1. For any ring R, there is an action of the symmetric group S_n on $R[x_1, \ldots, x_n]$ permuting the variables. A polynomial in $R[x_1, \ldots, x_n]$ that is fixed by every permutation in S_n is called *symmetric*. Why does the set of symmetric functions in $R[x_1, \ldots, x_n]$ form a subring?

2. The elementary symmetric functions in $R[x_1, \ldots, x_n]$ are defined to be

$$s_1 := x_1 + x_2 + \dots + x_n$$
$$s_2 := \sum_{i < j} x_i x_j$$
$$\vdots$$
$$s_n := x_1 \cdots x_n$$

The Symmetric Functions Theorem (Theorem 16.1.6) tells us that any symmetric polynomial in $R[x_1, \ldots, x_n]$ can be written as a polynomial in the elementary symmetric functions, that is, as $p(s_1, \ldots, s_n) \in R[s_1, \ldots, s_n] \subset R[x_1, \ldots, x_n]$.

Write the symmetric polynomial $x_1^2 + x_2^2 + x_3^2 \in \mathbb{Q}[x_1, x_2, x_3]$ as a polynomial in the elementary symmetric functions s_1, s_2, s_3 .

3. Using the proof of the Primitive Element theorem, what are some possible primitive elements for the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})$ of \mathbb{Q} ?