ENSC 427: COMMUNICATION NETWORKS SPRING 2017 FINAL PROJECT PRESENTATION Netflix Over LTE Content Distribution Network Optimization

Group 2 https://www.sfu.ca/~kbohlen/ Kurtis Bohlen - 301197502 (kbohlen@sfu.ca) Dejan Jovasevic - 301142027(djovasev@sfu.ca) Rohan Thomas - 301195077 (rohant@sfu.ca)

Outline

- Introduction and Motivation
- Overview of Related Work
 - Long Term Evolution
 - Netflix Content Distribution Network
- Problem Description
- Riverbed Implementation
 - Scenarios
 - Configuration
 - Results and Analysis
- Future Work
- Conclusions
- References

Outline

- Introduction and Motivation
- Overview of Related Work
 - Long Term Evolution
 - Netflix Content Distribution Network
- Problem Description
- Riverbed Implementation
 - Scenarios
 - Configuration
 - Results and Analysis
- Future Work
- Conclusions
- References

Introduction and Motivation

- In the United States and Canada alone, Netflix has over 25 million users, accounting for over 30% of all downstream traffic
- Netflix employs a system of servers that form a Content Distribution Network (CDN) from which the video chunks are cached and streamed to the users
- Long Term Evolution (LTE) provides throughput speeds similar to high speed internet access which has enabled wireless streaming of HD videos
- We analyze different CDN scenarios measuring throughput, error rate, and delay

Outline

- Introduction and Motivation
- Overview of Technology and Related Work
 - Long Term Evolution
 - Netflix Content Distribution Network
 - Past Projects
- Problem Description
- Riverbed Implementation
 - Scenarios
 - Configuration
 - Results and Analysis
- Future Work
- Conclusions
- References

Related Work

- Z. Amer, R. Kieu, and L. Xiao, "Performance Analysis of Video Streaming over LTE using Riverbed Modeler," ENSC 427 Spring 2016 Group 2
 - Analyzed video streaming over LTE. We achieved somewhat different results from them.
- V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z. Zhang, "Unreeling Netflix: understanding and Improving Multi-CDN Movie Delivery"
 - Performed analysis of Netflix early CDN using; Akamai, Level 3, Limelight. Measured network performance and switching between CDN servers.
- T.Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, "Open Connect Everywhere: A Glimpse at the Internet Ecosystem Through the Lens of the Netflix CDN"
 - Analyzed current Netflix CDN with OCA appliances. Measured network performance and effects of CDN distribution.

Long Term Evolution

- Long Term Evolution (LTE) is the latest technology deployed in cellular networks and is defined by the 3rd Generation Partnership Project (3GPP)
- Data Focused Network as opposed to prior circuit switched networks
- Created as the successor to the 3G standard to provide users faster speeds that were not achievable before
- Users can achieve speeds:
 - Peak = 335 Mbps in downlink
 - Average = 12-25 Mbps in downlink
 - Tested = [121,114,96] Mbps in downlink over 3 tests

LTE Radio Access Network

- The air interface, towers, and phones of the LTE protocol make up the Evolved Universal Terrestrial Radio Access Network (EUTRAN)
 - Air Interface = EUTRA
 - Towers = eNodeB (evolved NodeB)
 - Phones = User Equipment (UE)
- Orthogonal Frequency Division Multiplexing in Uplink and Downlink
- Multiple-input multiple-output antennas
- Beamforming

LTE Evolved Packet Core (EPC)

- Core network architecture standardized by 3GPP, completely IP based
- Supports high throughput, low latency EUTRAN access as well as legacy 3GPP systems and non-3GPP systems such as WiFi
- Comprised of:
 - Home Subscriber Server (HSS)
 - Database containing subscriber info used for authentication, call setup, and roaming
 - Mobility Management Entity (MME)
 - Controls paging and tracking of UEs in control pane
 - Serving Gateway (SGW)
 - Interfacing the radio network and the EPC in user pane
 - Packet Data Network Gateway (PDN Gateway) (PGW)
 - Interfacing the EPC and the external packet networks

Netflix Content Distribution Network

- A Content Distribution Network consists of distributed proxy servers at various data centers to provide end users with high quality low latency service
- Originally Netflix used Third party CDN providers. The three that were used were: Akamai, Lime Light and Level 3. It would update these CDNs in off peak times with content
- In 2012 Netflix began to build its own CDN: Netflix Open Connect
- In the following years Netflix built its own hardware storage to provide to ISP's, they called Open Connect Appliance

Netflix Content Distribution Network

NETFLIX

Open Connect Appliance - Global

An image of the Open Connect Appliance (OCA)

- These are embedded within the ISP's network so 100% of content streaming is done within the ISP network
- The OCA's are updated in off-peak hours

© 2015 Netflix Inc.

Netflix Content Distribution Network

Client steering process

12

Outline

- Introduction and Motivation
- Overview of Related Work
 - Long Term Evolution
 - Netflix Content Distribution Network
- Problem Description
- Riverbed Implementation
 - Scenarios
 - Configuration
 - Results and Analysis
- Future Work
- Conclusions
- References

Description of the Problem

- Over the past decade, video streaming has become the main content on the internet (Content Providers: Facebook, Google, Netflix)
- Video streaming contributes about 70% of all traffic today (12% in 2006), and Cisco estimates it will reach approximately 90% by 2020

Description of the Problem

Src: ipv4_1-lagg0-c008.1.yvr004.telus.isp.nflxvideo.net (205.250.88.5), Dst: Dejans-MacBook-Pro.local (192.168.100.16) tocol Version 4. 0100 = Version: 4 0101 = Header Length: 20 bytes (5) ▶ Differentiated Services Field: 0x04 (DSCP: Unknown, ECN: Not-ECT) Total Length: 1500 Identification: 0x0003 (3) Flags: 0x02 (Don't Fragment) Fragment offset: 0 Time to live: 62 Protocol: TCP (6) Header checksum: 0xec5c [validation disabled] [Header checksum status: Unverified] Source: ipv4 1-lagg0-c008.1.yvr004.telus.isp.nflxvideo.net (205.250.88.5) Destination: Dejans-MacBook-Pro.local (192.168.100.16) [Source GeoIP: Unknown] Internet Protocol Version 4 (ip), 20 bytes Packets: 196877 · Displayed: 196877 (100.0%) · Load time: 0:27.231 Profile: Default

- To supply this demand and satisfy users, content providers are bringing the content close to the end user (*"pushing to the end of the network"*)
- This reduces the total number of hops
- We used Wireshark to analyze Netflix streaming over the Telus network. It goes to a local Telus CDN server in Vancouver. (Round trip time of ~6ms)

History of Problem

- After initially using third party CDNs Netflix moves away and creates their own (OpenConnect 2012 onwards)
- Clash between Internet Service Providers (ISPs) and Content Providers
- Since the big ISPs refused to incorporate CDNs, smaller ISPs took advantage and installed OpenConnect hardware
- Since the demand was so high, the large ISPs were forced into using OpenConnect to offer the same quality of service as the smaller ISPs
- Netflix has been deploying CDN Servers around the world to provide faster and better quality video service to their user's
- The expansion of these CDNs is what is causing a phenomenon called "Flattening of the Internet"

NETFLIX ISP INDEX

NETFLIX

HOW WE CALCULATE THE RANKINGS -

Q

41

Enter country

ISP LEADERBOARD - FEBRUARY 2017

RANK	ISP	SPEED Mbps	PREVIOUS Mbps	RANK CHANGE	TYPE Fiber Cable DSL Satellite Wireless
1	Videotron	3.60	3.62		
2	Rogers	3.53	3.54	+1	₽.
3	Shaw	3.53	3.55	-1	
4	Eastlink - High Speed	3.45	3.47		- Co
5	Telus - Fiber Optic	3.39	3.44		-
6	Cogeco	3.35	3.36	+1	Ċ,
7	Bell Canada - Fiber Optic	3.35	3.39	-1	-
8	Telus - DSL	3.23	3.27	+1	Ð
_	CarbTal - Tibar Oatla	7.10	 7 07		

Outline

- Introduction and Motivation
- Overview of Related Work
 - Long Term Evolution
 - Netflix Content Distribution Network
- Problem Description
- Riverbed Implementation
 - Scenarios
 - Configuration
 - Results and Analysis
- Future Work
- Conclusions
- References

Riverbed Implementation - Scenarios

- To model in Riverbed we created 6 Mobile Subnets throughout Canada
- Each subnet consisted of an LTE Network containing, 1 eNodeB tower, 1 EPC, 1 Mobile Phone
- We created 3 scenarios to showcase the effect of CDNs on performance
- Scenario 1 involved one central server spanning to all the LTE subnets
- Scenario 2 involved two CDN servers spread out in East/West Canada, connecting to the respective closest subnets
- Scenario 3 involved a CDN server dedicated to each EPC located within the actual subnet

One Central Server

Small CDN with East/West Servers

Well Distributed CDN (Each City has Server)

Inside Look at LTE Network

 CDN connects to EPC specific to Network

. . . .

• eNodeB tower transmits to phone

Technology	LTE
Overlay	Cell (Hexagon)
Node Placement	Random
Number of eNodeBs	1
Number of UE	1
Nodes with Mobility Con	1

UE Transmission Power (W)	Cell Size Based			
eNodeB Transmission Power (W)	Cell Size Based			
PHY Profile	LTE 20 MHz FDD			
Pathloss Model	Free Space			

- Netflix uses a special version of Hyper Text Transfer Protocol for its application layer protocol
- It is called Dynamic Adaptive Streaming over HTTP (DASH)
- Movie content is divided into smaller segments and is encoded at variable quality and bit rates
- While client is doing playback, they are automatically selecting the next segment to download depending on the strength of the network connection
- DASH runs on top of Transmission Control Protocol (TCP)
- This meant that we could configure our application to use HTTP and then set the proper frame interarrival times and sizes

Apply a display filter ... <%/>>

No.		Time	Source	Destination	Protocol	Length Info	
	47891	38.453189	ipv6_1-lagg0-c144	2605:8d80:482:c92f	TCP	1464 [TCP segment of a reassembled PDU]	
	47892	38.453251	2605:8d80:482:c92f	ipv6_1-lagg0-c144	TCP	86 55597 → https(443) [ACK] Seq=15218 Ack=8254657 Win=262140 Len=0 TSval=25899	0
	47893	38.453316	ipv6_1-lagg0-c144	2605:8d80:482:c92f	TCP	1464 [TCP segment of a reassembled PDU]	
	47894	38.453482	ipv6_1-lagg0-c144	2605:8d80:482:c92f	TCP	1464 [TCP segment of a reassembled PDU]	
	47895	38.453574	2605:8d80:482:c92f	ipv6_1-lagg0-c144	TCP	86 55597 → https(443) [ACK] Seq=15218 Ack=8257413 Win=262140 Len=0 TSval=25899	0
	47896	38.453751	ipv6_1-lagg0-c144	2605:8d80:482:c92f	ТСР	1464 [TCP segment of a reassembled PDU]	
	47897	38.453926	ipv6_1-lagg0-c144	2605:8d80:482:c92f	TLSv1.2	1464 Application Data[TCP segment of a reassembled PDU]	
	47898	38.453950	2605:8d80:482:c92f	ipv6_1-lagg0-c144	TCP	86 55597 → https(443) [ACK] Seq=15218 Ack=8260169 Win=262140 Len=0 TSval=25899	0
	47899	38.454062	ipv6_1-lagg0-c144	2605:8d80:482:c92f	TCP	1464 [TCP segment of a reassembled PDU]	
1	47900	38.454375	ipv6_1-lagg0-c144	2605:8d80:482:c92f	ТСР	1464 [TCP segment of a reassembled PDU]	
	47901	38.454401	2605:8d80:482:c92f	ipv6_1-lagg0-c144	ТСР	86 55597 → https(443) [ACK] Seq=15218 Ack=8262925 Win=262140 Len=0 TSval=25899	0
	47902	38.454509	ipv6_1-lagg0-c144	2605:8d80:482:c92f	TCP	1464 [TCP segment of a reassembled PDU]	

▶ Frame 47901: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0

Ethernet II, Src: Dejans-MacBook-Pro.local (68:a8:6d:3b:41:16), Dst: fe:e9:98:cc:8c:64 (fe:e9:98:cc:8c:64)

Internet Protocol Version 6, Src: 2605:8d80:482:c92f:6cd6:c05f:6839:7b7b (2605:8d80:482:c92f:6cd6:c05f:6839:7b7b), Dst: ipv6_1-lagg0-c144.1.iad001.ix.nflxvideo.t
Transmission Control Protocol, Src Port: 55597 (55597), Dst Port: https (443), Seq: 15218, Ack: 8262925, Len: 0

- Creating LTE hotspot using an Iphone 6s, we streamed netflix on laptop using this connection. Collected Wireshark data
- Found the following properties
 - Frame Interarrival Time: 0.000558 seconds
 - Frame Size: 1464 Bytes
 - Average Download Rate: 2.62 MBps

Expression

(ApplicationDefinition) Attributes

	Attribute	Value
	Mobile User Gaming	·
TÌ,	Mobile User Interactive Content	
	🖻 Netflix	
3	Name	Netflix
3	Description	()
3	Custom	Off
3	Database	Off
3	Email	Off
3	Ftp	Off
2	Http	()
3	Print	Off
3	Peer-to-peer File Sharing	Off
3	Remote Login	Off
2	Video Conferencing	Off
3	Video Streaming	Off
2	Voice	Off

Attribute	Value
Video Existence Probability	All Pages Include a Video
Play Start Time Offset (seconds)	None
Video Length (seconds)	constant (3600)
Video Type	On Demand
Frame Inter-arrival Time (seconds)	normal (0.000558, 0.000000009876)
Frame Size (bytes)	constant (1464)
Location	HTTP Server
Back-End Custom Application	Not Used
Object Group Name	HTTP Video Object

(Streamed Video Properties) Table

[] (CDN2)	Attributes
Type: server	
Attribute	Value
(?)name	CDN2
🗉 IP Multicasting	
Applications	
🕐 🖲 Application: Destination Prefere	None
Participation: Supported Profiles	None
Application: Supported Service	s All
🕐 📧 Application: Transaction Model	Unspecified 26

• We configured one profile as one user using the aforementioned Netflix application for the entire duration of the simulation, set phones to use it

(ProfileDefinition) Attributes				Application: Supported Profiles) Table					×
Type: Utilities				Profile	Traffic Type	Application Dela	y Tracking		
	Attribute	Value	- (INAME					
() mame ProfileDefinition			Netflix	Netflix	All Discrete	Disabled			
2) 🖻 Profile Configuration	()							
	-Number of Rows	1							
	🖻 Netflix								
2	Profile Name Netflix								
2) 🖻 Applications	()		Key feature of					
	-Number of Rows	1				oimulati			
	🖻 Netflix					sinulatio	on success		
2) - Name	Netflix							
2	Start Time Offset (seconds)	No Offset		1					
2	Duration (seconds)	End of Profile	1250						
2	🖪 Repeatability	()	4	- Dour	Doloto	Incort	Dunlingto	Mouo Un	Maus Down
2) - Operation Mode	Serial (Ordered)	1	HUWS		insen	Duplicate	IMOVE UP	INIOVE DOWN
2) Start Time (seconds)	constant (0)	1		r 17				0
2) - Duration (seconds)	End of Simulation	De	etails	Promot	e 🛛 🔽 Show r	ow labels	0 <u>K</u>	<u>C</u> ancel
?) 📧 Repeatability	Unlimited		4214-240 744					27

Riverbed Results - Bytes Received

- Bytes per second for mobile phone in Ottawa network
- All scenarios have average receive rate of 2.6 MBps as configured in Netflix Application Definition

Riverbed Results - Throughput

Riverbed Results - Delay

- Delay in links from EPC to the CDN servers for each scenario
- As you add more CDN servers the delay decreases

30

Riverbed Results - Bit Error Rate

low-level point-to-point.bit error rate

- Bit Error Rate in links to the CDN servers for each scenario
- Bit Error Rate can not be realistically modeled due to how scaled back our LTE network had to become for simulations to run
- We are not coming anywhere close to the full utilization of the links that we are using
- Thus an extremely low bit error rate is expected

Outline

- Introduction and Motivation
- Overview of Related Work
 - Long Term Evolution
 - Netflix Content Distribution Network
- Problem Description
- Riverbed Implementation
 - Scenarios
 - Configuration
 - Results and Analysis
- Future Work
- Conclusions
- References

Future Work

- Background traffic and calls on LTE radio access network
- Background internet traffic on EPC
- Larger LTE networks with more phones and more towers
- Have different radio access network configurations for urban and rural areas by varying: intersite distance, cell radius, pathloss model, and number of users
- Different stream speeds HD vs non-HD vs UHD
- Distinguish between popular cached content and less popular content that takes longer to buffer and stream
- More accurate models of links and Netflix CDN servers

Conclusions

- Increasing demand for video content is causing the accelerated deployment of CDNs and the flattening of the internet
- Deploying a CDN is critical to lower bandwidth and delay
- Doing this improves the user's experience
- The more distributed a CDN is the better it performs
- Wireless providers will have to embed the OCAs in order to meet the demand for streaming Netflix over mobile devices

References

- V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z. Zhang, "Unreeling netflix: Understanding and improving multi-CDN movie delivery," in *Proc. IEEE INFOCOM*, Orlando, FL, 2012, pp. 1620-1628.
- V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. Zhang, M. Varvello, and M. Steiner, "Measurement Study of Netflix, Hulu, and a Tale of Three CDNs," *IEEE/ACM Transactions on Networking*, vol. 23, no. 6, pp. 1984-1997, Dec. 2015.
- J. Summers, T. Brecht, D. Eager, and A. Gutarin, "Characterizing the workload of a netflix streaming video server," in *Proc. IEEE International Symposium on Workload Characterization (IISWC)*, Providence, RI, 2016, pp. 1-12.
- C.D. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal, J.E. Van der Merwe, and C.J. Sreenan, "Enhanced streaming services in a content distribution network," *IEEE Internet Computing*, vol. 5, no. 4, pp. 66-75, Jul/Aug 2001.
- T.Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, *Open Connect Everywhere: A Glimpse at the Internet Ecosystem through the Lens of the Netflix CDN*, eprint arXiv:1606.05519 [cs.NI], 2016, pp. 1-14.
- K. Florance, "How Netflix Works With ISPs Around the Globe to Deliver a Great Viewing Experience," *Netflix Media Center Company Blog*, Mar. 2016.
- N. Bargisen. (2016, Aug 30). *Netflix Open Connect: Delivering Internet TV to the world* [Online]. Available: https://www.slideshare.net/InternetSociety/netflix-open-connect-delivering-internet-tv-to-the-world

Questions?

