Worksheet 21: More about field extensions

1. After the last lecture, we know that $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x] /\left(x^{2}+2\right)$ is a field. Since it's a field, every nonzero element must have (multiplicative) inverse. What is the multiplicative inverse of x ?
2. We talked about the fact that if $F \subset K$ is a field extension, then K is also an F-vector space. Here the axioms of a vector space to help us meditate on why this is true:

An F-vector space is a commutative group V under an operation we call + with identity 0 , along with scalar multiplication by elements of the field satisfying the following axioms:

- $1 v=v$ for all $v \in V$
- (ab)v=a(bv), $(a+b) v=a v+b v$ and $a(v+w)=a v+a w$ for all $a, b \in F, v, w \in V$ (associative and distributive laws)

It's also true if we have an injective ring homomorphism $F \subset R$ and R is an integral domain, then R is also an F-vector space. What's the basis of the polynomial ring $F[x]$ as an F-vector space?
3. What is a basis for $\mathbb{Q}(\sqrt{2})$ as a \mathbb{Q}-vector space?

