Worksheet 24:

1. For any ring R, there is an action of the symmetric group S_{n} on $R\left[x_{1}, \ldots, x_{n}\right]$ permuting the variables. A polynomial in $R\left[x_{1}, \ldots, x_{n}\right]$ that is fixed by every permutation in S_{n} is called symmetric.
Why does the set of symmetric functions in $R\left[x_{1}, \ldots, x_{n}\right]$ form a subring?
2. The elementary symmetric functions in $R\left[x_{1}, \ldots, x_{n}\right]$ are defined to be

$$
\begin{aligned}
s_{1} & :=x_{1}+x_{2}+\cdots+x_{n} \\
s_{2} & :=\sum_{i<j} x_{i} x_{j} \\
& \vdots \\
s_{n} & :=x_{1} \cdots x_{n}
\end{aligned}
$$

The Symmetric Functions Theorem (Theorem 16.1.6) tells us that any symmetric polynomial in $R\left[x_{1}, \ldots, x_{n}\right]$ can be written as a polynomial in the elementary symmetric functions, that is, as $p\left(s_{1}, \ldots, s_{n}\right) \in R\left[s_{1}, \ldots s_{n}\right] \subset R\left[x_{1}, \ldots, x_{n}\right]$.
Write the symmetric polynomial $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \in \mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$ as a polynomial in the elementary symmetric functions s_{1}, s_{2}, s_{3}.
3. Using the proof of the Primitive Element theorem, what are some possible primitive elements for the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ of \mathbb{Q} ?

