
Math 5320

Homework 7

From the book, do Ch. 12: 4.1, 4.3 as well as the problems given below. You
will want to use what you prove in problem 1 to do Ch. 12: 4.1.

1. It is possible to extend the idea of taking a derivative to polynomials with
coefficients in any field that acts just like how we might hope it should:
the derivative of xn is n · xn−1.

More formally, given any field F , the ring of polynomials F [x] can be
thought of as an infinite-dimensional vector space over F . A possible
choice of basis for F [x] is {1, x, x2, x3, . . .}. We can define a homomorphism
of F -vector spaces

ϕ : F [x]→ F [x]

such that ϕ(1) = 0, ϕ(x) = 1, ϕ(x2) = 2x and more generally ϕ(xn) =
nxn−1. We call ϕ(p(x)) the derivative of p(x). Note that ϕ is not a ring
homomorphism! But, ϕ does satisfy the product rule: Given f(x), g(x) ∈
F [x], ϕ(f(x)g(x)) = f(x)ϕ(g(x)) + ϕ(f(x))g(x) (I won’t prove this here,
but just assert that it’s a fact, and it’s a property that you will need to
use to complete this problem). Also, to keep notation compact, we will
just use the notation ′ to denote the derivative, so take p′(x) := ϕ(p(x))
in the rest of the problem.

(a) Let p(x) ∈ F [x]. We showed in class that if a ∈ F is a root of F ,
then we can write p(x) = (x− a)p1(x) for some p1(x) ∈ F [x]. Prove
that if p(a) = 0 and p′(a) = 0, then (x− a)2 is a factor of p(x).

(b) Furthermore, show that if p(a) = 0, p′(a) = 0, . . . , and p(n)(a) = 0,
then (x− a)n+1 divides p(x).

By completing the next few exercises, you will work through characterizing
which prime integers are prime elements of Z[i], as well as proving a fun
number theory fact about the prime integers that are not prime elements
of Z[i]. Notice that unlike in Z[x], prime integers are not necessarily
irreducible in Z[i]. For instance, 5 = (2 + i)(2− i).
The book covers this topic in 12.5, so if you get stuck, it’s there as a
resource.

2. What are the units in Z[i]? Hint: Recall that the norm of an element
a + bi ∈ Z[i] is defined to be N(a + ib) := (a + ib)(a − ib) = a2 + b2 and
that norms are multiplicative, that is, the norm of a product is the product
of the norms. You will probably want to prove this by first showing that
any unit in Z[i] has norm 1.

3. Let π ∈ Z[i] be a prime element of Z[i]. Prove that its complex conjugate
π̄ is also a prime element of Z[i].



4. Show that if p is a prime integer that is not prime in Z[i], then p is the
product of prime element π of Z[i] and its conjugate π̄.

5. Use the previous problem to show that if a prime integer p is not prime in
Z[i], then it can be written as a sum of squares p = a2 + b2 with a, b ∈ N.
Also, show the converse.

6. Is 2 a prime element in Z[i]?

7. Show that if p is a prime integer, then p is a prime in Z[i] if and only if
x2 + 1 is irreducble in Fp[x], where Fp := Z/(p). You will want to use the
fact that Z[x]/(x2 + 1, p) ∼= Z[i]/(p) ∼= Fp/(x

2 + 1). You don’t have to
prove this is an isomorphism, but if you don’t remember how to prove it
from earlier in the semester, I suggest reviewing (or asking me about it).

8. Show that x2 + 1 is irreducible in Fp[x] if and only if there are no roots of
x2 + 1 in Fp[x].

Finally, we will show that if p is an odd prime, then there exists some
a ∈ Fp such that a2 = −1 (that is, x2 +1 is not irreducible in Fp[x]) if and
only if p ≡ 1 mod 4. Note that such an a exists if and only if the group
homomorphism ϕ : F∗p → F∗p that maps elements to their squares has −1
in its image. Furthermore, −1 is the only element of F∗p with order 2, so
it will suffice to analyze whether the image of ϕ contains an element of
order 2 or not.

The kernel of ϕ consists of elements of F∗p that are roots of x2 − 1 = 0.
Since p ≥ 2, we have two distinct roots: 1 and −1 (there can be only two
because x2−1 is a degree 2 polynomial). The group F∗p has p−1 elements,

and so the image of ϕ has p−1
2 elements. It is a consequence of the first

Sylow theorem that the image of ϕ will have an element of order 2 if (and
only if) 2 divides p−1

2 .

In summary: We showed that any prime integer p is prime in Z[i] if and
only if x2 + 1 is irreducible in Fp[x] if and only if p ≡ 1 mod 4. We also
showed that any prime integer p is not prime in Z[i] if and only if it can
be written as a sum of two squares if and only if p = 2 or p ≡ 3 mod 4.


