Lecture 14

Tuesday, July 4, 2017 8:38 PM

Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e)
and the residual capacities c;(e) are integers.

Theorem. The algorithm terminates in at most val (f*) < »n C iterations.
Pf. Each augmentation increases the value by at least 1. =

Corollary. The running time of Ford-Fulkerson is O(mnC).
Corollary. If C=1, the running time of Ford-Fulkerson is O(mn).

Integrality theorem. Then exists a max-flow £ for which every

flow value f*(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

Max-flow and min-cut applications

Max-flow and min-cut are widely applicable problem-solving model.
* Data mining.
* Open-pit mining.
* Bipartite matching.
* Network reliability.
+ Baseball elimination.
* Image segmentation.
* Network connectivity.

. Distributed com puting. liver and hepatic vascularization segmentation

» Security of statistical data.

» Egalitarian stable matching.

* Network intrusion detection.

* Multi-camera scene reconstruction.

» Sensor placement for homeland security.
* Many, many, more.

slide_14 Page 1

Matching

Def. Given an undirected graph G = (V. E) a subset of edges MCE is
a matching if each node appears in at most one edge in M.

Max matching. Given a graph, find a max cardinality matching.

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G =(L UR, E), find a max
cardinality matching.

matching: 1-2',3-1', 4-5'

slide_14 Page 2

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G =(L U R, E), find a max
cardinality matching.

matching: 1-1', 2-2', 3-4', 4-5'

Bipartite matching: max flow formulation

* Create digraph G'=(LURU {s,t}, E").

* Direct all edges from L to R, and assign infinite (or unit) capacity.
* Add source s, and unit capacity edges from s to each node in L.

* Add sink ¢, and unit capacity edges from each node in R to .

Gl

slide_14 Page 3

Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'.

Pf. =
* Given a max matching M of cardinality «.

* Consider flow f that sends 1 unit along each of k paths.
* fis a flow, and has value k. =

Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'.

Pf. =
* Let fbe a max flow in G' of value .
* Integrality theorem = k is integral and can assume fis 0-1.
* Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M

- IMl=k: consider cut (LUs,RUYf) =

slide_14 Page 4

Perfect matching in a bipartite graph

Def. Given a graph G =(V,E) a subset of edges MC E is a perfect matching
if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?
Structure of bipartite graphs with perfect matchings.
* Clearly we must have ILI=IRI.

» What other conditions are necessary?
» What conditions are sufficient?

Perfect matching in a bipartite graph

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G =(L U R, E) has a perfect matching,
then IN(S)| = |SI for all subsets SCL.
Pf. Each node in S has to be matched to a different node in N(S). =

® .'
$={2,4,5} o
N(ES) = {25}
©)

N

no perfect matching 12

slide_14 Page 5

Hall's theorem

Theorem. Let G=(LUR,E) be a bipartite graph with ILI=IRI.
G has a perfect matching iff IN(S)I = ISI for all subsets SCL.

Pf. = This was the previous observation.

®

$={2,4,5}
N(S) ={2,5"}

no perfect matching 13

Proof of Hall's theorem

Pf. «—= Suppose G does not have a perfect matching.
* Formulate as a max flow problem and let (A, B) be min cut in G'.
* By max-flow min-cut theorem, cap(A, B) <|LI.
* Define Ly=LNA, Lgy=LNB, Ry=RNA.
* cap(A,B) = ILgl+IR4I.
* Since min cut can't use « edges: N(L,) € R,.
* IN(Ly)! < IRyl = cap(A,B) — | Lgl < ILI — |Lgl = | L4l.
* Choose S=L,. »

@ La ={2,4,5}
Le = {1, 3}
Ra = {2', 5
® N(La) = {2, 5

slide_14 Page 6

Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching
problem in O(m n) time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be
solved in O(m n'2) time.

S1AM 1. Compur.
Vaol. 2, No. 4, December 1973

AN #%* ALGORITHM FOR MAXIMUM MATCHINGS
IN BIPARTITE GRAPHS*

JOHN E. HOPCROFTY anp RICHARD M. KARPL

Abstract. The present paper shows how to construct a maximum matching in a bipartite graph
with m vertices and m edges in a number of computation steps proportional to (m + nh/n.

Key words. algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs,
matching

Project selection (maximum weight closure problem)

Projects with prerequisites. S b polve
/ or negative

* Set of possible projects P: project v has associated revenue p..

* Set of prerequisites E: if (v, w) € E, cannot do project v unless
also do project w.

* A subset of projects A C P is feasible if the prerequisite of every project
in A also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E,
choose a feasible subset of projects to maximize revenue.

MANAGEMENT SCIENCE
Vel 12, N, 11, July, 1976
Prined in U.5A

MAXIMAL CLOSURE OF A GRAPH AND
APPLICATIONS TO COMBINATORIAL
PROBLEMS*}

JEAN-CLAUDE PICARD
Ecole Polyrechnigue, Monreal

This paper generalizes the selection problem discussed by 1. M. Rhys [12],). D. Murchland
[9], M. L. Balinski [1} and P. Hansen [4]. Given a directed graph G, a closure of G is defined
a3 8 subset of nodes such that if a node belongs to the closure all it successors also belong 1o
the set. If a real number is associated to each node of G a maximal closure is defined as a
closure of maximal value

slide_14 Page 7

56

Project selection: prerequisite graph

Prerequisite graph. Add edge (v,w) if can't do v without also doing w.

{v,w, x}is feasible { v, x } is infeasible

57

Project selection: min-cut formulation

Min-cut formulation.
* Assign capacity « to all prerequisite edge.
* Add edge (s, v) with capacity p, if p,>0.
* Add edge (v, n) with capacity -p,, if p, <0.
* For notational convenience, define p, = p, = 0.

58

slide_14 Page 8

Project selection: min-cut formulation

Claim. (A,B) is min cut iff A-{s} is optimal set of projects.
* Infinite capacity edges ensure A— {s} is feasible.

+ Max revenue because: cap(A, B) = >p, + X(=p,)
vEB:p, >0 vEA:p, <0
= 2101 - EPL
vip, =0 VEA
S —

constant

59

Open-pit mining

Open-pit mining. (studied since early 1960s)
» Blocks of earth are extracted from surface to retrieve ore.

* Each block v has net value p, = value of ore — processing cost.
* Can't remove block v before w or x.

slide_14 Page 9

Bad case for Ford-Fulkerson

Q. Is generic Ford-Fulkerson algorithm poly-time in input size? O(MV) c)
m, n, and log C
A. No. If max capacity is C, then algorithm can take > C iterations.
* sV w—

each augmenting path

* s—eEw—y—t
«—— sends only 1 unit of flow

* Syt (# augmenting paths = 2C)

* S—ew—y—>t ‘

¢ g p——>f v C :;§ rA

* s—w—v—t T
1 C Q
C ww/

w

\MQQ\ ”T\ l

38

slide_14 Page 10

Choosing good augmenting paths

Use care when selecting augmenting paths.
» Some choices lead to exponential algorithms.
* Clever choices lead to polynomial algorithms.
« If capacities are irrational, algorithm not guaranteed to terminate!

Goal. Choose augmenting paths so that:
» Can find augmenting paths efficiently.
* Few iterations.

39

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity:
it increases flow by max possible amount in given iteration.
« Don't worry about finding exact highest bottleneck path.
* Maintain scaling parameter A.
* Let G4(A) be the subgraph of the residual graph consisting only of
arcs with capacity = A.

N/ \®/

Gr Gr(A), A =100 -

slide_14 Page 11

Capacity-scaling algorithm

CAPACITY-SCALING(G, s, t, c)

FOREACH edge e EE : f(e) «— 0.

A « largest power of 2 < C.

WHILE (A = 1)
Gr(A) «— A-residual graph.

WHILE (there exists an augmenting path P in Gy(A)) < O() ‘_}e(d"ov\s
f <+ AUGMENT (f, c, P). - mj 1

Update Gr(A).
Ae—A/2.

RETURN f.

G\ﬂ,: O(M ,‘Q) om W\evr[‘q'l'ions.
s f\m‘t'\woﬁg O (wz-d%ze), =

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Theorem. If capacity-scaling algorithm terminates, then fis a max-flow.
Pf.

* By integrality invariant, when A=1 = G/(A) =G;.
* Upon termination of A=1 phase, there are no augmenting paths. =

43

slide_14 Page 12

\

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repea

1 + [log, C

es.

Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,
the value of the max-flow = val(f) + m A. <— proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

Pf.

—

—

A

* Let fbe the flow at the end of the previous scaling phase.

* LEMMA 2 = Eaf(f*) < val(f)+2mA.

FAN

* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time.
Pf. Follows from LEMMA 1 and LEMMA 3. =

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let fbe the flow at the end of a A-scaling phase. Then,

the value of the max-flow < val(f) + m A.

Pf.

* We show there exists a cut (4, B) such that cap(A, B) < val(f) + m A.
* Choose A to be the set of nodes reachable from s in G;(A).

» By definition of cut A, s € A.
» By definition of flow £, r & A.

val(f)

2 fley- 3 flo
e out of A einto A

3 (cle)-A) - 3 A
eout of A eintoA

D=) Ale
e out of A e out of A einto A

cap(A,B) - mA .

slide_14 Page 13

edgee=(v,w)withveB weA
must have fle) = A

original network

A

A

/

edgee= (v, w) withve A, weB

must have f(e) = c(e) - A

44

45

Shortest augmenting path

Q.
A.

Which augmenting-path?
The one with thelfewest number of edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G, s, 1, ¢)

FOREACH e E E : f(e) < 0.
Gy « residual graph.
WHILE (there exists an augmenting path in Gy)
P «— BREADTH-FIRST-SEARCH (G, s, 1).
f < AUGMENT (f, c, P).
Update Gr.

RETURN f.

Shortest augmenting path: overview of analysis

47

L1. Throughout the algorithm, length of the shortest path never decreases.

L2.

augmenting path strictly increases.

After at most m shortest path augmentations, the length of the shortest

Theorem. The shortest augmenting path algorithm runs in O(m?n) time.
Pf.

* O(m+n) time to find shortest augmenting path via BFS.
* O(m) augmentations for paths of length k.
 If there is an augmenting path, there is a simple one.
= 1l =k <n
= (O(mn) augmentations. =

slide_14 Page 14

we w\w
skip e

i)

48

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G =(V, E) and two nodes s and 1,
find the max number of edge-disjoint s~ paths.

® ©) ® ®

digraph G

21

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G =(V, E) and two nodes s and ¢,
find the max number of edge-disjoint s~ paths.

Ex. Communication networks.

digraph G
2 edge-disjoint paths 4

22

slide_14 Page 15

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s~t paths equals value of max flow.
P =

* Suppose there are k edge-disjoint s~t paths Py, ..., P;.

* Set f(e) = 1 if e participates in some path P;; else set f(e) =0.

* Since paths are edge-disjoint, fis a flow of value k. =

23

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s~t paths equals value of max flow.
P i

* Suppose max flow value is «. O
* Integrality theore there exists 0-1 flow f of va@

* Consider edge (s,u) with fis,u)=1.
- by conservation, there exists an edge (u,v) with flu,v) =1
- continue until reach ¢, always choosing a new edge

* Produces k (not necessarily simple) edge-disjoint paths. =

can eliminate cycles

to get simple paths
in O(mn) time if desired

(flow decomposition)

24

slide_14 Page 16

Network connectivity

Def. A set of edges F C E disconnects ¢ from s if every s~ path uses at least
one edge in F.

Network connectivity. Given a digraph G =(V, E) and two nodes s and ¢,
find min number of edges whose removal disconnects ¢ from s.

25

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~ paths
is equal to the min number of edges whose removal disconnects ¢ from s.

P =
* Suppose the removal of F C E disconnects ¢ from s, and | Fl =k.
* Every s~ path uses at least one edge in F.
* Hence, the number of edge-disjoint paths is < k. =

slide_14 Page 17

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~ paths
equals the min number of edges whose removal disconnects ¢ from s.

P
* Suppose max number of edge-disjoint paths is «.
* Then value of max flow = %.

* Max-flow min-cut theorem = there exists a cut (4, B) of capacity .
* Let F be set of edges going from A to B.
|Fl=k and disconnects r from s. =

slide_14 Page 18

slide_14 Page 19

