Math 817, Fall 2023, Dr. Honigs
Homework 6, Part 2
Due Nov. 28 Nov. 30 at the start of class

Instructions:

- You are encouraged to work in groups. However, write your solutions in your own words.
- In your solutions, list any names of people you have worked with. (This is practice for listing collaborators!)
- In your solutions, refrain from using language like "clear", "obvious", or "easy".

Homework 6 Part 2 will be graded out of 50 points. Questions 2, 5, and 6 are worth 10 points. The other questions are worth 5 points each.

Remark: These questions are designed to be done without using characters. Questions:

1. Draw an equilateral triangle in the plane with vertices at $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$. In this question you will use the geometry of this triangle to consider a representations.
(a) In the standard basis, give a matrix for the element of D_{6} rotating the triangle clockwise. Then, give a matrix the element of D_{6} that reflects the triangle across the x-axis.
(b) Find a new basis that diagonalizes the first matrix. Then write down the second matrix in this new basis
2. (a) Show that any degree 1 representation of a group G must be constant over conjugacy classes (i.e., conjugate elements of G must map to the same element).
(b) Recall that S_{n} is generated by transpositions, and all transpositions are conjugate to one another. Prove that S_{n} has exactly two degree 1 representations.
3. Let $G=D_{8}=\left\langle\tau, \sigma \mid \tau^{4}=\sigma^{2}=e, \sigma \tau \sigma=\tau^{-1}\right\rangle$. There is a 3-dimensional representation $\rho: G \rightarrow \mathrm{GL}_{3}(\mathbb{C})$ defined by

$$
\rho_{\tau}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right), \quad \rho_{\sigma}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Find a 1-dimensional G-invariant subspace of \mathbb{C}^{3}. Is it possible to find another one? Deduce that ρ can be decomposed as a direct sum of representations $\mathbb{C}^{3}=U_{1} \oplus U_{2}$ where U_{2} is degree 2 .
4. How many irreducible representations of C_{6} are there? How many of these are faithful? (A faithful representation is one where the group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$ is injective.)
5. Let $G=S_{3}$ with generators $\tau=(123), \sigma=(12)$. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be the degree 2 representation given as follows, where $\zeta=e^{\frac{2 \pi i}{3}}$:

$$
\rho_{\tau}=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right), \quad \rho_{\sigma}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

(a) The set of linear transformations $\operatorname{Hom}_{\mathbb{C}}(V, V)$ has a vector space structure. What is its dimension? Given a basis $\left\{e_{i}\right\}_{i=1}^{n}$ for V, give a natural basis for $\operatorname{Hom}_{\mathbb{C}}(V, V)$.
(b) There is a natural representation that ρ induces on $\operatorname{Hom}_{\mathbb{C}}(V, V)$. Write it down in terms of the basis you described in the previous part.
(c) How do we know that the G-invariant subspace $\operatorname{Hom}_{\mathbb{C}}^{G}(V, V)$ must be 1-dimensional? Find a vector that spans it.
(d) Find the decomposition of $\operatorname{Hom}_{\mathbb{C}}(V, V)$ into irreducible representations.
6. Let $G=D_{2 k}=\left\langle\tau, \sigma \mid \tau^{k}=\sigma^{2}=e, \sigma \tau \sigma=\tau^{-1}\right\rangle$. Let $V=\mathbb{C}^{2}$ and $\rho: G \rightarrow \mathrm{GL}(V)$ the following representation, where $\zeta=e^{\frac{2 \pi i}{k}}$ is a k-th root of unity.

$$
\rho_{\tau}=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right), \quad \rho_{\sigma}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Let $W=\mathbb{C}$ and $\nu: G \rightarrow \operatorname{GL}(W)$ be the representation where $\nu_{\tau}=\mathrm{id}_{W}, \nu_{\sigma}=-1 \cdot \mathrm{id}_{W}$
(a) Verify that ρ is a representation.
(b) Using the standard bases, write down the natural representations $V^{*}, V \otimes W$, $\operatorname{Hom}(V, W)$.
7. Let $G=D_{10}=\left\langle\tau, \sigma \mid \tau^{5}=\sigma^{2}=e, \sigma \tau \sigma=\tau^{-1}\right\rangle$. (You may wish to use the decomposition of regular representations, to appear in class Thurs. Nov 23, to solve this problem)
(a) Show that G has exactly two 1-dimensional representations.
(b) Find how many irreducible representations G has, and find their degrees.

