Homework 7

From the book, do Ch. 12: 4.1, 4.3 as well as the problems given below. You will want to use what you prove in problem 1 to do Ch. 12: 4.1.

1. It is possible to extend the idea of taking a derivative to polynomials with coefficients in any field that acts just like how we might hope it should: the derivative of x^{n} is $n \cdot x^{n-1}$.
More formally, given any field F, the ring of polynomials $F[x]$ can be thought of as an infinite-dimensional vector space over F. A possible choice of basis for $F[x]$ is $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$. We can define a homomorphism of F-vector spaces

$$
\varphi: F[x] \rightarrow F[x]
$$

such that $\varphi(1)=0, \varphi(x)=1, \varphi\left(x^{2}\right)=2 x$ and more generally $\varphi\left(x^{n}\right)=$ $n x^{n-1}$. We call $\varphi(p(x))$ the derivative of $p(x)$. Note that φ is not a ring homomorphism! But, φ does satisfy the product rule: Given $f(x), g(x) \in$ $F[x], \varphi(f(x) g(x))=f(x) \varphi(g(x))+\varphi(f(x)) g(x)$ (I won't prove this here, but just assert that it's a fact, and it's a property that you will need to use to complete this problem). Also, to keep notation compact, we will just use the notation ' to denote the derivative, so take $p^{\prime}(x):=\varphi(p(x))$ in the rest of the problem.
(a) Let $p(x) \in F[x]$. We showed in class that if $a \in F$ is a root of F, then we can write $p(x)=(x-a) p_{1}(x)$ for some $p_{1}(x) \in F[x]$. Prove that if $p(a)=0$ and $p^{\prime}(a)=0$, then $(x-a)^{2}$ is a factor of $p(x)$.
(b) Furthermore, show that if $p(a)=0, p^{\prime}(a)=0, \ldots$, and $p^{(n)}(a)=0$, then $(x-a)^{n+1}$ divides $p(x)$.

By completing the next few exercises, you will work through characterizing which prime integers are prime elements of $\mathbb{Z}[i]$, as well as proving a fun number theory fact about the prime integers that are not prime elements of $\mathbb{Z}[i]$. Notice that unlike in $\mathbb{Z}[x]$, prime integers are not necessarily irreducible in $\mathbb{Z}[i]$. For instance, $5=(2+i)(2-i)$.
The book covers this topic in 12.5 , so if you get stuck, it's there as a resource.
2. What are the units in $\mathbb{Z}[i]$? Hint: Recall that the norm of an element $a+b i \in \mathbb{Z}[i]$ is defined to be $N(a+i b):=(a+i b)(a-i b)=a^{2}+b^{2}$ and that norms are multiplicative, that is, the norm of a product is the product of the norms. You will probably want to prove this by first showing that any unit in $\mathbb{Z}[i]$ has norm 1 .
3. Let $\pi \in \mathbb{Z}[i]$ be a prime element of $\mathbb{Z}[i]$. Prove that its complex conjugate $\bar{\pi}$ is also a prime element of $\mathbb{Z}[i]$.
4. Show that if p is a prime integer that is not prime in $\mathbb{Z}[i]$, then p is the product of prime element π of $\mathbb{Z}[i]$ and its conjugate $\bar{\pi}$.
5. Use the previous problem to show that if a prime integer p is not prime in $\mathbb{Z}[i]$, then it can be written as a sum of squares $p=a^{2}+b^{2}$ with $a, b \in \mathbb{N}$. Also, show the converse.
6. Is 2 a prime element in $\mathbb{Z}[i]$?
7. Show that if p is a prime integer, then p is a prime in $\mathbb{Z}[i]$ if and only if $x^{2}+1$ is irreducble in $\mathbb{F}_{p}[x]$, where $\mathbb{F}_{p}:=\mathbb{Z} /(p)$. You will want to use the fact that $\mathbb{Z}[x] /\left(x^{2}+1, p\right) \cong \mathbb{Z}[i] /(p) \cong \mathbb{F}_{p} /\left(x^{2}+1\right)$. You don't have to prove this is an isomorphism, but if you don't remember how to prove it from earlier in the semester, I suggest reviewing (or asking me about it).
8. Show that $x^{2}+1$ is irreducible in $\mathbb{F}_{p}[x]$ if and only if there are no roots of $x^{2}+1$ in $\mathbb{F}_{p}[x]$.
Finally, we will show that if p is an odd prime, then there exists some $a \in \mathbb{F}_{p}$ such that $a^{2}=-1$ (that is, $x^{2}+1$ is not irreducible in $\mathbb{F}_{p}[x]$) if and only if $p \equiv 1 \bmod 4$. Note that such an a exists if and only if the group homomorphism $\varphi: \mathbb{F}_{p}^{*} \rightarrow \mathbb{F}_{p}^{*}$ that maps elements to their squares has -1 in its image. Furthermore, -1 is the only element of \mathbb{F}_{p}^{*} with order 2 , so it will suffice to analyze whether the image of φ contains an element of order 2 or not.

The kernel of φ consists of elements of \mathbb{F}_{p}^{*} that are roots of $x^{2}-1=0$. Since $p \geq 2$, we have two distinct roots: 1 and -1 (there can be only two because $x^{2}-1$ is a degree 2 polynomial). The group \mathbb{F}_{p}^{*} has $p-1$ elements, and so the image of φ has $\frac{p-1}{2}$ elements. It is a consequence of the first Sylow theorem that the image of φ will have an element of order 2 if (and only if) 2 divides $\frac{p-1}{2}$.
In summary: We showed that any prime integer p is prime in $\mathbb{Z}[i]$ if and only if $x^{2}+1$ is irreducible in $\mathbb{F}_{p}[x]$ if and only if $p \equiv 1 \bmod 4$. We also showed that any prime integer p is not prime in $\mathbb{Z}[i]$ if and only if it can be written as a sum of two squares if and only if $p=2$ or $p \equiv 3 \bmod 4$.

