
Math 5320, Spring 2018

Proving the irreducibility of x4 + 1

One of the common threads of the part of the course that is showing up on midterm 3 is the recurring
question of how to determine that a polynomial is irreducible.

Keep in mind that in general, determining whether an element of a ring is irreducible is a very hard
problem! Determining which integers are prime is actually a special case of this problem. Deciding whether a
given integer is prime becomes very computationally intensive (this difficulty is what makes RSA a successful
way of protecting our data), and finding new prime numbers, especially in order, is also incredibly difficult.
So, it stands to reason that determining if a polynomial is irreducible is a hard problem, and there isn’t any
one technique that we can use all the time, but rather a variety of techniques.

Problem: Show that x4 + 1 is irreducible over Q.
An idea that is helpful but not enough: Note carefully that it is not sufficient to show that the roots
of x4 + 1 in C, which are ζ8, ζ38 , ζ58 , ζ78 , are not in Q. This argument has ruled out the possibility of x4 + 1
having any linear factors in Q, but has not ruled out the possibility that it could be written as a product of
two degree-2 polynomials with coefficients in Q. It would then be possible to finish the argument by showing
that any product of two of the linear factors of x4 +1 in C[x], which are x−ζ8, x−ζ38 , x−ζ58 , x−ζ78 , does not
have coefficients in Q. However, this last step is rather a lot of computational work and other methods are
probably easier to use and more broadly applicable to other situations. Some suggestions are listed below.

Possible Approach: Eisenstein’s Criterion: Although we can’t use Eisenstein’s criterion directly, the
method we used to prove that xp−1 + · · ·+ x+ 1 is irreducible for any prime p can also be applied here.

Substituting in y + 1 for x yields

(y + 1)4 + 1 = y4 + 4y3 + 6y2 + 4y + 2

Every coefficient other than the leading one is divisible by 2 and the constant term isn’t divisble by 22, so
Eisenstein’s criterion tells us that y4 + 4y3 + 6y2 + 4y + 2 is irreducible.

It’s important to understand why proving that y4 + 4y3 + 6y2 + 4y + 2 is irreducible implies that x4 + 1
is irreducible. What we’ve done is apply the ring isomorphism Q[x] → Q[y] that sends the coefficients to
themselves and sends x to y + 1. If x4 + 1 could be factored nontrivially, then the isomorphism would
send those factors to factors of y4 + 4y3 + 6y2 + 4y + 2 and they would be nontrivial factors since our ring
isomorphism preserves the degree of polynomials.

Possible Approach: Complex conjugates of roots and some extra arguing: This problem came to
us intially as part of finding the irreducible polynomial of ζ8 := e2πi/8 over Q. We can see that ζ8 := e2πi/8

is certainly a root of x8− 1 = (x4 + 1)(x4− 1). The roots of the factor x4− 1 in C are ±1 and ±i, and so ζ8
is a root of x4 + 1. Call f(x) the irreducible polynomial of zeta8 over Q. To show that x4 + 1 is irreducible
over Q it suffices to show that that f(x) = x4 + 1.

Helpful result: see 15.4 or, better, 16.4 in the book: Let K/F be a field extension. Recall that if
a polynomial p(x) has coefficients in F and a root α in K, then any K-automorphism ϕ of F will send α to
a (potentially different) root of p(x):

p(α) = 0, so ϕ(p(α) = ϕ(0) = 0, and since ϕ acts as the identity on elements of F , ϕ(p(α)) = p(ϕ(α))

Since complex conjugation is a Q-automorphism (and also an R-automorphism) of C, the complex con-
jugate ζ̄8 = ζ78 must also be a root of f(x). This tells us that f(x) must have degree at least 2.

Now, we can use our helpful result again to find other roots (shown below), or we can argue more directly:
we know that (x− ζ8)(x− ζ̄8) must be a factor of f(x), but (x− ζ8)(x− ζ̄8) = x2 −

√
2x+ 1 does not have

coefficients in Q. So, f(x) must have degree strictly greater than 2. Since f(x) divides x4 + 1, the degree of
f(x) is at most 4, and if it’s equal to 4, f(x) = x4 + 1 and we are done. The only case we have to eliminate



is the case where the degree of f(x) is 3. But if f(x) were degree 3, then its other factor would have to be
ζ38 or its complex conjugate ζ58 , but those are both complex, and so f(x) would have to have both of them
as roots, ruling out the possibility of f(x) having degree 3.

Possible Approach: More automorphisms of fields (Thanks to Jack for the suggestion on the revision)
We could take a slightly different route to finishing the last argument by showing that there is a Q-

automorphism of Q(ζ8) that sends ζ8 to ζ58 and using the helpful result and the fact that the complex
conjugates of both ζ8 and ζ58 must both also be factors of the irreducible polynomial of ζ8.

The work we must do here is to check that such a field automorphism exists. It’s a little tricky here since
we don’t know what a basis of Q(ζ8) as a Q-vector space is since we don’t know the degree of [Q(ζ8) : Q].

However, we can use the fact that Q(ζ8) = Q(i,
√

2). The basis for Q(i,
√

2) over Q(i) is {1,
√

2}. We’d
have to do a little checking to show it exists (thing along the lines of our argument in class showing complex
conjugation is the only R-automorphism of C), but there is a ring automorphism of Q(i,

√
2) that sends

√
2

to −
√

2 and 1 to itself. This map is a Q(i)-automorphism and hence a Q-automorphism and will send ζ8 to
−ζ8.

Possible Approach: Degree of a field extension by finding sub-extensions Again, to show that
x4 + 1 is irreducible over Q, it suffices to show that the irreducible polynomial of ζ8 over Q has degree 4
since we already know that it divides x4 + 1. We could do this by showing that [Q(ζ8) : Q] = 4 by producing
a helpful intermediate field extension.

Note that Q(i) is a subfield of Q(ζ8) since ζ28 = i. We have that [Q(ζ8) : Q] = [Q(ζ8) : Q(i)][Q(i) : Q].
We know that [Q(i) : Q] = 2 since the irreducible polynomial of i over Q is x2 + 1, which we can show using
the fact that i is a root and so its complex conjugate must also be a root (see the “helpful result” above).
We could show this other ways as well.

Since [Q(ζ8) : Q] ≤ 4, using that [Q(ζ8) : Q] = [Q(ζ8) : Q(i)][Q(i) : Q] = [Q(ζ8) : Q(i)] · 2, we know
that [Q(ζ8) : Q(i)] is either 1 or 2. To show [Q(ζ8) : Q] = 4, it suffices to show that [Q(ζ8) : Q(i)] = 2,
so to complete our argument we just need to show that Q(i) is properly contained in Q(ζ8). For instance,
2ζ8 =

√
2(1 + i). Since {1, i} is a basis for Q(i) over Q, any element in it can be written (uniquely) as a+ bi

for some a, b ∈ Q. If 2ζ8 were contained in Q(i), there would be some a, b ∈ Q such that
√

2(1 + i) = a+ bi.
But, for these numbers to be equal, their real parts would have to be equal, implying

√
2 = a, but we

assumed a is irrational so this gives a contradiction.

Other methods of proof may also work!


