shields’ type diagrams (e.g., Brownlie, 

1981).  Alternatively, the suspension threshold can used by calculating 𝑢∗ = √𝑔ℎ𝑆 and 

ws using either Dietrich (1982) or Ferguson and Church (2004).  If the measures 

necessary to compute transport stage cannot be obtained, the depth-scaling relations 

(Equations 5.1 to 5.4) proposed in Chapter 2 are useful because they require only one 

variable. However, the uncertainty estimates used with the depth-scaling relations in 

Equations 5.1 to 5.4 include both the effects of transport stage and natural variability on 

dimensions.  Equations 5.5 and 5.6 explicitly remove some uncertainty by including 

metrics of transport stage that more realistically reflect the control on dune dimensions.   

Equations 5.5 and 5.6 require further testing with field data.  It is likely that the 

relations can be readily applied in small channels, where the conditions are similar to the 

experiments in Chapter 3.  However, it is unclear how well these relations will describe 

dunes in flows > 2.5 m since low-angle dunes do not grow as relatively high in the flow.  

Further testing in larger channels may result in some refinement of the coefficients in 

Equations 5.5 and 5.6, but the parabolic form should hold since it is consistent with the 

data compilation presented in Chapter 2.  Unfortunately, it is difficult to compare 

Equations 5.5 and 5.6 to most previously published data since single measurements 

from a flume run or a transect of a natural dune field do not reveal true mean equilibrium 

dimensions.   

5.4. Dune growth from a flat bed 

The observation that transport stage is important for setting equilibrium dune 

dimensions lead to the investigation in Chapter 4 of how transport stage affects dune 

growth.  Dune growth curves exhibit three different behaviours: 1) exponential growth, 2) 

punctuated growth, when a period of initially linear growth is abruptly interrupted by 

exponential growth and 3) instantaneous growth, when bed evolution happens so quickly 

that measurements of the phenomenon were impossible with the experimental design.  
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The growth behaviour was dependent on the applied transport stage, not flow depth.  At 

low transport stages, growth curves are exponential, and the bed initially evolved 

through coalescence of smaller features, and then through a slow stretching process.  At 

the moderate transport stages, when punctuated growth was observed, small bed 

features initially appeared and grew linearly with time until they had heights ~2 cm.  At 

this height, a thick transport layer formed due to intense trough scour, and growth 

became exponential.  Instantaneous growth was observed at the highest transport 

stage, as the bed rapidly evolved.  These different forms of growth from a flattened bed 

have not been previously shown, likely because most experiments were limited to low 

transport stages. 

Some previous work proposed that bedform growth curves follow power laws.  

Power laws can only be used when bedforms are growing and require a different 

function to detect when equilibrium dimensions are reached.  The domains of the two 

functions are difficult to establish without knowing when the statistical steady state is 

reached.  The identification of the statistical steady state is difficult due to natural 

variability in dune fields.  Exponential functions better describe bedform growth to an 

equilibrium condition, and can be used to objectively define the period when the 

statistically steady state of bedform dimensions occurs.   

5.5. A method for predicting dune growth 

Predicting bedform growth requires knowledge of: 1) equilibrium dimensions for a 

given flow, 2) the form of the underlying growth relation, and 3) the time required to 

reach equilibrium.  Equilibrium dimensions can be predicted using Equations 5.5 and 

5.6.  Exponential functions that can describe bedform dimensions during growth have 

the following form: 

 
𝐻

𝐻𝑒
=  1 − 𝑒

(−𝑏𝐻∗
𝑡

𝑡𝑒𝐻
)
       (Eq. 5.7) 

𝐿

𝐿𝑒
=  1 − 𝑒

(−𝑏𝐿∗
𝑡

𝑡𝑒𝐿
)
       (Eq. 5.8) 

where t is time, 𝑏𝐻 and 𝑏𝐿 are height and length growth constants.   The results showed 

that values for 𝑏𝐻 and 𝑏𝐿 do not vary in the experiments, suggesting they may be a 
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universal constant equal to 4.59.  Comparison to other data sets (Iseya, 1984; Venditti et 

al., 2005) reinforce this idea.   

Transport stage was shown to affect the time required for the height (teH) and 

length (teL) of dunes to reach equilibrium.  Both teH and teL decreased non-linearly with 

𝜏∗/𝜏∗𝑐, but there appears to be depth control on teH and teL. The depth effect occurs 

because larger scale dunes in deeper flows take longer to achieve equilibrium 

dimensions than smaller scale dunes as more bed material must be mobilized to alter 

their size.  To address this scale dependence on teH and teL, the relations for teH and teL 

were made non-dimensional with h and mean velocity (𝑈̅) to give 

𝑡𝑒𝐻 (
𝑈̅

ℎ
) = 270

τ∗

τ∗𝑐

−1.24
       (Eq. 5.9) 

𝑡𝑒𝐿 (
𝑈̅

ℎ
) = 112

τ∗

τ∗𝑐

−0.837
.       (Eq. 5.10) 

The exponential relations given by Equations 5.9 and 5.10 are powerful tools for 

predicting dune response to imposed flows. 

The widespread application of Equations 5.9 and 5.10, in combination with 

Equations 5.5 to 5.8, requires consideration of a few caveats.  The equations can likely 

be applied in their current state to small channels with beds consisting of similar grain 

size sediment to that used in these experiments (550 μm).  It is probable that the 

relations can be applied in all channels, but the coefficients will need to be adjusted for 

deep rivers.  Equations 5.9 and 5.10, in particular, require testing over a wide range of 

flows and sediment grain sizes to ensure the non-dimensional form of te is correct.  

Furthermore, low-angle morphologies may not respond to flows exactly as asymmetrical 

dunes, because a degree of freedom is provided by lee slope adjustment.  Spatially-

resolved observations of dune development during flood flows will provide the data 

necessary to test the proposed empirical relations. Once these data are collected, the 

proposed series of relations can be tested and refined to accurately predict equilibrium 

dune dimensions and growth as they respond to flows. 
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Appendix B.  Chapter 2 Supplementary Data File 

Description: 

The accompanying Excel spreadsheet includes all the data compiled and 

analyzed in Chapter 2 from the sources in Appendix A. The spreadsheet has two tabs; 

one for Flume Data and one for Field Data.  Data are from the original authors except for 

Mean Flow Velocity values in italics, Shear Stress, and Sidewall Corrected Shear Stress.  

Mean Flow Velocity values in italics were calculated from the depth, channel width and 

discharge values reported by the author.  Shear Stress values were calculated using 𝜏 =

 𝜌𝑤𝑔ℎ𝑆 and sidewall corrections were made to the flume data using the Williams (1970) 

method (Eq. 2.21).  10°C water was assumed in the shear stress calculation (𝜌𝑤= 999.7 

kg/m3). 

Filename: 

Chapter2_Data.xlsx 
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Appendix C.  Detailed Seatek Data Filtering Method 

The following steps were performed to remove noise from the Seatak data used 

in Chapters 3 and 4: 

1. Data points (i) in along stream profiles were removed where the next upstream point 

(i+1) and the previous downstream point (i-1) had a vertical elevation change (dz) > 

or < 1 cm (slope ~ +/- 0.77) (Supplementary Figure C1). 

 

Supplementary Figure C1.  (a) Top and (b) 3D view of bed once noise has been 
removed.  (c) data along center profile.  Red points are removed data 
during this step. 

2. A moving average was calculated using 4 points in the upstream direction (i+4) and 

4 points in the downstream direction (i-4) for each i.  Data points (i) in a profile were 

removed when: 

a. dz between i and i+1 was < -1 cm and > or < 0.5 cm from the moving average 

b. dz between i and i-1 was > 1 cm and > or < 0.5 cm from the moving average 

At high flow conditions (UMIX and SSPN), up to 5 sensors were too sensitive and failed 

to return a useable signal (Sensors #9, 18, 23, 26, 31).  These profiles were removed if 

they if 35% of the data points in an along stream profile had been removed through the 

previous steps (Supplementary Figure C2). 
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Supplementary Figure C2. (a) Top and (b) 3D view of bed once noise has been 
removed.  (c) data along center profile.  Red points are removed data 
during this step. 

3. Data removed in along stream profiles were replaced with linear interpolation.  If a 

profile was completely removed it was replaced using the mean of the two nearest 

sensors in the cross-stream direction (Supplementary Figure C3).    

 

 

Supplementary Figure C3.  (a) Top and (b) 3D view of bed once noise has been 
removed.  (c) data along center profile.   
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4. A cross stream filter then removed any remaining noise or artificial spike by the linear 

interpolation.  If a point was > 1.2 cm from the mean value of two adjacent data 

points in the cross stream, it was removed and replaced with the mean value of the 

two points (Supplementary Figure C4). 

 

Supplementary Figure C4.  (a) Top and (b) 3D view of bed once noise has been 
removed.  (c) data along center profile.  Red points are removed data 
during this step. 

5. A final smooth was applied by using a moving window of 4 points ((i-2:i-1) and (i 

+1:i+2)) calculated about i in the downstream profiles. If i was greater than 0.50 cm 

from moving average, it was replaced with the average value (Supplementary Figure 

C5). 
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Supplementary Figure 5.  (a) Top and (b) 3D view of bed once noise has been 
removed.  (c) data along center profile.  Red points are removed data 
during this step. 
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Appendix D.  Chapter 3 Supplementary Figures 

 

Supplementary Figure D1.  Nonstationary incremental mean height 𝜷𝑯 values for 

the (a-e) 15 cm conditions, (f-j) 20 cm conditions and (k-l) 25 
conditions.  The black line indicates the 95% confidence intervals 
for the mean values. 
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Supplementary Figure D2.  Nonstationary incremental mean length 𝜷𝑳 values for 

the (a-e) 15 cm conditions, (f-j) 20 cm conditions and (k-l) 25 
conditions.  The black line indicates the 95% confidence intervals 
for the mean values. 
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Appendix E.  Chapter 3 Supplementary Tables 

Supplementary Table E1.  Transport stage and sediment transport fluxes 
measured and corrected for saltation. 

   Helley-Smith Syphon Corrected Fluxes 

Condition u* / ws τ*/τ*c n 
Mean  

(g s-1 m-1) 
n 

Mean  

(g s-1 m-1) 

qbl 

(g s-1 m-1) 

qss 

(g s-1 m-1) 

qs 

(g s-1 m-1) 

15-THLD 0.511 4.392 30 8.43 20 0.325 8.43 0 8.43 

15-BDLD 0.882 13.26 28 20.8 19 3.79 14.81 0 14.81 

15-LMIX 0.948 15.85 28 77.3 19 25.4 21.27 70.8 92.1 

15-UMIX 1.04 19.03 26 196 19 47.5 59.62 161 220 

15-SPSN 1.15 23.51 26 329 20 70.5 113.2 242 355 

20-THLD 0.553 5.494 30 11.1 20 1.01 11.1 0 11.1 

20-BDLD 0.779 10.69 30 32.0 20 4.12 21.93 0 33.6 

20-LMIX 0.935 15.69 26 106 20 24.7 30.9 89.9 121 

20-UMIX 1.10 21.22 28 176 19 60.4 56.3 158 214 

20-SPSN 1.21 26.45 28 315 19 76.2 113 251 364 

25-THLD 0.721 8.992 30 8.94 18 1.61 8.94 0 8.94 

25-BDLD 0.891 13.51 29 32.5 17 10.3 35.48 0 35.48 
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Supplementary Table E2. Results of regression analysis using median values, 50% and 90% bounds and Equation 3.10. 

   Median Relations 50% Upper Bound 50% Lower Bound 90% Upper Bound 90% Lower Bound 

Fig y X a b c a b c a b c a b c a b c 

16a 
𝐻

𝐿
 

𝑢∗

𝑤𝑠

 -0.2543 0.8411 0.0619 -0.2640 0.8393 0.0686 -0.2480 0.8404 0.0543 -0.2291 0.8490 0.0449 -0.3233 0.8572 0.0820 

16b 
𝐻

ℎ
 

𝑢∗

𝑤𝑠

 -0.9111 0.9592 0.3997 -0.8738 0.9415 0.3716 -0.8614 1.000 0.4382 -0.9645 0.9132 0.3352 -0.7808 1.085 0.5066 

16c 
𝐿

ℎ
 

𝑢∗

𝑤𝑠

 28.79 0.7339 5.351 42.11 0.7515 6.027 21.16 0.7336 4.902 12.34 0.7191 4.437 58.99 0.7641 7.229 

16d 
𝐻

𝐿
 

𝜏∗

𝜏∗𝑐

 
-0.0314 

x 10-2 
13.14 0.0614 

-0.0325 

x 10-2 
13.08 0.0681 

-0.0305 

x 10-2 
13.11 0.0537 

-0.0290 

x 10-2 
13.37 0.0448 

-0.0405 

x 10-2 
13.59 0.0818 

16e 
𝐻

ℎ
 

𝜏∗

𝜏∗𝑐

 -0.0014 15.95 0.4119 -0.0013 15.58 0.3820 -.00014 16.80 0.4505 -0.0015 14.94 0.3461 -0.0013 18.40 0.5161 

16f 
𝐿

ℎ
 

𝜏∗

𝜏∗𝑐

 0.0309 9.555 5.646 0.0466 10.24 6.417 0.0227 9.547 5.118 0.0124 8.742 4.575 -0.0004 10.61 0.0818 



169 

Appendix F.  Chapter 3 Supplementary Videos 

Description: 

 These videos show (a) bed maps, (b) 2D center line profiles, (c) height and (d) 

length time series for all individual scans from each run over the 10-hr equilibrium 

period.  

Filename: 

Supplementary Video F1:  Equilibrium 15 cm Threshold (etd10769-15-thldeq.mp4) 

Supplementary Video F2:  Equilibrium 15 cm Bedload (etd10769-15-bdldeq.mp4) 

Supplementary Video F3:  Equilibrium 15 cm Lower Mixed (etd10769-15-lmixeq.mp4) 

Supplementary Video F4:  Equilibrium 15 cm Upper Mixed (etd10769-15-umixeq.mp4) 

Supplementary Video F5:  Equilibrium 15 cm Suspension (etd10769-15-spsneq.mp4) 

Supplementary Video F6:  Equilibrium 20 cm Threshold (etd10769-20-thldeq.mp4) 

Supplementary Video F7:  Equilibrium 20 cm Bedload (etd10769-20-bdldeq.mp4) 

Supplementary Video F8:  Equilibrium 20 cm Lower Mixed (etd10769-20-lmixeq.mp4) 

Supplementary Video F9:  Equilibrium 20 cm Upper Mixed (etd10769-20-umixeq.mp4) 

Supplementary Video F10:  Equilibrium 20 cm Suspension (etd10769-20-spsneq.mp4) 

Supplementary Video F11:  Equilibrium 25 cm Threshold (etd10769-25-thldeq.mp4) 

Supplementary Video F12:  Equilibrium 25 cm Bedload (etd10769-25-bdldeq.mp4) 
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Appendix G.  Chapter 4 Supplementary Figures 

 

Supplementary Figure G1.  Bedform height and length data from Iseya’s (1984) 
(a,b) Run 2, (c,d) Run 4 and (e,f) Run 7. 
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Supplementary Figure G2. Bedform height and length data from Venditti et al.’s 
(2005a) (a,b) Flow A, and  (c,d) Flow C. 
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Supplementary Figure G3. Curve fits to the height (a-e) and length (f-j) time series 
data for the transport stage condition under the initial depth of 20 
cm until equilibrium is achieved.   
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Supplementary Figure G4. Curve fits to the height (a-b) and length (c-d) time 
series data for the transport stage condition under the initial depth 
of 25 cm until equilibrium is achieved.   
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Supplementary Figure G5. Exponential fits (Equation 4.4) for the 15 cm runs. 
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Supplementary Figure G6.  Exponential fits (Equation 4.4) for the 20 cm runs. 
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Supplementary Figure G7. Exponential fits (Equations 4.4) for the 25 cm runs. 
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Supplementary Figure G8.  Exponential fits (Equation  4.4) to the height and length 
time series from Iseya (1984). 

 

 



178 

 

Supplementary Figure G9.  Exponential fits (Equation 4.4) to the height and length 
time series from Venditti et al. (2005a). 
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Appendix H.  Chapter 4 Supplementary Videos 

Description: 

 These videos show (a) bed maps, (b) 2D center line profiles, (c) height and (d) 

length time series for all individual scans from each run.  Scans are presented as the 

bed evolves from a flat bed for 10-hrs or until equilibrium is achieved. Lower case b in 

the figure name and file name are the redundant short scans.   

Filename: 

Supplementary Video H1:  Growth 15 cm Threshold (etd10769-15-thld.mp4) 

Supplementary Video H2:  Growth 15 cm Bedload (etd10769-15-bdld.mp4) 

Supplementary Video H3:  Growth 15 cm Lower Mixed (etd10769-15-lmix.mp4) 

Supplementary Video H3b: Short Growth 15 cm Low Mix (etd10769-15-lmix-short.mp4) 

Supplementary Video H4:  Growth 15 cm Upper Mixed (etd10769-15-umix.mp4) 

Supplementary Video H4b:  Short Growth 15 cm Up Mix (etd10769-15-umix-short.mp4) 

Supplementary Video H5:  Growth 15 cm Suspension (etd10769-15-spsn.mp4) 

Supplementary Video H6:  Growth 20 cm Threshold (etd10769-20-thld.mp4) 

Supplementary Video H7:  Growth 20 cm Bedload (etd10769-20-bdld.mp4) 

Supplementary Video H8:  Growth 20 cm Lower Mixed (etd10769-20-lmix.mp4) 

Supplementary Video H8b:  Short Growth 15 cm Low Mix (etd10769-20-lmix-short.mp4) 

Supplementary Video H9:  Growth 20 cm Upper Mixed (etd10769-20-umix.mp4) 

Supplementary Video H9b:  Short Growth 15 cm Up Mix (etd10769-20-umix-short.mp4) 

Supplementary Video H10:  Growth 20 cm Suspension (etd10769-20-spsn.mp4) 

Supplementary Video H11:  Growth 25 cm Threshold (etd10769-25-thld.mp4) 

Supplementary Video H12:  Growth 25 cm Bedload (etd10769-25-bdld.mp4) 

 


