Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e) and the residual capacities $c_f(e)$ are integers.

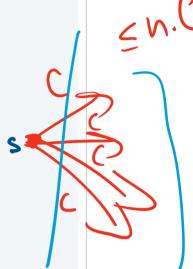
Theorem. The algorithm terminates in at most $val(f^*) \le nC$ iterations.

Pf. Each augmentation increases the value by at least 1. •

Corollary. The running time of Ford-Fulkerson is O(mnC). Corollary. If C = 1, the running time of Ford-Fulkerson is O(mn).

Integrality theorem. Then exists a max-flow f^* for which every flow value $f^*(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. •



37

Max-flow and min-cut applications

Max-flow and min-cut are widely applicable problem-solving model.

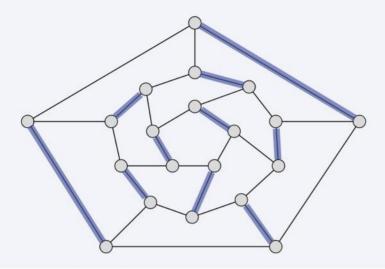
- · Data mining.
- · Open-pit mining.
- · Bipartite matching.
- · Network reliability.
- · Baseball elimination.
- · Image segmentation.
- · Network connectivity.
- Distributed computing.
- Security of statistical data.
- · Egalitarian stable matching.
- · Network intrusion detection.
- · Multi-camera scene reconstruction.
- · Sensor placement for homeland security.
- · Many, many, more.

liver and hepatic vascularization segmentation

Matching

Def. Given an undirected graph G = (V, E) a subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Max matching. Given a graph, find a max cardinality matching.

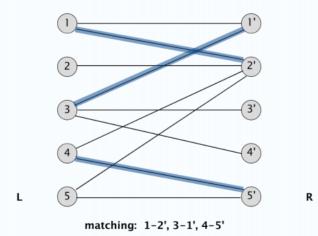


5

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L to one in R.

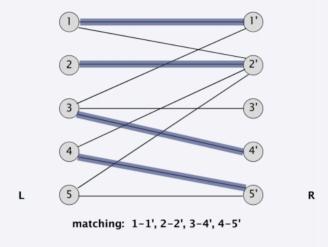
Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.



Bipartite matching

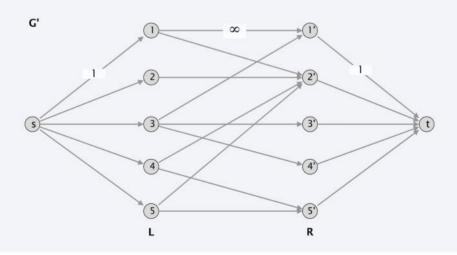
Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.



Bipartite matching: max flow formulation

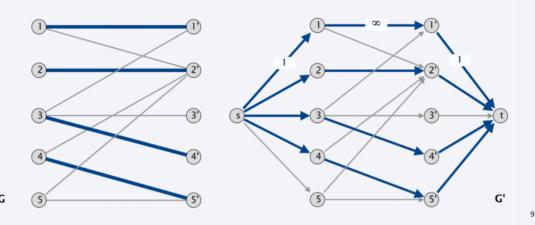
- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.



Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'. Pf. \leq

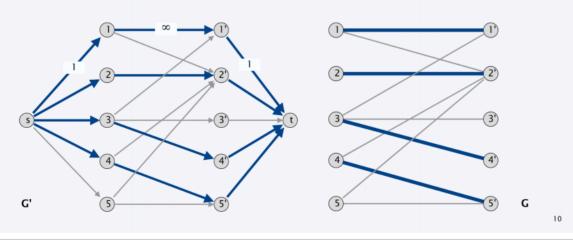
- Given a max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has value k. •



Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'. Pf. \geq

- Let *f* be a max flow in *G*' of value *k*.
- Integrality theorem $\Rightarrow k$ is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider cut $(L \cup s, R \cup t)$ ■



slide_14 Page 4

Perfect matching in a bipartite graph

Def. Given a graph G = (V, E) a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|.
- · What other conditions are necessary?
- · What conditions are sufficient?

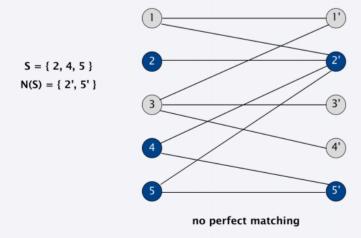
11

Perfect matching in a bipartite graph

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

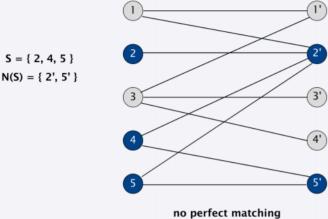
Pf. Each node in S has to be matched to a different node in N(S).



Hall's theorem

Theorem. Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. *G* has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This was the previous observation.

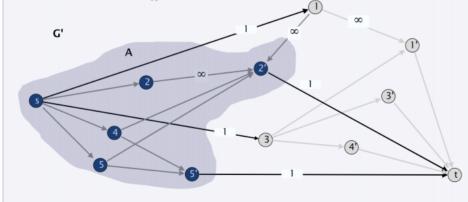


13

Proof of Hall's theorem

Pf. \leftarrow Suppose G does not have a perfect matching.

- Formulate as a max flow problem and let (A, B) be min cut in G'.
- By max-flow min-cut theorem, cap(A, B) < |L|.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
- $cap(A,B) = |L_B| + |R_A|$.
- Since min cut can't use ∞ edges: $N(L_A) \subseteq R_A$.
- $\bullet \ |N(L_A)| \leq |R_A| = cap(A,B) |L_B| \ < \ |L| |L_B| = |L_A|.$
- Choose $S = L_A$. •



 $= \{2, 4, 5\}$

 $= \{1, 3\}$

 $= \{2', 5'\}$

 $N(L_A) = \{2', 5'\}$

Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching problem in O(m n) time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be solved in $O(m n^{1/2})$ time.

SIAM J. COMPUT. Vol. 2, No. 4, December 1973

AN $n^{5/2}$ ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS*

JOHN E. HOPCROFT† AND RICHARD M. KARP‡

Abstract. The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to $(m + n) \sqrt{n}$.

Key words. algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs, matching

15

Project selection (maximum weight closure problem)

Projects with prerequisites.

can be positive

or negative

- Set of possible projects P: project v has associated revenue p_v .
- Set of prerequisites E: if $(v, w) \in E$, cannot do project v unless also do project w.
- A subset of projects $A \subseteq P$ is feasible if the prerequisite of every project in A also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E, choose a feasible subset of projects to maximize revenue.

MANAGEMENT SCIENCE Vol. 22, No. 11, July, 1976

MAXIMAL CLOSURE OF A GRAPH AND APPLICATIONS TO COMBINATORIAL PROBLEMS*†

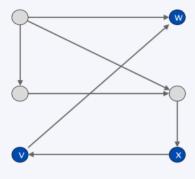
JEAN-CLAUDE PICARD

Ecole Polytechnique, Montreal

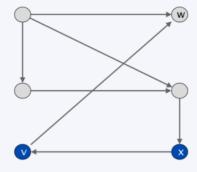
This paper generalizes the selection problem discussed by J. M. Rhys [12], J. D. Murchland [9], M. L. Balinski [1] and P. Hansen [4], Given a directed graph G, a closure of G is defined as a subset of nodes such that if a node belongs to the closure all its successors also belong to the set. If a real number is associated to each node of G a maximal closure is defined as a closure of maximal value.

Project selection: prerequisite graph

Prerequisite graph. Add edge (v, w) if can't do v without also doing w.



{ v, w, x } is feasible



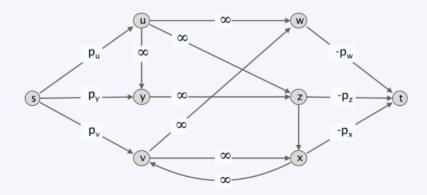
{ v, x } is infeasible

57

Project selection: min-cut formulation

Min-cut formulation.

- Assign capacity ∞ to all prerequisite edge.
- Add edge (s, v) with capacity p_v if $p_v > 0$.
- Add edge (v, t) with capacity $-p_v$ if $p_v < 0$.
- For notational convenience, define $p_s = p_t = 0$.

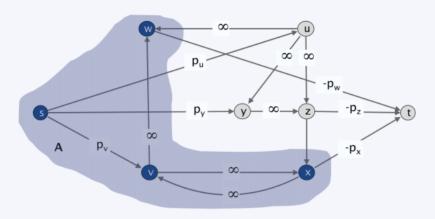


Project selection: min-cut formulation

Claim. (A, B) is min cut iff $A - \{s\}$ is optimal set of projects.

- Infinite capacity edges ensure $A \{s\}$ is feasible.
- Max revenue because: $cap(A, B) = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$

$$= \underbrace{\sum_{v: p_v > 0} p_v}_{\text{constant}} - \underbrace{\sum_{v \in A} p_v}_{v}$$

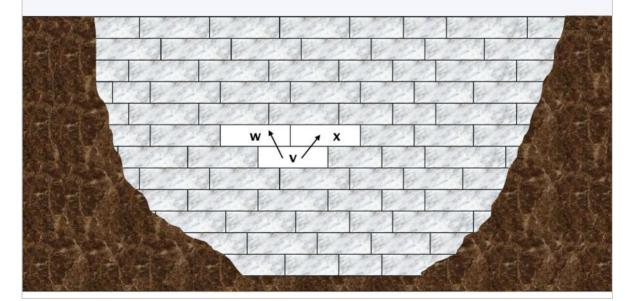


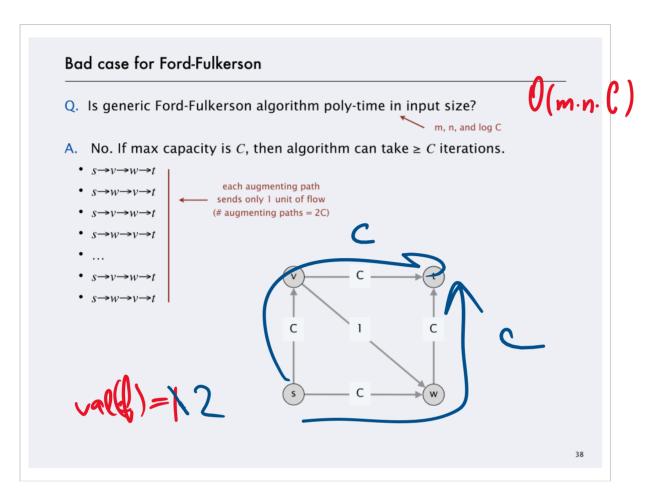
59

Open-pit mining

Open-pit mining. (studied since early 1960s)

- · Blocks of earth are extracted from surface to retrieve ore.
- Each block v has net value p_v = value of ore processing cost.
- Can't remove block v before w or x.





Choosing good augmenting paths

Use care when selecting augmenting paths.

- · Some choices lead to exponential algorithms.
- · Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal. Choose augmenting paths so that:

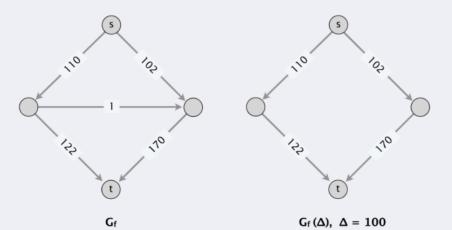
- · Can find augmenting paths efficiently.
- · Few iterations.

39

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity: it increases flow by max possible amount in given iteration.

- · Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting only of arcs with capacity $\geq \Delta$.



slide 14 Page 11

Capacity-scaling algorithm

CAPACITY-SCALING(G, s, t, c) C = max edge capacity in G FOREACH edge $e \in E : f(e) \leftarrow 0$. $\Delta \leftarrow$ largest power of $2 \leq C$. WHILE $(\Delta \geq 1)$ $G_f(\Delta) \leftarrow \Delta$ -residual graph. <0(m) iterations

m = # edges in G WHILE (there exists an augmenting path P in $G_f(\Delta)$) $f \leftarrow AUGMENT(f, c, P)$. Update $G_f(\Delta)$. $\Delta \leftarrow \Delta / 2$. RETURN f. Overall: O(m. log_C) augmentations.

Runtime: O(m². log_C).

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Theorem. If capacity-scaling algorithm terminates, then f is a max-flow. Pf.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths. •

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times. Pf. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the value of the max-flow $\leq val(f) + m \Delta$. \longleftarrow proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase. Pf.

- Let f be the flow at the end of the previous scaling phase.
- LEMMA 2 $\Rightarrow val(f^*) \leq val(f) + 2 m \Delta$.
- Each augmentation in a Δ -phase increases val(f) by at least Δ . •

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. Pf. Follows from LEMMA 1 and LEMMA 3. •

44

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the value of the max-flow $\leq val(f) + m \Delta$.

- We show there exists a cut (A, B) such that $cap(A, B) \leq val(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of cut $A, s \in A$.
- By definition of flow $f, t \notin A$.

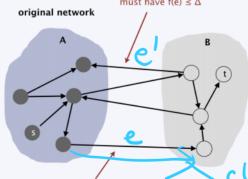
$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$

$$\geq cap(A,B) - m\Delta$$

edge e = (v, w) with $v \in B$, $w \in A$ must have $f(e) \le \Delta$



edge e = (v, w) with $v \in A$, $w \in B$ must have $f(e) \ge c(e) - \Delta$

Shortest augmenting path

- Q. Which augmenting path?
- A. The one with the fewest number of edges.

can find via BFS


```
SHORTEST-AUGMENTING-PATH(G, s, t, c)

FOREACH e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual graph.

WHILE (there exists an augmenting path in G_f)

P \leftarrow BREADTH-FIRST-SEARCH (G_f, s, t).

f \leftarrow AUGMENT (f, c, P).

Update G_f.

RETURN f.
```

47

Shortest augmenting path: overview of analysis

- L1. Throughout the algorithm, length of the shortest path never decreases.
- L2. After at most m shortest path augmentations, the length of the shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in $O(m^2 n)$ time. Pf.

- O(m+n) time to find shortest augmenting path via BFS.
- O(m) augmentations for paths of length k.
- If there is an augmenting path, there is a simple one.

 $\Rightarrow 1 \le k < n$

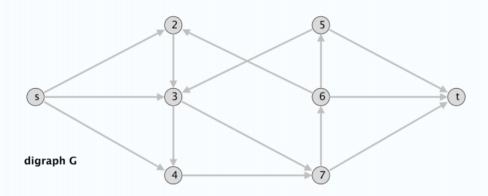
 $\Rightarrow O(m n)$ augmentations.

We will skip the proof.

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightarrow t$ paths.



21

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightarrow t$ paths.

Ex. Communication networks.

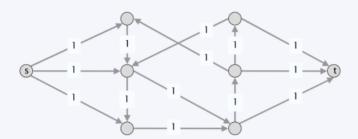


Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. \leq

- Suppose there are k edge-disjoint $s \rightarrow t$ paths $P_1, ..., P_k$.
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, *f* is a flow of value *k*. •



23

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. \geq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

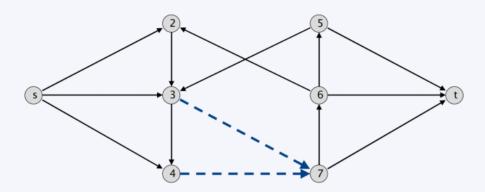
value = 2

can eliminate cycles to get simple paths in O(mn) time if desired (flow decomposition)

Network connectivity

Def. A set of edges $F \subseteq E$ disconnects t from s if every $s \rightarrow t$ path uses at least one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.



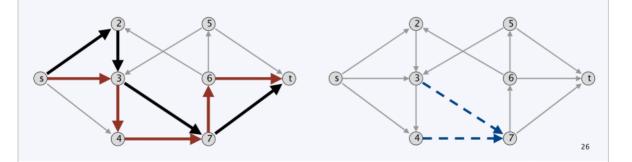
25

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightarrow t$ paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every $s \rightarrow t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$. •



Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then value of max flow = k.
 - Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
 - Let F be set of edges going from A to B.
 - |F| = k and disconnects t from s. •

