An Enhanced Algorithm for the Quantification of Human Chorionic Gonadotropin (hCG) Level in Commercially Available Home Pregnancy Test Kits

Kumar Abhishek*, Mrinal Haloi*, Sumohana S. Channappayya[†], Siva Rama Krishna Vanjari[†], Dhananjaya Dendukuri[‡], Swathy Sridharan[‡], Tripurari Choudhary[‡], Paridhi Bhandari[‡]

*IITG, †IITH, ‡Achira Labs Bangalore

March 1, 2014

Introduction and Motivation

▶ Home pregnancy test kits ubiquitous

- Test results fairly accurate
- Qualitative (yes/no) result
- Can the test be made semi-quantitative?
 - Tracking hCG concentration levels over time (every 48 hours)
 - ▶ Quantitative testing (lab) expensive
 - Mobile-based diagnostics very promising

Problem Statement

Develop a calibration function based on output color

- Challenges:
 - Variability in luminance within and across tests
 - ▶ Intra-concentration variability. E.g. at 100 mIU/ml:

Noise

Simple Solution

- Preprocessing: noise smoothing and variable luminance correction
- ► Edge detection and stripe identification
- Classification:
 - SVM training (offline)
 - SVM testing

Experimental Setup

- Samples:
 - ► Four concentration levels: 0, 25 mIU/ml, 100 mIU/ml, 250 mIU/ml
 - Cipla test kits
 - ► Male urine samples spiked with β−hCG
- Imaging:
 - ▶ Standard while light source ≈ 1000 lumen
 - Nikon DSLR on tripod set 15 cm from sample
- SVM training and testing:
 - ▶ 100 training samples (L*u*v* color space) per class
 - 2000 testing samples across classes
 - Polynomial kernel function

Results: Preprocessing

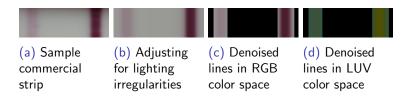
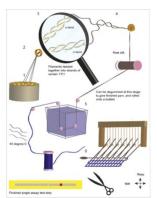


Figure: Segmentation results on commercial strip at 100 mlU/ml.

Results: Classification

	Output (proposed method)			
Input	0	25 mIU/mL	100 mIU/mL	250 mIU/mL
0 mIU/mL	98.58	1.42	0	0
25 mIU/mL	1.22	98.78	0	0
100 mIU/mL	0	0	95.22	4.78
250 mIU/mL	0	0	1.45	98.55


Conclusions and Future Work

- ▶ An image processing solution for a practical problem
- Solution ported to Android
- Portable devices becoming increasingly powerful
- Mobile-based diagnostic solutions very promising especially in the Indian context

IITH-Achira Labs Collaboration

Achira Labs, Bangalore:

- ► CEO: Dr. Dhananjaya Dendukuri, BTech IITM (Chem), PhD MIT
- ► Fabric based diagnostics:

IITH-Achira Labs Collaboration

hCG detection:

 Collaboration: Microfluidics (Dr. Siva Vanjari, IITH) and Image processing