$$
\text { Proving the irreducibility of } x^{4}+1
$$

One of the common threads of the part of the course that is showing up on midterm 3 is the recurring question of how to determine that a polynomial is irreducible.

Keep in mind that in general, determining whether an element of a ring is irreducible is a very hard problem! Determining which integers are prime is actually a special case of this problem. Deciding whether a given integer is prime becomes very computationally intensive (this difficulty is what makes RSA a successful way of protecting our data), and finding new prime numbers, especially in order, is also incredibly difficult. So, it stands to reason that determining if a polynomial is irreducible is a hard problem, and there isn't any one technique that we can use all the time, but rather a variety of techniques.
Problem: Show that $x^{4}+1$ is irreducible over \mathbb{Q}.
An idea that is helpful but not enough: Note carefully that it is not sufficient to show that the roots of $x^{4}+1$ in \mathbb{C}, which are $\zeta_{8}, \zeta_{8}^{3}, \zeta_{8}^{5}, \zeta_{8}^{7}$, are not in \mathbb{Q}. This argument has ruled out the possibility of $x^{4}+1$ having any linear factors in \mathbb{Q}, but has not ruled out the possibility that it could be written as a product of two degree-2 polynomials with coefficients in \mathbb{Q}. It would then be possible to finish the argument by showing that any product of two of the linear factors of $x^{4}+1$ in $\mathbb{C}[x]$, which are $x-\zeta_{8}, x-\zeta_{8}^{3}, x-\zeta_{8}^{5}, x-\zeta_{8}^{7}$, does not have coefficients in \mathbb{Q}. However, this last step is rather a lot of computational work and other methods are probably easier to use and more broadly applicable to other situations. Some suggestions are listed below.

Possible Approach: Eisenstein's Criterion: Although we can't use Eisenstein's criterion directly, the method we used to prove that $x^{p-1}+\cdots+x+1$ is irreducible for any prime p can also be applied here.

Substituting in $y+1$ for x yields

$$
(y+1)^{4}+1=y^{4}+4 y^{3}+6 y^{2}+4 y+2
$$

Every coefficient other than the leading one is divisible by 2 and the constant term isn't divisble by 2^{2}, so Eisenstein's criterion tells us that $y^{4}+4 y^{3}+6 y^{2}+4 y+2$ is irreducible.

It's important to understand why proving that $y^{4}+4 y^{3}+6 y^{2}+4 y+2$ is irreducible implies that $x^{4}+1$ is irreducible. What we've done is apply the ring isomorphism $\mathbb{Q}[x] \rightarrow \mathbb{Q}[y]$ that sends the coefficients to themselves and sends x to $y+1$. If $x^{4}+1$ could be factored nontrivially, then the isomorphism would send those factors to factors of $y^{4}+4 y^{3}+6 y^{2}+4 y+2$ and they would be nontrivial factors since our ring isomorphism preserves the degree of polynomials.

Possible Approach: Complex conjugates of roots and some extra arguing: This problem came to us intially as part of finding the irreducible polynomial of $\zeta_{8}:=e^{2 \pi i / 8}$ over \mathbb{Q}. We can see that $\zeta_{8}:=e^{2 \pi i / 8}$ is certainly a root of $x^{8}-1=\left(x^{4}+1\right)\left(x^{4}-1\right)$. The roots of the factor $x^{4}-1$ in \mathbb{C} are ± 1 and $\pm i$, and so ζ_{8} is a root of $x^{4}+1$. Call $f(x)$ the irreducible polynomial of zeta ${ }_{8}$ over \mathbb{Q}. To show that $x^{4}+1$ is irreducible over \mathbb{Q} it suffices to show that that $f(x)=x^{4}+1$.

Helpful result: see $\mathbf{1 5 . 4}$ or, better, $\mathbf{1 6 . 4}$ in the book: Let K / F be a field extension. Recall that if a polynomial $p(x)$ has coefficients in F and a root α in K, then any K-automorphism φ of F will send α to a (potentially different) root of $p(x)$:

$$
p(\alpha)=0, \text { so } \varphi(p(\alpha)=\varphi(0)=0, \text { and since } \varphi \text { acts as the identity on elements of } F, \varphi(p(\alpha))=p(\varphi(\alpha))
$$

Since complex conjugation is a \mathbb{Q}-automorphism (and also an \mathbb{R}-automorphism) of \mathbb{C}, the complex conjugate $\bar{\zeta}_{8}=\zeta_{8}^{7}$ must also be a root of $f(x)$. This tells us that $f(x)$ must have degree at least 2 .

Now, we can use our helpful result again to find other roots (shown below), or we can argue more directly: we know that $\left(x-\zeta_{8}\right)\left(x-\bar{\zeta}_{8}\right)$ must be a factor of $f(x)$, but $\left(x-\zeta_{8}\right)\left(x-\bar{\zeta}_{8}\right)=x^{2}-\sqrt{2} x+1$ does not have coefficients in \mathbb{Q}. So, $f(x)$ must have degree strictly greater than 2 . Since $f(x)$ divides $x^{4}+1$, the degree of $f(x)$ is at most 4 , and if it's equal to $4, f(x)=x^{4}+1$ and we are done. The only case we have to eliminate
is the case where the degree of $f(x)$ is 3 . But if $f(x)$ were degree 3 , then its other factor would have to be ζ_{8}^{3} or its complex conjugate ζ_{8}^{5}, but those are both complex, and so $f(x)$ would have to have both of them as roots, ruling out the possibility of $f(x)$ having degree 3 .

Possible Approach: More automorphisms of fields (Thanks to Jack for the suggestion on the revision)
We could take a slightly different route to finishing the last argument by showing that there is a \mathbb{Q} automorphism of $\mathbb{Q}\left(\zeta_{8}\right)$ that sends ζ_{8} to ζ_{8}^{5} and using the helpful result and the fact that the complex conjugates of both ζ_{8} and ζ_{8}^{5} must both also be factors of the irreducible polynomial of ζ_{8}.

The work we must do here is to check that such a field automorphism exists. It's a little tricky here since we don't know what a basis of $\mathbb{Q}\left(\zeta_{8}\right)$ as a \mathbb{Q}-vector space is since we don't know the degree of $\left[\mathbb{Q}\left(\zeta_{8}\right)\right.$: $\left.\mathbb{Q}\right]$.

However, we can use the fact that $\mathbb{Q}\left(\zeta_{8}\right)=\mathbb{Q}(i, \sqrt{2})$. The basis for $\mathbb{Q}(i, \sqrt{2})$ over $\mathbb{Q}(i)$ is $\{1, \sqrt{2}\}$. We'd have to do a little checking to show it exists (thing along the lines of our argument in class showing complex conjugation is the only \mathbb{R}-automorphism of $\mathbb{C})$, but there is a ring automorphism of $\mathbb{Q}(i, \sqrt{2})$ that sends $\sqrt{2}$ to $-\sqrt{2}$ and 1 to itself. This map is a $\mathbb{Q}(i)$-automorphism and hence a \mathbb{Q}-automorphism and will send ζ_{8} to $-\zeta_{8}$.

Possible Approach: Degree of a field extension by finding sub-extensions Again, to show that $x^{4}+1$ is irreducible over \mathbb{Q}, it suffices to show that the irreducible polynomial of ζ_{8} over \mathbb{Q} has degree 4 since we already know that it divides $x^{4}+1$. We could do this by showing that $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}\right]=4$ by producing a helpful intermediate field extension.

Note that $\mathbb{Q}(i)$ is a subfield of $\mathbb{Q}\left(\zeta_{8}\right)$ since $\zeta_{8}^{2}=i$. We have that $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}(i)\right][\mathbb{Q}(i): \mathbb{Q}]$. We know that $[\mathbb{Q}(i): \mathbb{Q}]=2$ since the irreducible polynomial of i over \mathbb{Q} is $x^{2}+1$, which we can show using the fact that i is a root and so its complex conjugate must also be a root (see the "helpful result" above). We could show this other ways as well.

Since $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}\right] \leq 4$, using that $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}(i)\right][\mathbb{Q}(i): \mathbb{Q}]=\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}(i)\right] \cdot 2$, we know that $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}(i)\right]$ is either 1 or 2 . To show $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}\right]=4$, it suffices to show that $\left[\mathbb{Q}\left(\zeta_{8}\right): \mathbb{Q}(i)\right]=2$, so to complete our argument we just need to show that $\mathbb{Q}(i)$ is properly contained in $\mathbb{Q}\left(\zeta_{8}\right)$. For instance, $2 \zeta_{8}=\sqrt{2}(1+i)$. Since $\{1, i\}$ is a basis for $\mathbb{Q}(i)$ over \mathbb{Q}, any element in it can be written (uniquely) as $a+b i$ for some $a, b \in \mathbb{Q}$. If $2 \zeta_{8}$ were contained in $\mathbb{Q}(i)$, there would be some $a, b \in \mathbb{Q}$ such that $\sqrt{2}(1+i)=a+b i$. But, for these numbers to be equal, their real parts would have to be equal, implying $\sqrt{2}=a$, but we assumed a is irrational so this gives a contradiction.

Other methods of proof may also work!

