SIMON FRASER UNIVERSITY Department of Economics

Econ 842 International Monetary Economics Prof. Kasa Spring 2009

PROBLEM SET 3 (Due March 25)

1. (30 points). Consider a 2-period small open endowment economy facing the exogenous world interest rate r on riskless loans. Date 1 output is Y_1 . There are S states of nature on date 2 that differ according to the output realizations $Y_2(s)$. The probability that state s is realized is known to be $\pi(s)$. The representative domestic household maximizes the following expected lifetime utility function:

$$U_1 = C_1 - \frac{a}{2}(C_1)^2 + \beta E_1 \left[C_2 - \frac{a}{2}(C_2)^2 \right] \qquad a > 0$$

Assume that the rate of time preference equals the interest rate, so that $\beta(1+r) = 1$. When markets are *incomplete* the household faces the sequence of budget constraints

$$B_2 = (1+r)B_1 + Y_1 - C_1$$

$$C_2(s) = (1+r)B_2 + Y_2(s) \qquad s = 1, 2 \cdots S$$

where B_i denotes net foreign assets at the beginning of period-*i*. Assume that the parameters are such that the marginal utility of consumption, 1-aC, is always positive.

- (a) Start by temporarily ignoring the nonnegativity constraints $C_2(s) \ge 0$ on date 2 consumption. Compute optimal date 1 consumption, C_1 . What are the implied values of $C_2(s)$? What do you think your answer would be with an infinite horizon and output uncertainty in each future period? (Hint: Remember chapter 2!).
- (b) Now let's worry about the nonnegativity constraint on $C_2(s)$. Without loss of generality, renumber the date 2 states so that $Y_2(1) = \min_s[Y_2(s)]$. Show that if

$$(1+r)B_1 + Y_1 + \frac{2+r}{1+r}Y_2(1) \ge E_1Y_2$$

then the C_1 computed in part (a) (for the 2-period case) is still valid. What is the intuition? Suppose the preceding inequality doesn't hold. Show that the optimal date 1 consumption is lower (reflecting a precautionary savings effect) and equals

$$C_1 = (1+r)B_1 + Y_1 + \frac{Y_2(1)}{1+r}$$

(Hint: Apply Kuhn-Tucker). What is the intuition here? Does the usual Euler equation hold in this case?

- (c) Now assume the household has access to *complete* Arrow-Debreu markets, with p(s) being the exogenous state s Arrow-Debreu contingent claims price for state s. Assume these prices are actuarial fair, so that $p(s) = \pi(s)$. Compute the optimal values of C_1 and $C_2(s)$ in this case. Why can we ignore nonnegativity constraints in this complete markets case?
- 2. (30 points). Consider a two-country, one-good world where agents in each country have preferences

$$U = \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\rho}}{1-\rho}$$

Country-1's endowment is $y_{1t} = 1$ for all t. Country-2's endowment is $y_{2t} = \gamma^t$, where $\gamma > 1$.

- (a) Describe the competitive equilibrium with complete markets. (Hint: Consider the Pareto problem).
- (b) Now suppose agents cannot commit to their Arrow-Debreu contracts, and can go live under autarky at any time. Derive each agent's participation constraints (for each t).
- (c) Does the complete markets allocation in part (a) satisfy the participation constraints? If not, what is the constrained-optimal allocation?
- 3. (40 points). This question is about the trade balance and the terms of trade in openeconomy RBC models. Consider a world consisting of two exchange economies, Country 1 and Country 2. Country 1 receives a stochastic endowment sequence of "apples", $a_t(s^t)$, and Country 2 receives a stochastic endowment of "bananas", $b_t(s^t)$, where the notation s^t represents the fact that endowments depend on the history of states realized up to period-t. Residents of both countries have the same preferences

$$U(a,b) = \sum_{t=0}^{\infty} \sum_{s^t \in S^t} \beta^t \pi(s^t) [a_t(s^t)^{1-\rho} + b_t(s^t)^{1-\rho}] / (1-\rho)$$

where $\pi(s^t)$ represents the probability of history s^t (so that this is just expected utility).

- (a) Compute the Pareto optimal allocation, and describe the supporting prices.
- (b) Let q be a country's terms of trade, defined as the the relative price of its imports (so that an decrease in q represents a terms of trade improvement). Compute q for country 1.
- (c) Derive an expression for country 1's trade balance, $nx_{1,t} = a_t q_t b_t$.
- (d) What is the relationship between nx_1/y_1 and q, where y_1 is country 1's GDP? What is the relationship between nx_1/y_1 and y_1 ? Are these consistent with the data?