Build a 4-Dimensional Hypercube!

The hypercube we'll build is a 3-D model of the fourth dimension,
just like a flat drawing of a cube is a 2-D model of the third dimension.
Read page 3 for a quick explanation of hyperspace, or jump right in and start building!

1) Make sure you have:

6 long (12 inch) orange pipe cleaners
6 long (12 inch) black pipe cleaners
8 short (6 inch) green pipe cleaners
(If you have 4 long (12 inch) green pipe cleaners, bend them in half and cut at the half-way point.)
You can use a different color combination if you want.
2) Take the long orange pipe cleaners out of the bag. Bend each one in half, then bend it back so that is forms a right $\left(90^{\circ}\right)$ angle, making an L shape like this:

3) Attach two of the L's together to make a flat square:

TIP FOR ATTACHING PIPE CLEANER ENDS:
Bend a very short length of the ends around each other and press down firmly.
4) Attach the other L's together by according to the pictures below.

The 嫁 show where an attachments are made.
Attaching in a different way may not result with a cube, so follow the pictures carefully.

Now you should have a cube!
Check the corners to make sure everything is attached well.
Put this cube aside for now.
5) Using the long black pipe cleaners, repeat steps 2, 3, and 4, except for the last L attachment. You should then have:

Notice that there is one leg standing up attached at only one end. In the picture above, the corners not fully attached are labeled with \odot.
6) Lower the completed orange cube over the black leg that's only attached at one end, so that this black leg goes through the middle of the orange cube.
7) Attach the last black L's corner to the top of the unattached black leg.
8) Push the ends of the black L through the middles of the orange cube's square "faces."
9) Attach the ends of the black \mathbf{L} to the © black corners to complete the black cube.
10) Now you should have two cubes within each other.

They shouldn't be able to come apart. Check that all your attachments are holding.
11) Take the short green pipe cleaners, and connect each corner of the black cube to the same corner of the orange cube. For example, following the picture below, attach black corner 1 to orange corner 1, black corner 2 to orange corner 2, and so on.

10) You're done! Remember to check that the attachments are all secure.

Pipe cleaners are flexible so play around (don't bend too much, though). A hypercube looks great hanging on a string from your ceiling at home, or on your head as a zany hat!

Thinking About Dimensions

What are dimensions? One way to think of it is how many (perpendicular) directions we can move in.

For example, we live in a 3-D (3-Dimensional) world, and can move in 3 ways:

1) up-down, 2) left-right, 3) back-forth.

This piece of paper is 2-D, because it only has up-down and left-right as directions. (It actually is 3-D, because the paper has thickness in the back-forth direction, but when the paper is flat, it's so small that we can ignore it.)

So how do you get from one dimension to a higher one?
Let's start with the 0-dimension, a point: .
Now connect that point to another point, forming a line. This is 1-dimensional.

Connect the line to another line, making a 2-D square:

Connect the square to another square to form a 3-D cube:
Notice that the figure to the right is not actually a 3-D cube, but a 2-D picture of a cube.

This paper is 2-D and can't actually show higher-dimension objects (like a 3-D cube) exactly.

Now what happens if you connect a cube with another cube?
You get a 4-D hypercube!
A 2-D picture of a 4-D hypercube is messy (try drawing it!), but we can build a pretty good model in 3-D. Let's try!

Some interesting questions to think about as you're building your hypercube:

* Why doesn't moving diagonally count as another dimension in our world?
* Why do you think "time" is sometimes called the fourth dimension in our world?
* Why can't a 4-D hypercube be built in our world with solid sides, not just a wire frame?
* Does a 4-D hypercube have volume?

What does "volume" mean? How is it different from or similar to "area" and "length"?

* What would we get if we connected two 4-D hypercubes together?
* How would a person living in a 4-dimensional world see your 4-D hypercube?

What about a person living in a 5 -dimensional world?

Interested in Hyperspace?

Here are some cool resources to check out.

What is the Fourth Dimension? by Eric Saltsman

A great discussion of the fourth dimension, without too much math.
http://www.geocities.com/CapeCanaveral/7997/whatis4d.html
Flatland: A Romance of Many Dimensions, by Edwin Abbot
A classic story about life in a 2-D world. Lots of fun!
http://www.alcyone.com/max/lit/flatland/
The Fourth Dimension: A Guided Tour of the Higher Universes, by Rudy Rucker A fun, illustrated exploration of what a 4-D world would be like.

Animated Hypercube Rotations, by Andrew Hamilton

A neat animation of a rotating hypercube http://casa.colorado.edu/~ajsh/sr/hypercube.html

Hypercube Rotations, by Drew Olbrich

Good pictures of hypercube rotations in space
http://www.traipse.com/hypercube/
Hypercube, from Eric Weisstein's World of Mathematics
A very technical description of some of the math behind hypercubes.
http://mathworld.wolfram.com/Hypercube.html

2-D Square

3-D Cube

6-D

7-D

