A Minimum Description Length Approach to Statistical Shape Modeling
Introduction This paper presents an algorithm for generating statistical shape models by addressing it as a correspondence problem of finding the parameterization of each shape in the training set, instead of manually annotating a set of “landmark” points for each image in the training set. The authors demonstrate the robustness of the algorithm by applying it to a variety of training image sets - infarcts, kidneys, knee cartilages, hand outlines, hip prostheses, and left ventricles. The proposed minimum description length model leads to good compactness, specificity and generalizes well, outperforming the contemporary gold standard - manual landmarking. Moreover, the authors also show that this model can be extended to work with 3-D images. ...