1. Last time we considered the following question by trying to answer it directly: What is the fixed field of $G\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$? What is the fixed field of $G(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})$? What is the fixed field of the subgroup $H<G(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ consisting of the identity and the automorphism that conjugates $\sqrt{2}$?
How does the Fixed Field theorem help us answer these questions?
2. We showed directly last time that $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not a Galois field extension. Using that information, what other things does Theorem 16.6.4 tell us about $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$? Also, what other ways could we have used Theorem 16.6 .4 to decide that $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not a Galois field extension?
