Goals of Glacial Geomorphology Lectures

1. Answer question: How do glaciers modulate landscape development?
2. To discuss the formation of glaciers and their movement
3. To discuss glacial erosion of bedrock as well as, material deposition, and transport.
4. To review landforms developed by glaciers.

How do glaciers modulate landscape development?

Up to now, we have thought about the landscape as having developed in the absence of external forcing. Periodically, changes in the climate cause the growth and development of glaciers, which cover the landscape, smearing sediment everywhere, disrupting mass movement and fluvial processes, and enhancing bedrock erosion.
All landscapes must obey this fundamental statement about sediment transport!

\[ \frac{\partial z}{\partial t} = U - E - \nabla \cdot q_s \]

**Geomorphic transport laws**

In order to make predictions of landscape change, geomorphologists need to parameterize (E and qs):

*E* includes:
- Sediment production by weathering (P)
- Bedrock erosion by glaciers, wind, water (W)

*q_s* includes erosion and deposition by:
- Mass wasting transport processes
- Fluvial transport processes

Glaciers

Glaciers are masses of ice and granular snow formed by compaction and recrystallization of snow, lying largely or wholly on land and showing evidence of past or present movement – Easterbrook, 1999.

Key concept: Ice must be on land and move, so sea ice and snow fields are not considered glaciers.

There are three basic types of glaciers: alpine (confined), ice fields (partially confined) and continental ice sheets (unconfined).
Types of glaciers

Alpine glaciers are topographically constrained by the cirques in which they originate and the valley walls that confine them. Lower reaches of alpine glaciers are often bordered by moraines.

Icefields occupy highlands and in many places bury existing topography. They are drained by outlet glaciers that transport ice to lower elevations where it melts and deposits moraines.

Ice sheets largely overwhelm topography, ice buries peaks, and the surface slope of the ice sheet controls ice flow direction; ice sheets deposit moraines and other glacial sediments.

Earth’s glacial history

Through most of geologic time, Earth has been free of glaciers, but at intervals of ~150Ma, ice ages occur. They last tens of Ma with some portion of the land surface covered by glaciers or ice sheets.

It is widely held that the changes in climate that bring about an ice age are due to the changes in seasonality and location of solar energy around the Earth that occur due to Milankovitch Cycles, which are variations in earth’s orbit.
Land masses dominate northern hemisphere, so when the northern pole is turned away from the sun, the winters are longer and snow and ice remain on the surface for longer periods of time.
Snow and ice have a much higher albedo than ground and vegetation, thus ice masses tend to reflect more radiation back into space, thus cooling the climate and allowing glaciers to expand.

**Earth’s Current Ice Cover**

**Areal Extent:** 14.5 x 10^6 km^2 : 10% of Earth’s surface

**Volume:** 32.1 x 10^6 km^3 (70% of Earth’s freshwater reserve)

<table>
<thead>
<tr>
<th>Area</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctica</td>
<td>83% 29 x 10^6 km^3 90%</td>
</tr>
<tr>
<td>Greenland</td>
<td>12% 2.95 x 10^6 km^3 9%</td>
</tr>
<tr>
<td>Other ice caps</td>
<td>5% 0.18 x 10^6 km^3 1%</td>
</tr>
</tbody>
</table>

Max. thickness of Antarctic ice sheet is 4300 m, Greenland 2700 m.

**Change in global sea level when the world’s glaciers melt:**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctica</td>
<td>68.0 m</td>
</tr>
<tr>
<td>Greenland</td>
<td>7.4 m</td>
</tr>
<tr>
<td>All Ice</td>
<td>75.9 m</td>
</tr>
</tbody>
</table>

But when will this occur? (IPCC, 2001)
Earth’s ‘recent’ ice cover

During the Quaternary Period (last 1.8Ma), glaciers have covered as much as 30% of the Earth’s surface (44 x 10^6 km²).

**USA:** Ice extended south to Great Lakes, northern Washington

**Europe:**
England, Scandinavia, Netherlands, central Germany, Ukraine, and northern Siberia.

**Ice Free Areas in Canada:**
northern Yukon, and isolated peaks in the Cordillera

---

Glaciers and Geomorphology: Legacy

The current extent of glaciers is not that great, but glaciers have significantly modified the landscape by eroding, depositing, and generally reworking landscape materials.

Since most of Canada was covered by ice sheets, we need to understand the legacy of this glaciation and the dynamics of the ice that modified the landscape.
Glaciers and Geomorphology: Sedimentation

Kaskawulsh River: Sandur formed by deposition of glacial sediments as the glacier retreats up valley

Goals of Glacial Geomorphology Lectures

1. Answer question: How do glaciers modulate landscape development?
2. To discuss the formation of glaciers and their movement
3. To discuss glacial erosion of bedrock as well as, material deposition, and transport.
4. To review landforms developed by glaciers.
Formation of glacial ice

- Glacial ice begins as light fluffy snow with a density of 0.07 to 0.18 g/cm\(^3\).
- As snow accumulates, the weight on snow from above melts basal snow that recrystallizes in a more compact form called firn or neve (density of 0.4 to 0.8 g/cm\(^3\)).
- With further compaction and recrystallization, firn becomes ice with a density of 0.8 to 0.9 g/cm\(^3\).
The dynamics of ice, and ultimately, glaciers ability to modify the landscape and impact landscape development processes is dependent on the properties of the ice and its movement, which is governed by:

1) Ice rheology
2) Type of ice movement
3) Temperature
**Ice rheology: recall from previous lectures**

Definitions: **Stress** is a force applied to a surface area and **strain** is any deformation or change in shape or volume of a material caused by application of stress.

![Diagram showing force and strain](image)

**Physical Characteristics of materials**

Most earth materials exhibit mixed behavior. Yield stress is sometimes referred to as the plastic limit and the breaking stress is sometimes referred to as liquid limit (Atterberg limits).

![Diagram showing stress-strain relationship](image)
Ice movement: Stress and strain

Shear stress in a glacier

At any level in a glacier:

$$\tau = \rho_{\text{ice}} g z \sin \theta$$

- $\tau$ = shear stress
- $\rho_{\text{ice}}$ = density of ice
- $g$ = gravitational acceleration
- $z$ = depth of the ice
- $\sin \theta$ = slope of the substrate below the ice
**Basal Shear Stress**

If $z$ is the full depth of ice:

$$
\tau_b = \rho_{ice} gh \sin \theta
$$

$\tau_b$ = basal shear stress  
$h$ = depth of the ice

Thicker ice or ice on steeper slopes typically exerts greater stress on the bed of the glacier than thinner ice or ice on lesser slopes.

---

**Internal Motion of Ice**

Consider an element within the ice column.

**Start**

$z$

$x$

**After a Short Time**

$dz$

$dx$

**Strain is**

$$
\varepsilon = \frac{1}{2} \frac{dx}{dz}
$$

**Strain Rate is**

$$
\dot{\varepsilon} = \frac{1}{2} \frac{dx}{dz} \frac{1}{dt} = \frac{1}{2} \frac{du}{dz}
$$
Glen’s Law: governs plastic ice deformation

The relation between stress and strain is given by Glen’s Law:

\[ \dot{\varepsilon} = k \tau^n \]

- \( \dot{\varepsilon} \) = strain rate
- \( \tau \) = shear stress
- \( k \) = temperature dependent constant
- \( n \) = is a constant that varies between 1.3 and 4.5 (average ~3)

Small changes in the basal shear stress can produce major changes in deformation (ice becomes softer with greater imposed stress)

Ice Flow

By combining the shear strain rate definition with Glen’s law we can find a relation for the velocity of ice within a glacier.

\[ \frac{du}{dz} = 2k \tau^n \]

Using a little calculus, assuming \( n=3 \), and inserting the equation for the shear stress, we arrive at an equation for the ice velocity:

\[ u(z) = 2k \frac{\rho g \sin \theta}{4} \left( h^4 - z^4 \right) \]
Internal ice velocity is dependent upon slope, ice thickness, and temperature.
Ice movement

Topography exerts a first order control on flow rates.

\[ \bar{u} = \frac{2}{5} k (\rho g \sin \theta)^3 h^4 \]

Compressive Flow

Extending Flow

Compressive flow thickens ice and extending flow thins ice.

Calculate in excel to see variation!!!

Ice movement

Ice movement causes tensional cracks termed crevasses that reveal the types of movement occurring in the ice.

Longitudinal (lateral extension)

Transverse (downvalley extension)

Chevron (friction along valley)

Radial (spreading)

Bird's Eye View
Internal Thermal Regime

**Warm-based** glaciers are at approximately the pressure melting point throughout their depth and contain water.

**Cold-based** glaciers are well below the pressure melting point at depth.

The temperature at which water freezes is 0 °C at atmospheric pressure and declines by ~1 °C for every 14 MPa (megapascal) of pressure.

Under 20 MPa of pressure, ice at the base of the Antarctic ice sheet freezes at -1.6 °C.
Role temperature plays in glacial movement

**Warm glaciers** may slip at their boundary because of basal water.

\[
\bar{u} = \frac{2}{5} k (\rho g \sin \theta)^3 h^4 + u_b
\]

**Cold glaciers** freeze to the boundary, causing internal deformation.

\[
\bar{u} = \frac{2}{5} k (\rho g \sin \theta)^3 h^4
\]

Animations courtesy: B. Menounos

Glacier Mass Balance
Mass balance Classification: Anatomy of a glacier

Although it is convenient to break glaciers into two groups (warm and cold), most glaciers exhibit different behaviors based on different zones.

Accumulation Area  Ablation Area

ELA: Equilibrium line altitudes

Accumulation includes all the processes responsible for adding snow to the glacier

Ablation includes all the processes responsible for snow or ice loss from the glacier

• Locally, melting by evaporation, sublimation, calving or wind erosion may be important.

• However, melting is largely facilitated by low albedo, dark rock material on the surface of the glacier
Zonation of Laurentide ice sheet

Menzies (2002)

Mass balance of a glacier

A glacier’s mass balance is simply the difference between the annual accumulation and ablation volumes.

If the mass balance is positive, glaciers are growing

If mass balance is negative, glaciers are disappearing

Most of the world’s glaciers currently have a negative mass balance.
B.C. glaciers 38 per cent thicker than expected, surprising study finds

Some glaciers might last a few years or even a decade longer, but that still won’t save them from climate change

Randy Shore
Nov 17, 2020 • Last Updated 2 days ago • 3 minute read
Goals of Glacial Geomorphology Lectures

1. Answer question: How do glaciers modulate landscape development?
2. To discuss the formation of glaciers and their movement
3. To discuss glacial erosion of bedrock as well as, material deposition, and transport.
4. To review landforms developed by glaciers.

Glacial Erosion Processes
Glacial erosion processes

Three principle processes are responsible for glacial erosion:

1. **Abrasion**: bedrock scour by rock debris lodged in the basal ice
2. **Plucking (quarrying)**: where ice freezes to loose fractured bedrock and extracts blocks as it moves.
3. **Sub-glacial fluvial erosion**: water flow at the base of the glacier is capable of wearing bedrock if it carries sediment.

Recent work by Beaud, Flowers and Venditti (eSurf, 2015) suggests this source of erosion is negligible at the glacier scale but significant in channels.

---

**Glacial erosion processes**

### Mohs scale

<table>
<thead>
<tr>
<th>Hardness</th>
<th>Mineral</th>
<th>Absolute Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Talc (Mg₃Si₄O₁₀(OH)₂)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Gypsum (CaSO₄·2H₂O)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Calcite (CaCO₃)</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Fluorite (CaF₂)</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Apatite (Ca₅(PO₄)₃(OH-,Cl-,F-))</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>Orthoclase Feldspar (KAISi₃O₈)</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Quartz (SiO₂)</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Topaz (Al₂SiO₄(OH-,F-)₂)</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>Corundum (Al₂O₃)</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>Diamond (C)</td>
<td>1500</td>
</tr>
</tbody>
</table>

Ice is ~1.5 on Mohs hardness scale. As such it cannot erode bedrock on its own.

Erosion requires one of the following processes:

1. **Abrasion**
2. **Plucking (quarrying)**
3. **Sub-glacial water flow** (carrying sediment)
Abrasion is controlled by 3 factors:

i) basal contact pressure of tool

ii) rate of basal sliding

iii) concentration of tools in ice

Striations

Photo by Karen Kleinspehn

Photo by Ann Ottmer 2002
Polished bedrock

Yosemite NP

Lassen NP, Northern California.

Concentric chatter marks in granodiorite, Yuba Canyon

Allan James

Intro to Geomorphology

**Grooves**

Glacial grooves caused by the Wisconsin glaciation at Kelleys Island, Ohio.

Photo by John P. Lockwood

http://nsidc.org/glaciers/gallery/grooves.html

**Linear striations, chatter marks, polish, grooves in background**

Glacial grooves in rock panels, Churchill, Manitoba, Canada.
Plucking by Regelation

**Regelation** occurs when ice flows over rock obstacles on the glacier bed. Pressure-melting of ice up-glacier of an obstacle releases water, which then travels down ice to areas of lower pressure and consequently refreezes. This refreezing may incorporate debris and enrich the remaining solution in elements such as calcium, which precipitates and forms calcium carbonate coatings on subglacial rock surfaces. Regelation facilitates the movement of warm-based glacial ice over rough bedrock beds.

Roche Moutonnee formed by regelation

Rock plucked from lee of bedrock knob by refreezing ice
Goals of Glacial Geomorphology Lectures

1. Answer question: How do glaciers modulate landscape development?
2. To discuss the formation of glaciers and their movement
3. To discuss glacial erosion of bedrock as well as, material deposition, and transport.
4. To review landforms developed by glaciers.
Large scale characteristics
landforms of glacial erosion

Cirque: an amphitheater-shaped bedrock feature created as glaciers scour back into the mountain.

Arete: a steep-sided, sharp-edged bedrock ridge formed by two glaciers eroding away on opposite sides of the ridge.

Col: a low spot or pass along a cirque or an arete.

Horn: a pyramid-shaped mountain peak created by several glaciers eroding away at different sides of the same mountain.

Hanging Valley: a valley eroded by a small tributary glacier, such that the elevation of the valley floor is higher than the elevation of the valley floor that the hanging valley joins.

U-Shaped Valley: a valley with a cross-section that is U shaped.
Cirques, aretes, horns

Cirque is an amphitheatre-like valley (or valley head) of glacial origin, formed by glacial erosion at the head of the glacier.

Iceberg Cirque, Glacier National Park, Montana

http://www.nps.gov/glac/gallery/parkpics.htm
Cirques

Cirque with filling lake, Juneau Icefield

Cirque with tarn lake, Glacial National Park

Richard Kesel
**Aretes:** Ridge formed between the headwalls of two cirques

**Horns:** Peaks formed between the headwalls of three or more cirques
At present, there is no geomorphic transport law that has been tested against erosion rate data.

Hallet (1989; Journal of Glaciology) has suggested that erosion rates are proportional to basal ice velocity ($U_b$) such that:

$$W_{ice} = cU_b$$

Even without erosion data, some numerical modeling has demonstrated that this erosion rule can be used to reproduce the main characteristics of glaciated valleys.
U-shaped and hanging valleys

U-Shaped valley, Tomebamba River, Ecuador

Carol Harden 2002
Hanging valley along along Kootenay river, B.C
Harbor (1992; GSA Bulletin) explored the problem of glacial trough formation using a numerical model and assuming that:

\[ W_{\text{ice}} = cU_b \]

\[ u(z) = 2k \left( \rho g \sin \theta \right)^{3/4} \left( h^4 - z^4 \right) \]

Harbor's analysis suggests that initially, ice velocity, and hence erosion rates, increase towards the center of the valley where ice depth is greatest.

But, a zone of lower flow exists at the valley axis. This promotes erosion of the valley walls.

As this erosion continues, velocities become more uniform across the valley and the glacier incises.
Depositional glacial landforms

Glacial deposition processes

Glacial deposits are derived from:
1) material eroded by plucking of bedrock at the base and sides of the glacier
2) abrasion of bedrock
3) pre-glacially weathered soil and sediment
4) concurrent slope processes

The material has a wide variety of possible mineral and lithological characteristics.
Depositional Landforms: Moraines

There are 4 primary types of moraines:

1) **Medial**: formed where two valley glaciers join

2) **Lateral**: formed at the edges of a valley glacier

3) **End**: formed at the head of a glacier

4) **Ground**: deposited from the base of glaciers in a non-uniform pattern
End moraine formation

End moraines are formed at the nose of a glacier as it advances. Sediments are piled at the nose and left behind when the glacial ice ceases to move.

Terminal moraine: records the final ice advance

End Moraine deposits
Moraines of the Midwestern US formed by the Laurentide ice sheet movement

Ground moraine

Otherwise undistinguished hummocky terrain formed beneath an ice sheet near Gainesville NY.
Dead ice (ground) moraine with kames and kettles

Kames are simply deposits of till formed when ice is melting. Kettles are depressions in the landscape formed when ice melted.

Drumlins: asymmetrical teardrop shaped hills. Heights vary from 15 to 50 meters and they can reach a kilometer in length. The steep side of the hill looks toward the direction from which the ice advanced (stoss), while the longer slope follows the ice’s direction of movement (lee).
Depositional Landforms: Eskers

Eskers: Channel deposits of former subglacial, englacial, or supraglacial channels; slightly sinuous ridges that vary in height along their length.
Can we distinguish between valleys carved by fluvial and glacial erosion?
Can we distinguish between valleys carved by glaciers and rivers?

Obviously, glacial deposits indicate the extent and magnitude of valley modification that has occurred by glacial processes. But, in terms of efficacy of these processes, which has a greater impact on landscape form?

Valley formation by fluvial and glacial erosion

David R. Montgomery
Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA

Valleys excavated by glaciers are 2x to 4x larger (in cross-section and volume) and have ~500m greater relief!

Figure 1. Shaded relief map of west slope of Olympic Mountains, Washington, showing locations of basins studied, cross sections (white bars), and moraines (black areas) as portrayed on 1:100,000 scale geologic maps (Washington Division of Geology and Earth Resources Staff, 1991).
What is the long term effect of glaciers on landscapes?

The glacial hangover

\[ \frac{\partial z}{\partial t} = U - E - \nabla \cdot q_s \]

All landscapes must obey this fundamental statement about sediment transport!

- In a glaciated landscape, the various depositional processes we discussed determine the form of the mass continuity equation that is applicable.
- There are large volumes of glacial sediment in storage, so the glaciated landscape is ‘transport limited’.
- This causes a rather serious impediment to understanding rates of geomorphic processes.
- So we need to understand how this storage conditions the landscape.

Photo courtesy of Bill Dietrich
In glaciated basins, there is a paraglacial effect on sediment supply to river channels.

Church and Ryder (1972) proposed that there is a significant lag between when glaciers leave a drainage basin and when the sediment yield returns to the rate dictated by non-glacial landscape evolution processes.

Paraglacial sediment sources

Paraglacial sediment facies:
- Aeolian sediments
- Alluvial (floodplain) deposits
- Alluvial fan deposits
- Debris cone deposits

Glacial/proglacial sediment facies:
- Glaciufluvial outwash facies
- Glaciolausirine deposits
- Till
Sediment yield is an order of magnitude higher than in the medium and larger basins.

The upland areas of British Columbia have responded to the retreat of the glaciers, but the sediment is still stored in the main stem rivers. It has not been delivered to the sea.
The primary contemporary effect of the glaciers on landscape development is that large volumes of glacial sediment are now stored in terraces, fans, and river beds/floodplains. Thus, the rate of landscape denudation is out of equilibrium with the non-glacial processes.

Read this paper as a review of the class, and because it will be on your final exam.