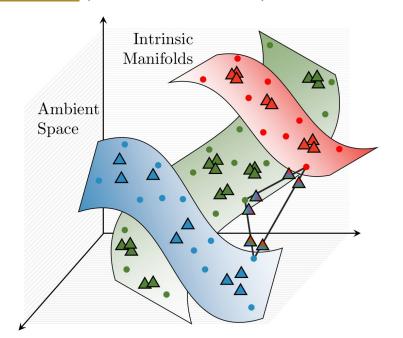
ζ-mixup: Richer, More Realistic Mixing of Multiple Images

Kumar Abhishek[†], Colin J. Brown[‡], Ghassan Hamarneh[†]



ζ-mixup: Richer, More Realistic Mixing of Multiple Images

Kumar Abhishek[†], Colin J. Brown[‡], Ghassan Hamarneh[†]

[†] Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada [‡] Hinge Health, Canada

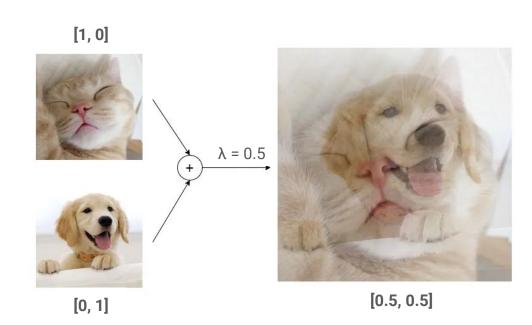
mixup Data Augmentation

Generate **convex combinations** of training samples and **linear interpolations** of labels.

$$\hat{x} = \lambda x_1 + (1 - \lambda)x_2$$

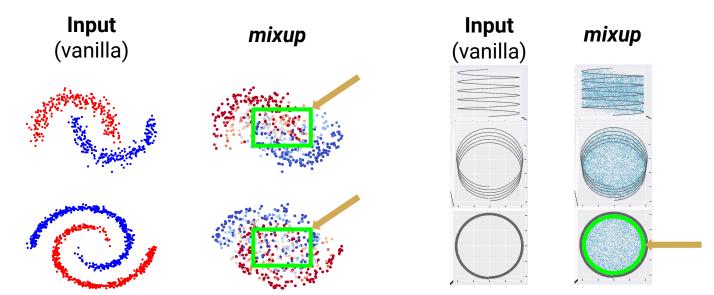
$$\hat{y} = \lambda y_1 + (1 - \lambda)y_2$$

Assumption: a model should <u>behave linearly</u> <u>between any two training samples</u>, even if the distance between them is large.

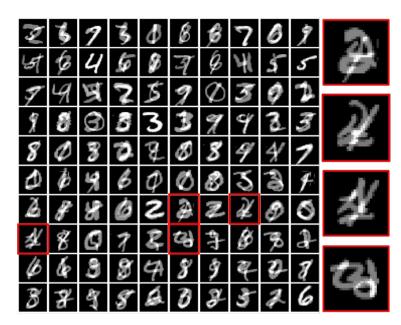


Problems with mixup

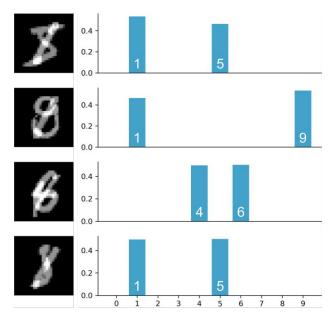
- Can sample data off the manifold, causing an inflated intrinsic dimensionality.
- Can generate samples with incorrect labels.



Problems with mixup

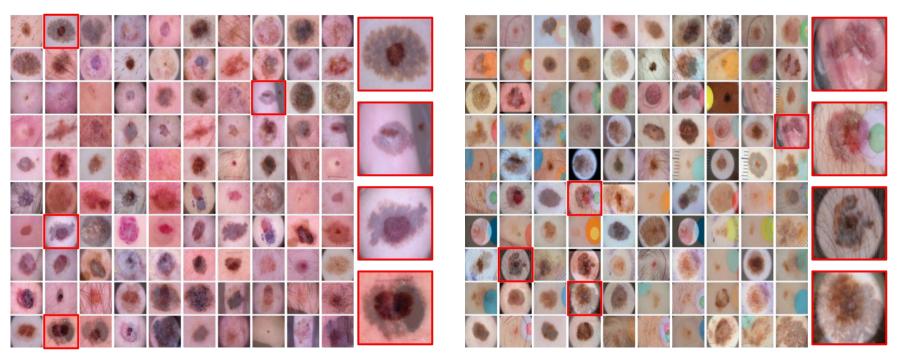


mixup outputs have ghosting artifacts and lower realism.



mixup outputs can contain incorrect soft labels.

Problems with *mixup*



Similar problems are observed with medical images.

Arguments

- We should only synthesize examples with high confidence of realism.
- A model should only behave linearly nearby training samples.

Goal: A better augmentation method

- Realism: synthesize samples close to the original samples
- Diversity: allow generating diverse samples by exploring the input space
- Label richness: generate samples with labels incorporating information from several classes while staying on the manifold of realistic samples
- Valid probabilistic labels for synthesized samples
- Computationally efficient to allow augmentation of training batches

Proposed Method

Synthesize new samples as **convex combinations of** *N* **samples** as

$$\hat{x} = \sum_{i=1}^{N} w_i x_i; \quad \hat{y} = \sum_{i=1}^{N} w_i y_i$$

where weights w_i should satisfy the desirable criteria.

One such weighting scheme: sample weights from the **terms of a** *p*-series: $w_i = i^{-p}$

Given N samples and an $N \times N$ permutation matrix π , resulting in a randomized ordering of samples $s = \pi[1, 2, \dots, N]^T$, the weights are

$$w_i = \frac{s_i^{-\gamma}}{C}, \quad i \in [1, N]$$

 $C = \sum_{i=1}^{N} j^{-\gamma}$ is the <u>N-truncated Riemann zeta function</u> (hyperparameter γ), thus ζ -mixup.

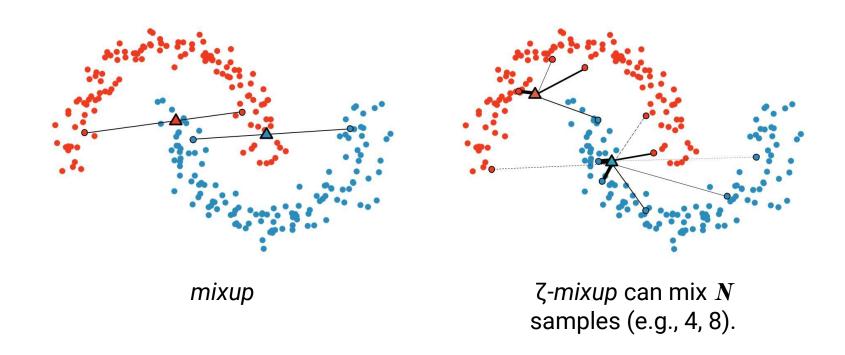
Properties of ζ-mixup

- Since there exist N! possible N × N permutation matrix, we can generate N!
 new samples for a single value of γ.
- For $\gamma \ge \gamma_{\min} = 1.72865$, the weight assigned to one sample dominates all other weights, i.e.,

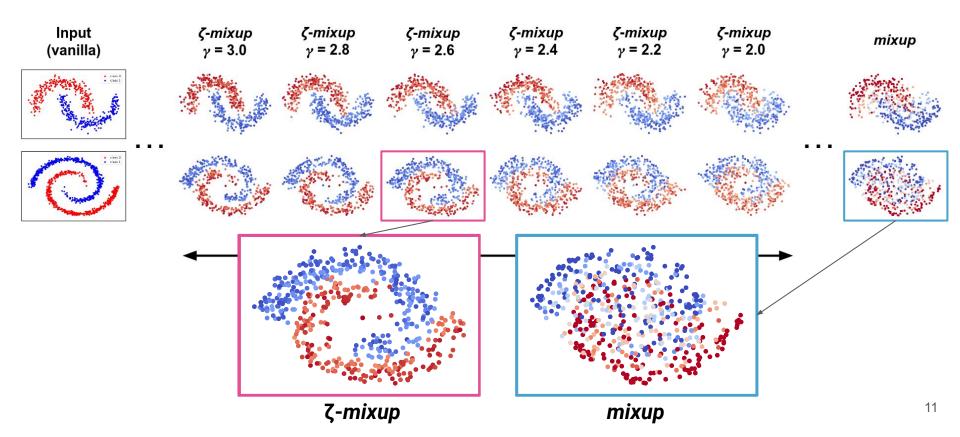
$$\forall \gamma \ge 1.72865, \ w_1 > \sum_{i=2}^{N} w_i$$

• For N = 2 and $\gamma = \log_2\left(\frac{\lambda}{1-\lambda}\right)$, ζ -mixup simplifies to mixup.

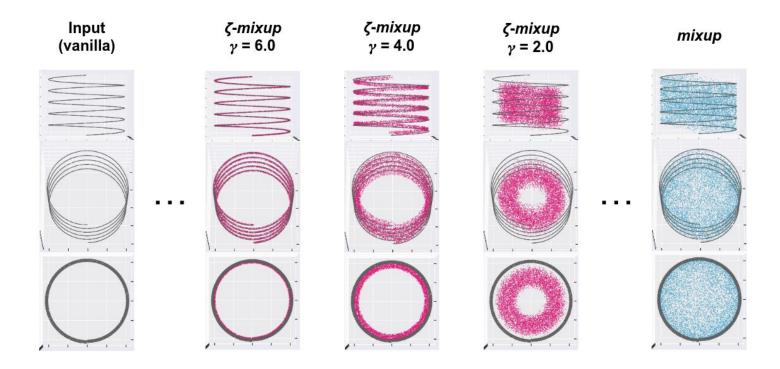
ζ-mixup can mix any number of samples



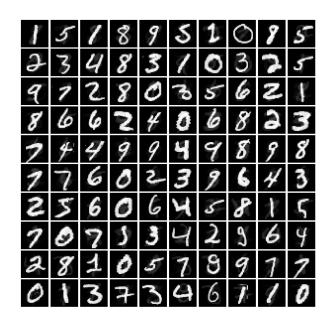
ζ-mixup yields realism and diversity

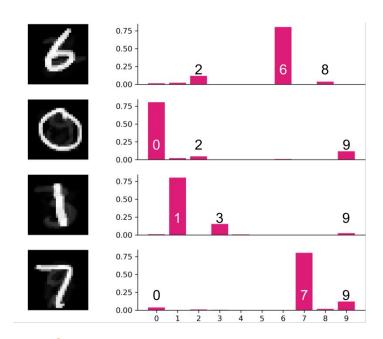


ζ-mixup yields realism and diversity



ζ-mixup outputs exhibit label richness, realism, and label correctness

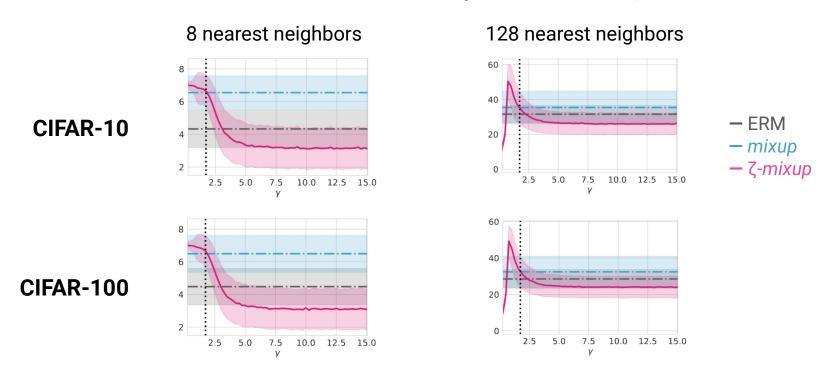




ζ-mixup outputs have a **higher degree of realism**, and contain **correct and rich soft labels**, incorporating **information from multiple classes**.

ζ-mixup better preserves the intrinsic dimensionality

Intrinsic dimensionality estimated using



ζ-mixup achieves better classification performance

Natural image datasets (classification error rate)

Method	CIFAR-10 ResNet-18	CIFAR-100 ResNet-18	Method	CIFAR-10 ResNet-18 ResNet-50		CIFAR-100 ResNet-18 ResNet-50	
$\begin{array}{c} \overline{\rm ERM} \\ mixup \\ \zeta\text{-}mixup \end{array}$	5.48 4.68 4.42	23.33 21.85 21.35	CutMix $+ \zeta$ -mixup	4.13 3.84	4.08 3.61	19.97 1 9.54	18.99 18.86

Skin lesion image datasets (micro-averaged F1 score)

Method	ISIC 2016		ISIC 2017		ISIC 2018		DermoFit	
	ResNet-18	ResNet-50	ResNet-18	ResNet-50	ResNet-18	ResNet-50	ResNet-18	ResNet-50
ERM	0.7836	0.8127	0.7383	0.6867	0.8756	0.8653	0.8269	0.8500
mixup	0.7968	0.8179	0.7333	0.7433	0.8394	0.8601	0.8577	0.8500
ζ - $mixup$	0.8654	0.8602	0.7633	0.7733	0.8756	0.9016	0.8731	0.8962

Thank you.

Questions?

kabhishe@sfu.ca

