Deep Convolutional Priors for Indoor Scene Synthesis

Given the importance and the ubiquity of indoor spaces in our everyday lives, the ability to have computer models which can understand, model, and synthesize indoor scenes is of vital importance for many industries such as but not limited to interior design, architecture, gaming, virtual reality, etc. Previous works towards this goal have relied on constrained synthesis of scenes with statistical priors on object pair relationships, “human-centric relationship priors”, or constraints based on “hand-crafted interior design principles”. Moreover, owing to the difficulty of unconstrained room-scale synthesis of indoor scenes, prior work has focused on either small regions within a room or additional inputs (in the form of fixed set of objects, manually specified relationships, natural language description, sketch, or 3D scan of the room) as constraints, and deep generative models such as GANs and VAEs struggle with producing multi-modal outputs. Driven by the success of convolutional neural networks (CNNs) in scene synthesis tasks and the availability of large 3D scene datasets, this paper proposes the first CNN-based autoregressive model to design interior spaces, where given the wall structure and the type of a room, the model predicts the selection and placement of objects. ...

November 9, 2020 · 5 min · Kumar Abhishek

PolyGen: An Autoregressive Generative Model of 3D Meshes

Polygonal meshes are widely used in computer graphics, robotics, and game development to represent virtual objects and scenes. Exisitng learning-based methods for 3D object generation have relied on template models and parametric shape families. Progress with deep learning based approaches has also been limited because meshes are challenging to work with for deep networks, and therefore recent works have instead used alternative representations of object shape, such as voxels, point clouds, occupancy functions, and surfaces. These works, however, leave mesh reconstruction as a post-processing step, leading to inconsistent mesh quality. Drawing inspiration from the success of previous neural autoregressive models applied to sequential raw data (e.g., images, text, and raw audio waveforms) and building upon previously proposed components (e.g., Transformers and pointer networks), this paper presents PolyGen, a neural autoregressive generative model for generating 3D meshes. ...

November 9, 2020 · 5 min · Kumar Abhishek

GAN-based Synthetic Medical Image Augmentation

The paper proposes using Generative Adversarial Networks (GANs) to augment the dataset with high quality synthetic liver lesion images in order to improve the CNN classification performance for medical image classification. The authors use limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). The liver lesions vary considerably in shape, contrast and size, and also present intra-class variability. ...

November 21, 2018 · 3 min · Kumar Abhishek