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1. INTRODUCTION 

A common hypothesis about the behavior of (limited liability) asset 
prices in perfect markets is the random walk of returns or (in its 
continous-time form) the “geometric Brownian motion” hypothesis which 
implies that asset prices are stationary and log-normally distributed. 
A number of investigators of the behavior of stock and commodity 
prices have questioned the accuracy of the hyp0thesis.l In particular, 
Cootner [2] and others have criticized the independent increments assump- 
tion, and Osborne [2] has examined the assumption of stationariness. 
Mandelbrot [2] and Fama [2] argue that stock and commodity price 
changes follow a stable-Paretian distribution with infinite second moments. 
The nonacademic literature on the stock market is also filled with theories 
of stock price patterns and trading rules to “‘beat the market,” rules 
often called “technical analysis” or “charting,” and that presupposes a 
departure from random price changes. 

In an earlier paper [12], I examined the continuous-time consumption- 
portfolio problem for an individual whose income is generated by capital 
gains on investments in assets with prices assumed to satisfy the “gee- 
metric Brownian motion” hypothesis; i.e., I studied Max E jz eT(C, t) dt 

* I would like to thank P. A. Samuelson, R. M. Solow, P. A. Diamond, J. A. Mirrlees, 
J. A. Flemming, and D. T. Scheffman for their helpful discussions. Of course, a!1 
errors are mine. Aid from the National Science Foundation is gratefully acknowledged. 
An earlier version of the paper was presented at the second World Congress of the 
Econometric Society, Cambridge, England. 

1 For a number of interesting papers on the subject, see Cootner 121. An exceIIent 
survey article is “Efficient Capital Markets: A Review of Theory and Empirical Work,” 
by E. Fama, Journal of Finance, May, 1970. 
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where U is the instantaneous utility function, C is consumption, and E 
is the expectation operator. Under the additional assumption of a constant 
relative or constant absolute risk-aversion utility function, explicit solu- 
tions for the optimal consumption and portfolio rules were derived. The 
changes in these optimal rules with respect to shifts in various parameters 
such as expected return, interest rates, and risk were examined by the 
technique of comparative statics. 

The present paper extends these results for more general utility functions, 
price behavior assumptions, and for income generated also from non- 
capital gains sources. It is shown that if the “geometric Brownian motion” 
hypothesis is accepted, then a general ‘Separation” or “mutual fund” 
theorem can be proved such that, in this model, the classical Tobin mean- 
variance rules hold without the objectionable assumptions of quadratic 
utility or of normality of distributions for prices. Hence, when asset 
prices are generated by a geometric Brownian motion, one can work with 
the two-asset case without loss of generality. If the further assumption 
is made that the utility function of the individual is a member of the 
family of utility functions called the “HARA” family, explicit solutions 
for the optimal consumption and portfolio rules are derived and a number 
of theorems proved. In the last parts of the paper, the effects on the 
consumption and portfolio rules of alternative asset price dynamics, in 
which changes are neither stationary nor independent, are examined 
along with the effects of introducing wage income, uncertainty of life 
expectancy, and the possibility of default on (formerly) “risk-free” 
assets. 

2. A DIGRESSION ON 1~6 PROCESSES 

To apply the dynamic programming technique in a continuous-time 
model, the state variable dynamics must be expressible as Markov 
stochastic processes defined over time intervals of length h, no matter 
how small h is. Such processes are referred to as infinitely divisible in 
time. The two processes of this type2 are: functions of Gauss-Wiener 
Brownian motions which are continuous in the “space” variables and 
functions of Poisson processes which are discrete in the space variables. 
Because neither of these processes is differentiable in the usual sense, 
a more general type of differential equation must be developed to express 
the dynamics of such processes. A particular class of continuous-time 

2 I ignore those infinitely divisible processes with infinite moments which include 
those members of the stable Paretian family other than the normal. 
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Markov processes of the first type called It6 Processes are defined as the 
solution to the stochastic differential equation3 

dP = f (P, t) dt + g(P, t) dz, 02 

where P, f, and g are n vectors and z(t) is an rz vector of standard normal 
random variables. Then dz(t) is called a multidimensional Wiener process 
(or Brownian motion).4 

The fundamental tool for formal manipulation and solution of stochastic 
processes of the It6 type is Ita’s Lemma stated as follow@ 

LEMMA. Let F(Pl ,..., P, , t) be a C2 function dejned on 
and take the stochastic integmfs 

then the time-dependent random variable Y = F is a stochastic integral 
and its stochastic d@erential is 

where the product of the difSerentiaIs dPi dPj are defijled by the mukti- 
plication rub 

dz, dzj = ,aij dt, i, j = I,..., n, 

dzi dt = 0, i = I,.~., y1 9 

3 It6 Processes are a special ease of a more general cIass of stochastic processes 
called Strong diffusion processes (see Kushner 19, p. 221). (1) is a short-hand expression 
for the stochastic integral 

P(t) = P(0) + j-‘-f@‘, s) ds + jt g(P, s) dz, 
Ll 0 

where P(t) is the solution to (1) with probability one. 
A rigorous discussion of the meaning of a solution to equations like (I) is not presented 

here. Only those theorems needed for formal manipulation and solution of stochastic 
differential equations are in the text and these without proof. For a complete discussion 
of Pto Processes, see the seminal paper of It6 173, It6 and McKean IS], and McKean 
[ll]. For a short description and some proofs, see Kushner [9, pp- 12-IS]. For an 
heuristic discussion of continuous-time Markov processes in general, see Cox and 
Miller [3, Chap. 51. 

* dz is often referred to in the literature as “Gaussian White Noise.” There are some 
regularity conditions imposed on the functions f  and g. It is assumed throughout the 
paper that such conditions are satisfied. For the details, see [9] or [ll]. 

5 See McKean [ll, pp. 32-35 and 441 for proofs of the Lemma in one and IZ dimen- 
sions. 
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where pij is the instantaneous correlation coeficient between the Wiener 
processes dzi and dzj .6 

Armed with Ito’s Lemma, we are now able to formally differentiate 
most smooth functions of Brownian motions (and hence integrate 
stochastic differential equations of the Iti, type).’ 

Before proceeding to the discussion of asset price behavior, another 
concept useful for working with It6 Processes is the differential generator 
(or weak infinitesimal operator) of the stochastic process P(t). Define 
the function @(P, t) by 

e(P, t) = iii Et [ GW + h), t + h) - G(W), t) 
h 1 9 (2) 

when the limit exists and where “E,” is the conditional expectation 
operator, conditional on knowing P(t). If the Pi(t) are generated by It6 
Processes, then the differential generator of P, Zp , is defined by 

wheref = (fi ,..A, g = (8, ,..., g,), and aij = gigjpij . Further, it can 
be shown that 

G(P, t) = Z,[G(P, t)]. (4) 

C? can be interpreted as the “average” or expected time rate of change of 

6 This multiplication rule has given rise to the formalism of writing the Wiener 
process differentials as dzi = Y* v’% where the z are standard normal variates 
(e.g., see [3]). 

’ Warning: derivatives (and integrals) of functions of Brownian motions are similar 
to, but different from, the rules for deterministic differentials and integrals. For example, 
if 

p(i) = p(O) e&-tt = p(O) ez(t)-z(o)-*t, 

then dP = Pdz. Hence 

j$ j: dz # log U’(r)/P(O)) . 

Stratonovich 1151 has developed a symmetric definition of stochastic differential 
equations which formally follows the ordinary rules of differentiation and integration. 
However. this alternative to the It6 formalism will not be discussed here. 
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the function G(P, t) and as such is the natural generalization of the ordinary 
time derivative for deterministic functions.* 

3. ASSET PRICE DYNAMICS AND THE BUDGET EQUATION 

Throughout the paper, it is assumed that all assets are of the limite 
liability type, that there exist continuously-trading perfect markets with 
no transactions costs for all assets, and that the prices per share, (p,(t)>, 
are generated by Ito Processes, i.e., 

dP. -2 D = q(P, t) dt + ai(P, t) dzizi , 

where 01~ is the instantaneous conditional expected percentage change in 
price per unit time and oi2 is the instantaneous conditional variance per 
unit time. In the particular case where the “geometric Brownian motion 
hypothesis is assumed to hold for asset prices, 01~ and gi will be constants. 
For this case, prices will be stationarily and log-normally distributed and 
it will be shown that this assumption about asset prices simplifies the 
continuous-time model in the same way that the assumption of normality 
of prices simplifies the static one-period portfolio model. 

To derive the correct budget equation, it is necessary to examine t 
discrete-time formulation of the model and then to take limits carefu 
to obtain the continuous-time form. Consider a period model with periods 
of length h, where all income is generated by capital gains, and wealth, 
W(t) and Pi(t) are known at the beginning of period t. Let the de 
variables be indexed such that the indices coincide with the per 
which the decisions are implemented. Namely, let 

iVi(t) = number of shares of asset i purchased during 
period t, i.e., between t and t + h 

and (61 
C(l) = amount of consumption per unit time during 

period t. 

8 A heuristic method for finding the differential generator is to take the conditional 
expectation of dG (found by ItUs Lemma) and “divide” by &. The result of this opera- 
tion will be 2$[G], i.e., formally, 

; &(dG) = d = 6pp[G]. 

The “2&” operator is often called a Dynkin operator and is often writterr as “DP”. 

642/3/4-3 
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The model assumes that the individual “comes into” period t with wealth 
invested in assets so that 

W(t) = i Ni(t - h) P,(t). (7) 
1 

Notice that it is N,(t - h) because Ni(t - h) is the number of shares 
purchased for the portfolio in period (t - h) and it is Pi(t) because P,(t) 
is the current value of a share of the i-th asset. The amount of consumption 
for the period, C(t) h, and the new portfolio, N,(t), are simultaneously 
chosen, and if it is assumed that all trades are made at (known) current 
prices, then we have that 

-C(t) h = i [N,(t) - Ni(t - h)] P,(t). 
1 

(8) 

The “dice” are rolled and a new set of prices is determined, Pi(t + h), 
and the value of the portfolio is now C: Ni(t) Pi(t + h). So the individual 
“comes into” period (t + h) with wealth W(t + h) = Cf N,(t) Pi(t + h) 
and the process continues. 

Incrementing (7) and (8) by h to eliminate backward differences, we 
have that 

-c(t + h) h = i [Ni(t + h) - N,(t)1 I’& + h) 
1 

= 5 [Ni(t + h) - K(t)lV’i(t + 4 - f’,(t)1 

+ i IIN& + 4 - JJi(Ol Pi(t) 
1 

and 

W(t + h) = ‘f N,(t) Pi(t + h). 
1 

(9) 

Taking the limits as h + O,v we arrive at the continuous version of (9) 
and (lo), 

-C(t) dt = =f dNi(t) dP,(t) + i d&(t) Pi(t) (9’) 
1 1 

9 We use here the result that It6 Processes are right-continuous 19, p. 151 and hence 
P,(t) and w(t) are right-continuous. It is assumed that C(r) is a right-continuous 
function, and, throughout the paper, the choice of C(t) is restricted to this class of 
functions. 
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and 

W(t) = -f N,(t) P,(t). (IO’) 
1 

Using Ito’s Lemma, we differentiate (10’) to get 

The last two terms, C,” dNtPi + C:” dNi dP, , are the net value of additions 
to wealth from sources other than capital gains.lO IHence, if dy(t) = (possi- 
bly stochastic) instantaneous flow of noncapital gains (wage) income, 
then we have that 

dy - C(t) dt = i dN,P, +- f’ dNi dP, . 
1 1 

From (11) and (12), the budget or accumulation equation is written as 

dW = i N,(t) dP. 2 + dy - C(t) dt. 
1 

(13) 

It is advantageous to eliminate N,(t) from (13) by defining a new variable; 
~~(1) = N,(t) P,(t)/ W(t), the percentage of wealth invested in the 6th asset 
at time f. Substituting for dPi/Pi from (5), we can write (13) as 

dW = f wi Woli dt - C dt + dy + i wi Woi dzi , (14) 
1 1 

where, by definition, CT uri 7 l.ll 
Until Section 7, it will be assumed that dy = 0, i.e., all income is 

derived from capital gains on assets. If one of the n-assets is “risk-free” 

I0 This result follows directly from the discrete-time argument used to derive (9’) 
where -C(t) dt is replaced by a general do(t) where &(t) is the instantaneous flow of 
funds from all noncapital gains sources. 

It was necessary to derive (12) by starting with the discrete-time formulation because 
it is not obvious from the continuous version directly whether dy - G(t)& equals 
C; dNtPi + Cy dNi dP, or just CT dNtP, . 

I1 There are no other restrictions on the individual wi because borrowing and short- 
selling are allowed. 
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(by convention, the n-th asset), then (T, = 0, the instantaneous rate of 
return, E, , will be called r, and (14) is rewritten as 

dW = 2 wi(ai - r) W dt + (r W - C) dt + dy + f Wiai dzi , (14’) 
1 1 

where m = n - 1 and the wr ,..., w, are unconstrained by virtue of the 
fact that the relation w, = 1 - Cy wi will ensure that the identity 
constraint in (14) is satisfied. 

4. OPTIMAL PORTFOLIO AND CONSUMPTION RULES: 
THE EQUATIONS OF OPTIMALITY 

The problem of choosing optimal portfolio and consumption rules for 
an individual who lives T years is formulated as follows: 

max E,, [ ,: u(C@>, t> dt + WV”), T,] (15) 

subject to: W(0) = W, ; the budget constraint (14), which in the case of 
a “risk-free” asset becomes (14’); and where the utility function (during 
life) U is assumed to be strictly concave in C and the “bequest” function 
B is assumed also to be concave in W.12 

To derive the optimal rules, the technique of stochastic dynamic 
programming is used. Define 

J( W, P, t) = E Et [jr U(C, s> ds + WV), U] > (16) ,w 

where as before, “E,” is the conditional expectation operator, conditional 
on W(t) = Wand P,(t) = Pi . Define 

rb(w, c; w, P, t> = WC, 0 + aa (17) 

I2 Where there is no “risk-free” asset, it is assumed that no asset can be expressed 
as a linear combination of the other assets, implying that the n x it variance-covariance 
matrix of returns, 8 = [ud, where oij = pij~ioj, is nonsingular. In the case when 
there is a “risk-free” asset, the same assumption is made about the “reduced” m x m 
variance-covariance matrix. 
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given -9vi(t) = wi , C(t) = C, W(t) = JV, and P,(t) = Pi .I3 From the 
theory of stochastic dynamic programming, the following theorem 
provides the method for deriving the optimal rules, C* and w*. 

?hEOREM 1.14 If the P,(t) are generated by a strong d~~~s~on process, 
U is strictiy concave in C, and B is concave in W, then there exists a set of 
optimal rules (controls), w* and C*, satisfying Cy wi* = 1 and 
J(W, P, T) = B( W, T) and these controls satisfy 

8 = +(c*, w”; w, P, t) 3 $(C, w; w7 P, t) 

for t E [O, T]. 

From Theorem I, we have that 

In the usual fashion of maximization under constraint, we define the 
kagrangian, L = $ + A[1 - Cl” wi] where h is the multiplier and 6find 
the extreme points from the first-order conditions 

0 = L&C”, w*) = U,(C”, t) - Jw, (19) 

0 = L,“,(C*, w*) = -A + JWZ~C W + Jww f okjWj* W” 
1 

7z 

+ c Jj wd’j W k = I,..., n, cm 

0 = L,(C”, w*> = 1 - i wi*, o-1) 
1 

I3 “8” is short for the rigorous L$?$, the Dynkin operator over the variables P 
and W for a given set of controls w and C. 

I4 For an heuristic proof of this theorem and the derivation of the stochastic Bellman 
equation, see Dreyfus [4] and Merton [12]. For a rigorous proof and discussion of 
weaker conditions, see Kushner [9, Chap. IV, especially Theorem 71. 
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where the notation for partial derivatives is Jw SE aJ/a W, Jt = aJ/at, 
UC = aUjaC, Ji = aJ/aPi, Jij = a2J/aPi aPj, and Jjw = azJ/aPj a W. 

Because Lee = +cc = UC, c 0, -&ok = &to, = 0, -&ok = ~a2W2Jww, 
L %*j = 0, k fj, a sufficient condition for a unique interior maximum 
is that Jww < 0 (i.e., that J be strictly concave in W). That assumed, as 
an immediate consequence of differentiating (19) totally with respect to 
W, we have 

ac* 
aw > 0. 

To solve explicitly for C* and w*, we solve the n + 2 nondynamic 
implicit equations, (19)-(21), for C*, and w*, and X as functions of Jw , 
J ww > Jiw , W, P, and t. Then, C* and w* are substituted in (18) which 
now becomes a second-order partial differential equation for J, subject 
to the boundary condition J(W, P, r) = B(W, T). Having (in principle 
at least) solved this equation for J, we then substitute back into (19)-(21) 
to derive the optimal rules as functions of W, P, and t. Define the inverse 
function G = [U&l. Then, from (19), 

C” = G(J, , t). (23) 

To solve for the wi*, note that (20) is a linear system in wi* and hence 
can be solved explicitly. Define 

52 = [CT& the n x n variance-covariance matrix, 

[Vii] EE Q-l,15 (24) 

Eliminating X from (20), the solution for wk* can be written as 

wk* = h,(P, t) + m(P, K t> g,(P, t> +.ap, w, t), k = l,..., yt, (25) 

where C,” h, = 1, C: g, = 0, and C,“,fk E 0.16 

I5 52-l exists by the assumption on 9 in footnote 12. 
n 

16 h,(P, r> = c l+/r; m(P, w, t) = --Jw/WJwv ; 
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Substituting for w* and C* in (18), we arrive at the fundamental 
partial differential equation for J as a function of W, 19, and t, 

0 = U[G, t] f Jt + Jw [ " ='Jkiakw - G] 

vk,aka,r - 
i 

f f vkla 
11 

subject to the boundary condition J(W, P, T) = B(W, T). If (26) were 
solved, the solution J could be substituted into (23) and (25) to obtain 
C* and w* as functions of W, P, and t. 

For the case where one of the assets is “risk-free,” the equations are 
somewhat simplified because the problem can be solved directly as an 
unconstrained maximum by eliminating W, as was done in (14’). In this 
case, the optimal proportions in the risky assets are 

k = I,..., m. (27) 

The partial differential equation for J corresponding to (26) becomes 

0 = U!G, T] + Jt + Jw[rW - G] + -f JioliPi 
1 

subject to the boundary condition J( W, P, T) = B( W, T), 
Although (28) is a simplified version of (26), neither (26) nor (28) lend 

themselves to easy solution. The complexities of (26) and (28) are caused 
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by the basic nonlinearity of the equations and the large number of state 
variables. Although there is little that can be ‘done about the non- 
linearities, in some cases, it may be possible to reduce the number of 
state variables. 

5. LOG-NORMALITY OF PRICES AND THE CONTINUOUS-TIME 
ANALOG TO TOBIN-MARKOWITZ MEAN-VARIANCE ANALYSIS 

When, for k = l,..., n, elk and gk are constants, the asset prices have 
stationary, log-normal distributions. In this case, J will be a function of W 
and t only and not P. Then (26) reduces to 

0 = U[G, t] + Jt + Jw [ ” ‘;vxr”ic W - G] + q 

- &J’; [ $ $ (29) 

From (25), the optimal portfolio rule becomes 

wt* = hk + m(W, t> g, 9 (30) 

where CT hl, = 1 and C: g, = 0 and h, and g, are constants. 
From (30), the following “separation” or “mutual fund” theorem can 

be proved. 

THEOREM II.17 Given n assets with prices Pi whose changes are log- 
normally distributed, then (1) there exist a unique (up to a nonsingular 
transformation) pair of “mutualfunds” constructedfrom linear combinations 
of these assets such that, independent of preferences (i.e., the form of the 
utility function), wealth distribution, OP time horizon, individuals will be 
indifferent between choosing from a linear combination of these two funds 
or a linear combination of the original n assets. (2) If Pf is the price per 
share of either fund, then Pf is log-normally distributed. Further, (3) tf 
6, = percentage of one mutual fund’s value held in the k-th asset and tf 
A, = percentage of the other mutual fund’s value held in the k-th asset, 
then one can find that 

6,=hk+ug7)), 
V 

k = I ,..., n, 

I7 See Cass and Stiglitz [l] for a general discussion of Separation theorems. The 
only degenerate case is when all the assets are identically distributed (i.e., symmetry) 
in which case, only one mutual fund is needed. 
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and 

k = l,..., n, 

where v, 77 are arbitrary constarits (v # O), 

Proof. (1) (30) is a parametric representation of a line in the hyper- 
plane defined by C: I+* = 1. I8 Hence, there exist two linearly independent 
vectors (namely, the vectors of asset proportions held by the two mutual 
funds) which form a basis for all optimal portfolios chosen by the indi- 
viduals. Therefore, each individual would be indifferent between choosing 
a linear combination of the mutual fund shares or a linear combination 
of the original n assets. 

(2) Let Y = NJ’, = the total value of (either) fund where 
Nf = number of shares of the fund outstanding. Let Nk = number sf 
shares of asset k held by the fund and pk = N,J’,/V = percentage of 
total value invested in the k-th asset. Then V = C,” NTCPI, and 

But 

dV = 5 Nk dPk, + f Pi, dN,C + 1 dP, div, 
1 1 

= Nf dP, + Pf dNf + dP, dNf . 
(31) 

f PI, dNk + i dP, dlv, = net inflow of funds from non-capital-gain 
1 1 sources 

= net value of new shares issued 02) 

= P, dN, + dNf dP, . 

From (31) and (32), we have that 

N,dP, = iN,dP,. 
1 

By the definition of V and pIc, (33) can be rewritten as 

dP, _ n dPI, --Tpkpb 
Pf 

= f ,,&k dt + f /hka, dzk . 
1 1 

I8 See [I, p. 151. 
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By Ito’s Lemma and (34), we have that 

kak t + i pkak 
1 

So, Pf(t) is log-normally distributed. 

(3) Let a(IY, t; U) = percentage of wealth invested in the first 
mutual fund by an individual with utility function U and wealth W at 
time t. Then, (1 - a) must equal the percentage of wealth invested in the 
second mutual fund. Because the individual is indifferent between these 
asset holdings or an optimal portfolio chosen from the original IZ assets, 
it must be that 

,@k* = hk + m( w, t) g, = aal, + (1 - a) A,, k = l,..., ~1. (36) 

All the solutions to the linear system (36) for all W, t, and 7J are of the 
form 

6, = hk + 0 gk , k = l,..,, n, 
V 

Note that 

and 

h, = hi,-+& k = l,..., n, 

a = vmW, t> + rl, v # 0. 

;xk=;(hk-$gk) = l. 

(37) 

Q.E.D. 

For the case when one of the assets is “risk-free,” there is a corollary to 
Theorem II. Namely, 

COROLLARY. If one of the assets is “risk-free,” then the proportions of 
each asset held by the mutual funds are 

6,= l--86,, A, = 1 - 5 x,< . 
1 1 
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PvooJ By the assumption of log-normal prices, (27) reduces to 

wk * = ??I( w, t) -f u&q - r), k = I,..., m, wo 

and 

By the same argument used in the proof of Theorem II, (38) and (39) 
define a line in the hyperplane defined by CT byi* = 1 and by the same 
technique used in Theorem II, we derive the fund proportions stated in 
the corollary with a(W, t; U) = VM( W, t) + 7, where V, 17 are arbitrary 
constants (V # 0). E.D. 

Thus, if we have an economy where all asset prices are log-normally 
distributed, the investment decision can be divided into two parts by the 
establishment of two financial intermediaries (mutual funds) to hold all 
individual securities and to issue shares of their own for purchase by 
individual investors. The separation is complete because the “instructions” 
given the fund managers, namely, to hold proportions 6, and A, of the 
k-th security, k = l,..., n, depend only on the price distribution parameters 
and are independent of individual preferences, wealth distribution, or 
age distribution. 

The similarity of this result to that of the classical Tobin-Markowitz 
analysis is clearest when we choose one of the funds to be the risk-free 
asset (i.e., set 7 = l), and the other fund to hold only risky assets (which 
is possible by setting v = CT Cy uij(aj - r), provided that the double 
sum is not zero). Consider the investment rule given to the ‘“risky” fund’s 
manager when there exists a “risk-free” asset (money) with zero return 
(v = 0). It is easy to show that the 6, proportions prescribed in the 
corollary are derived by finding the locus of points in the (instantaneous) 
mean-standard deviation space of composite returns which minimize 
variance for a given mean (i.e., the efficient risky-asset frontier), and then 
by finding the point where a line drawn from the origin is tangent to 
the locus. This point determines the 6, as illustrated in Fig. 1. 

Given the OI*, the 6, are determined. So the log-normal assumption in 
the continuous-time model is sufficient to allow the same analysis as in 
the static mean-variance model but without the objectionab ssumptions 
of quadratic utility or normality of the distribution of olute price 
changes. (Log-normality of price changes is much Iess objectionable, 
since this does invoke “limited liability” and, by the central limit theorem 



388 MERTON 

FIG. 1. Determination of the optimal combination of risky assets. 
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is the only regular solution to any continuous-space, infinitely-divisible 
process in time.) 

An immediate advantage for the present analysis is that whenever log- 
normality of prices is assumed, we can work, without loss of generality, 
with just two assets, one “risk-free” and one risky with its price log- 
normally distributed. The risky asset can always be thought of as a 
composite asset with price P(t) defined by the process 

dP -= 
P 

a dt + a dz, 

where 

6. EXPLICIT SOLUTIONS FOR A PARTICULAR CLASS OF 

UTILITY FUNCTIONS 

(41) 

On the assumption of log-normality of prices, some characteristics of 
the asset demand functions were shown. If a further assumption about 
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the preferences of the individual is made, then Eq. (28) can be solved 
in closed form, and the optimal consumption and portfolio rules derived 
explicitly. Assume that the utility function for the i~divid~a~~ U(C, t), 
can be written as U(C, t) = e-W(C), where V is a member of the family 
of utility functions whose measure of absolute risk aversion is 
and hyperbolic in consumption, i.e., 

A(C) z -V”/v = l/($-q + T/p) > 

subject to the restrictions: 

rfl; P>O; (&+q) > 0; q = 1 if y = -co. (42) 

All members of the HARA (hyperbolic absolute risk-aversion) family 
can be expressed as 

V(C) = (l - Y) ~ Y ( * + +. (43) 

This family is rich, in the sense that by suitable adjustment of the para- 
meters, one can have a utility function with absolute or relative risk 
aversion increasing, decreasing, or constant.ls 

TABLE I 

Properties of HARA Utility Functions 

A(C) = c 
1 

>o (implies 7 > 0 for y  > 1) 

+T 
l--Y B 

A’(C) = 
-1 

(I - y, ii” + ;r 

<Ofor--m <y<l 
>Oforl<y<co 
= o for y  = + m 

Relative risk aversion R(C) = - V”C/ v’ = A(C)C 

R’(C) = 7/B 

( &-+g 

>Ofor7/>0(--COY< co,r#l) 
= 0 for ?) = 0 
<ofor~<o(-ca <y<l) 

Note that included as members of the HARA family are the widely used isodastic 
(constant relative risk aversion), exponential (constant absolute risk aversion), and 
quadratic utility functions, As is well known for the quadratic case, the members of the 
HARA family with y  > 1 are only defined for a restricted range of consumption, 
namely 0 < C < (y - 1)7/p. [l, 5,6, 10,12, 13, 161 discuss the properties of various 
members of the HARA family in a portfolio context. Although this is not done here, 
the HARA definition can be generalized to include the cases when y, /3, and 7 are 
functions of time subject to the restrictions in (42). 
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Without loss of generality, assume that there are two assets, one “risk- 
free” asset with return r and the other, a “risky” asset whose price is 
log-normally distributed satisfying (40). From (28), the optimality equation 
for J is 

0 = (1 - YY e-Pt [ ePtJ BW 1 
$r 

Y 
+ Jt + [Cl - Y> T/P + rW Jw 

J; (a - r)” 
J ww ~~.2 (44) 

subject to J(W, T) = 0.20 The equations for the optimal consumption 
and portfolio rules are 

c*@) = (1 - r> B- [Yy] 7% - (1 -#r) ‘I 
and 

Jw (a -r> 
w*(t) = - Jwww $ , 

where 14*(t) is the optimal proportion of wealth invested in the risky 
asset at time t. A solutiorP to (44) is 

J(w, t) = afl-ye-pt [ ‘(’ - 

-(y)IT-f)) s w 

e I[ 
r 

P - Y” 
s + ar (1 - e-T(T-t))]y, (47) 

where 6 E 1 - y and v = r + (CL - r)2/2~oz. 
From (45)-(47j, the optimal consumption and portfolio rules can be 

written in explicit form as 

c*(t) = 
[p - yvl [w(f) + 9 (1 - e+T))] 6rl 

-- 
8 (1 - exp [ (p J Yv) (t - T,]) p 

(48) 

and 

w*(t) w> = $$ W(t) + ,(;r; f-l (1 _ er(t-T))* (49) 

20 It is assumed for simplicity that the individual has a zero bequest function, i.e., 
B = 0. If  B(W, T) = H(T)(aW + b)y, the basic functional form for J in (47) will be 
the same. Otherwise, systematic effects of age will be involved in the solution. 

21 By Theorem I, there is no need to be concerned with uniqueness although, in this 
case, the solution is unique. 
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The manifest characteristic of (48) and (49) is that the demand functions 
are linear in wealth. It will be shown that the WARA family is the only 
class of concave utility functions which imply linear solutions For notation 
purposes, define 1(X, r) C HARA(X) if -1J1, = l/(& + ,B) > 0, where 
LY and p are, at most, functions of time and I is a strictly concave function 
of x. 

THEOREM III. Given the model speczjied in this section, then C* = a W + b 
and w* W = g W + h where a, b, g, and h are, at most, fkctions of time 
if and only if U(C, t) C HARA(C). 

Proof. “If” part is proved directly by (48) and (49). “Only if” part: 
Suppose w* W = gW + h and C* = aW + b. From (19), we have that 
Uc(C*, t) = JW( W, t). Differentiating this expression totally with respect 
to W, we have that U,, dC*/dW = Jww or au,, = JrvFV and hence 

From (46) W* W = g W + h = - J&DI - r)/Jwwa2 or 

-JwwlJw = I/[(*) W+ 

So, from (50) and (51), we have that U must satisfy 

-U,,/U, = l/(a’C* + b’), (52) 

where a’ = g”g/(a - r) and b’ = (aa2h - bo2g)/(a! - r). Hence UC HARA(C). 

As an immediate result of Theorem III, a second theorem can be proved. 

THEOREM IV. Given the model specljied in this section, J(W, t) C 
HARA( W) if and only if U C HARA(C). 

Proof. “If” part is proved directly by (47). “Only if” part: suppose 
J( W, t) C IIARA( W). Then, from (46), w* W is a linear function of W. 
If (28) is differentiated totally with respect to wealth and given the specific 
price behavior assumptions of this section, we have that C* must satisfy 

c*=rW+~+~- w* w d(w*Wl Jwww Jw 2 (a - r>” ____-__ ___ 
ww WW dW ! 1 2Jww Jww -qc---. 
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But if J C HARA( IV), then (53) implies that C* is linear in wealth. Hence, 
by Theorem III, UC HARA(C). Q.E.D. 

Given (48) and (49), the stochastic process which generates wealth 
when the optimal rules are applied, can be derived. From the budget 
equation (14’), we have that 

dW = [(~“(a - r) + r) W - C*] dt + uw* W dz 

(a - r>” = P _____- a26 1 _ e!4-T) 1 dt + (a-r) ) os dzi X(t) 

where X(t) = W(t) + Sv/fir(l - er(t-T)) for 0 < t < Tand ,u = (p 
By Ito’s Lemma, X(t) is the solution to 

A!?= a- 
[ 

P 
x (1 - @(t-T)) 1 

dt + (a - r, dz 
as . 

Again using Ito’s Lemma, integrating (55) we have that 

x(t) = X(0) exp I[ 6 - p - -1 t + -@-$;A)- 1: dz/ 

x (1 - eU+“)/(l - e+J 

and, hence, X(t) is log-normally distributed. Therefore, 

W(t) = X(t) - j$ (1 - er(t-T)) 

(56) 

is a “displaced” or “three-parameter” log-normally distributed random 
variable. By Ito’s Lemma, solution (56) to (55) holds with probability 
one and because W(t) is a continuous process, we have with probability 
one that 

hi W(t) = 0. (57) 

From (48), with probability one, 

li+ty c*(t) = 0. (58) 

Further, from (48), C* + Sq/p is proportional to X(t) and from the 
definition of U(C*, t), U(C*, t) is a log-normally distributed random 
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variable.22 The following theorem shows that this resuit holds only if 
U(C, t) C I-IARA(C). 

THEOREM V. Gium the model spec@ied in this section and the time- 
dependent random variable Y(t) = U(C*, t), then Y is Iog-k2omully dis- 
tributed lyand only if CJ(C, t) C HARA(C). 

Proof. “If” part: it was previously shown that if UC HARA(C), 
then Y is log-normally distributed. “Only if” part: let C* = g(W, t) and 
W* W = j( W, t). By It8’s Lemma, 

dY = UC dC” + U, dt + +U,,(dC”)“, 

dC” = g, dW + gt dt + &g,,(dW)‘, 

dW = [J(u - r) + rW - g] dt f ufdz. 

ecause (dW)2 = u2f 2 dt, we have that 

dC* = kwf (a - r> -I- gwr W - gg, + $g,,ozf” + g,] dt + ofgw dz (60) 

and 

dY = iU&wf(a - r) + rgwW - ggw + +gww?f2 + stl + Ut 
t +Uc,02f “gw”) dt + ufgwUc dz. ~6~~ 

A necessary condition for Y to be log-normal is that Y satisfy 

dY 
__ = F(Y) dt + b dz, 

Y (62) 

where b is, at most, a function of time. If Y is log-normal, from (61) and 
(69, we have that 

b(t) = ofgwU&J. (63) 

From the first-order conditions, Sand g must satisfy 

uccgw = Jww , f = -J&ol - r)/s”J,, + (641 

and products and powers of log-normal variates are log norma! with one exception: 
the logarithmic utility function (r = 0) is a singular case where U(C*, t) = log C* 
is normally distributed. 

642/S/4-4 
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But (63) and (64) imply that 

bU/oU, = fg, = I - (a - r) U&“U,, 

or 

-~ccwc! = 70) UCIU, 

(65) 

F-34 

where q(t) = (a - r)/ob(t). Integrating (66), we have that 

u = [(q + l)(C + p) b&1 7 (67) 

where l(t) and p are, at most, functions of time and, hence, U C HARA(C). 
Q.E.D. 

For the case when asset prices satisfy the “geometric” Brownian motion 
hypothesis and the individual’s utility function is a member of the HARA 
family, the consumption-portfolio problem is completely solved. From 
(48) and (49), one could examine the effects of shifts in various parameters 
on the consumption and portfolio rules by the methods of comparative 
statics as was done for the isoelastic case in [12]. 

7. NONCAPITAL GAINS INCOME: WAGES 

In the previous sections, it was assumed that all income was generated 
by capital gains. If a (certain) wage income flow, & = Y(t) dt, is intro- 
duced, the optimality equation (18) becomes 

where the operator 8 is defined by L? = 8 + Y(t) a/i? W. This new 
complication causes no particular computational difficulties. If a new 
control variable, C?(t), and new utility function, V(C, t) are defined by 
C(t) = C(t) - Y(t) and V(C, t) = U(c(t) + Y(t), t), then (68) can be 
rewritten as 

0 = gyc t> + -wll, (69) ,w 

which is the same equation as the optimality equation (18) when there 
is no wage income and where consumption has been re-defined as con- 
sumption in excess of wage income. 

In particular, if Y(t) = Y, a constant, and UC HARA(C), then the 
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optimal consumption and portfolio rules corresponding to (48) and (49) 
are 

c*;t> = 

rp _ yv] [ f,f,’ + ‘(l -reT(t-T’) + 3 (1 - e?Y-T)) 

60 - expKp - 24(t - WY) 

Comparing (70) and (71) with (48) and (49), one finds that, in computing 
the optimal decision rules, the individual capitalizes the lifetime Bow of 
wage income at the market (risk-free) rate of interest and then treats the 
capitalized value as an addition to the current stock of wealth.“” 

The introduction of a stochastic wage income will cause increased 
computational difficulties although the basic analysis is the same as for 
the no-wage income case. For a solution to a particular example of a 
stochastic wage problem, see example two of Section 8. 

8. POISSON PROCESSES 

The previous analyses always assumed that the underlying stochastic 
processes were smooth functions of Brownian motions and, therefore, 
continuous in both the time and state spaces. Although such processes 
are reasonable models for price behavior of many types of liquid assets, 
they are rather poor models for the description of other types. The 
Poisson process is a continuous-time process which allows discrete (or 
discontinuous) changes in the variables. The simplest independent Poisson 
process defines the probability of an event occuring during a time interval 
of length h (where h is as small as you like) as follows: 

prob(the event does not occur in the time interval (t, t + Jz)] 
= 1 - Ah + O(h), 

prob{the event occurs once in the time interval (t, t + h)) 
= a2 + O(h), 

(72 

prob{the event occurs more than once in the time interval 
(4 t + A)) = 004, 

23 As Hakansson [6] has pointed out, (70) and (71) are consistent with the Friedman 
Permanent Income and the Modigliani Life-Cycle hypotheses. However, in general, 
this result will not hold. 
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where U(h) is the asymptotic order symbol defined by 

W4 is O(h) if lii(#(h)/h) = 0 

and A = the mean number of occurrences per unit time. 
Given the Poisson process, the “event” can be defined in a number of 

interesting ways. To illustrate the degree of latitude, three examples of 
applications of Poisson processes in the consumption-portfolio choice 
problem are presented below. Before examining these examples, it is first 
necessary to develop some of the mathematical properties of Poisson 
processes. There is a theory of stochastic differential equations for Poisson 
processes similar to the one for Brownian motion discussed in Section 2. 
Let q(t) be an independent Poisson process with probability structure as 
described in (72). Let the event be that a state variable x(t) has a jump in 
amplitude of size 9 where Y is a random variable whose probability 
measure has compact support. Then, a Poisson differential equation for 
x(t) can be written as 

ch = m, t> CA + dx, 0 4 (74) 

and the corresponding differential generator, ZZ, is defined by 

=%W, f)l = ht +f(x, I> kc + ~t~i?G + yg, t> - hb, Oh (75) 

where YE,” is the conditional expectation over the random variable 9, 
conditional on knowing x(t) = X, and where h(x, t) is a Cl function of x 
and t.24 Further, Theorem I holds for Poisson processes.25 

Returning to the consumption-portfolio problem, consider first the 
two-asset case. Assume that one asset is a common stock whose price 
is log-normally distributed and that the other asset is a “risky” bond 
which pays an instantaneous rate of interest r when not in default but, 
in the event of default, the price of the bond becomes zero.26 

From (74), the process which generates the bond’s price can be written 
as 

dP = rPdt - Pdq, (76) 

24 For a short discussion of Poisson differential equations and a proof of (75) as 
well as other references, see Kushner [9, pp. 18-221. 

25 See Dreyfus [4, p. 2251 and Kushner [9, Chap. IV]. 
26 That the price of the bond is zero in the event of default is an extreme assumption 

made only to illustrate how a default can be treated in the analysis. One could made 
the more reasonable assumption that the price in the event of default is a random 
variable. The degree of computational difficulty caused by this more reasonable assump- 
tion will depend on the choice of distribution for the random variable as well as the 
utility function of the individual. 
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where dq is as previously defined and Y = 1 with probability one. Sub- 
stituting the explicit price dynamics into (14’), the budget equation 

ecomes 

dW = (w W(DL - r) + Y W - C} dt + wo W dz - (I - IV) W dq. (77) 

From (75), (77), and Theorem I, we have that the optimality equation 
can be written as 

0 = Lye*, t) + J,(W, t) + X[J(w” w, t) - J(FK t)] 
+ J,( WY t)[(w*(a - r) + r) w - c*j + *Jww(w$ t) cAv*% wz, (78) 

where G* and w* are determined by the implicit equations 

and 

0 = u&c*, t) - J,( w, t> (79) 

0 = XJ,(w*W, t) + J&W, t)(a - r) + JwIy(W, t) o”w*W. (SO) 

To see the effect of default on the portfolio and consumption decisions, 
consider the particular case when U(C, t) = 0/y: for y < 1. The solutions 
to (79) and (80) are 

where 

C*(t) = AW(t)/(l - y)(l - exp[A(f - Q/l - y]), 

and 

w* = (a-r) + 
a20 - 24 a2(1 x_ y) (w”)y-1.27 @O’> 

As might be expected, the demand for the common stock is an increasing 
function of h and, for h > 0, w* > 0 holds for all values of 01, r, or ~3. 

For the second example, consider an individual who receives a wage, 
Y(t), which is incremented by a constant amount E at random points in 
time, Suppose that the event of a wage increase is a Poisson process 
with parameter A. Then, the dynamics of the wage-rate state variable 
are described by 

dY = E dq, with Y = 1 with probability one. (81) 

27 Note that (79’) and (SO’) with X = 0 reduce to the solutions (48) and (49) when 
?J=p=oand/3=1-~. 
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Suppose further that the individual’s utility function is of the form 
U(C, t) = e+V(C) and that his time horizon is infinite (i.e., T = ,).zs 
Then, for the two-asset case of Section 6, the optimality equation can be 
written as 

0 = rqc*> - pl(W, Y) + h[l(W, Y + e) - I(W, Y)] 

+ &OK y)Kw*(a - r) + r> w + Y - c*1 
+ &.rw( w, Y) 02w*2 w2, (83) 

where I( W, Y) = FJ( W, Y, t). If it is further assumed that V(C) = -e-nc/v, 
then the optimal consumption and portfolio rules, derived from (83), are 

C*(t) = r [W(t) + F + -$ c?)] + -$ [p - r + !L!C$?J (84) 

and 

w*(t) w(t) = - . 
rp2r 

In (84), [W(t) + Y(t)/r + X(1 - e+)/yr”] is the general wealth term, 
equal to the sum of present wealth and capitalized future wage earnings. 
If X = 0, then (84) reduces to (70) in Section 7, where the wage rate was 
fixed and known with certainty. When h > 0, A(1 - e-nt-)/yr2 is the 
capitalized value of (expected) future increments to the wage rate, 
capitalized at a somewhat higher rate than the risk-free market rate 
reflecting the risk-aversion of the individuaLz9 Let X(t) be the “Certainty- 
equivalent wage rate at time t” defined as the solution to 

%8 I have shown elsewhere [12, p. 2521 that if U = e-@V(C) and U is bounded or p 
sufficiently large to ensure convergence of the integral and if the underlying stochastic 
processes are stationary, then the optimality equation (18) can be written, independent 
of explicit time, as 

0 = fy$ [V(C) + ~‘[Zll, (821 

where 9 = S? - p - i and Z(W, P) = eP”.Z( W, P, t). 

A solution to (82) is called the “stationary” solution to the consumption-portfolio 
problem. Because the time state variable is eliminated, solutions to (82) are computa- 
tionally easier to find than for the finite-horizon case. 

29 The usual expected present discounted value of the increments to the wage flow is 

s 

m 
Et e-r(s-t) [Y(s) - Y(t)] ds = m XE e-T(s-t)(~ - t) ds = he/r2, 

t s t 

which is greater than X(1 - e-qC)/TP for e > 0. 
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For this example, X(t) is calculated as follows: 

(87) 

Solving for X(t) from (87), we have that 

X(t) = Y(0) t Xt(l - ePq/Tp :w 

The capitalized value of the Certainty-equivalent wage income flow is 

Thus, for this example, 3o the individual, in computing the present value 
of future earnings, determines the Certainty-equivalent flow and then 
capitalizes this flow at the (certain) market rate of interest. 

The third example of a Poisson process differs from the first two because 
the occurrence of the event does not involve an explicit change in a state 
variable. Consider an individual whose age of death is a random variable. 
Further assume that the event of death at each instant of time is an inde- 
pendent Poisson process with parameter A. Then, the age of death, 7, is 
the first time that the event (of death) occurs and is an exponentially 
distributed random variable with parameter A. The optimaiity criterion 
is to 

and the associated optimality equation is 

0 = qc*, t) + X[B(W, t) - J(W, t)] + -itp[J]. cw 
30 The reader should not infer that this result holds in general. Although (86) is a 

common definition of Certainty-equivalent in one-period utility-of-wealth models, 
it is not satisfactory for dynamic consumption-portfolio models. The reason it works 
for this example is due to the particular relationship between the J and Bi functions 
when .!7 is exponential. 
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To derive (91), an “artificial” state variable, x(t), is constructed with 
x(t) = 0 while the individual is alive and x(t) = 1 in the event of death. 
Therefore, the stochastic process which generates x is defined by 

dx = dq and Y = 1 with probability one (92) 

and 7 is now defined by x as 

T = min{t / t > 0 and x(t) = 11. (93) 

The derived utility function, J, can be considered a function of the state 
variables W, x, and t subject to the boundary condition 

J( W, x, t) = B(FV, t) when x= 1. (94) 

In this form, example three is shown to be of the same type as examples 
one and two in that the occurrence of the Poisson event causes a state 
variable to be incremented, and (91) is of the same form as (78) and (83). 

A comparison of (91) for the particular case when B = 0 (no bequests) 
with (82) suggested the following theorem.31 

THEOREM VI. If r is as defined in (93) and U is such that the integral 
E,,[Si U(C, t) dt] is absolutely convergent, then the maximization qf 
Eo[s; UC, t> 4 is equivalent to the maximization of &b[ST e-AtU(C, t) dt] 
where “E,” is the conditional expectation operator over all random variables 
including r and “rZ,,” is the conditional expectation operator over all random 
variables excluding r. 

Proof. r is distributed exponentially and is independent of the other 
random variables in the problem. Hence, we have that 

EO [f U(C, t) dt] = irn Xc-AT dT c”, jT U(C, t) dt 
0 0 0 

O3 
(95) 

= 
SI 

’ Xg(t) e-+ dt dr, 
0 0 

where g(t) E go[U(C, t)]. Because the integral in (95) is absolutely con- 

31 I believe that a similar theorem has been proved by J. A. Mirrlees, but I have no 
reference. D. Cass and M. E. Yaari, in “Individual Saving, Aggregate Capital Accumula- 
tion, and Efficient Growth,” in “Essays on the Theory of Optimal Economic Growth,” 
ed., K. Shell, (M.I.T. Press 1967), prove a similar theorem on page 262. 
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vergent, the order of integration can be interchanged, i.e., gO fi U(C,t) dt = 
J’i &,U(C, t) &. By integration by parts, (95) can be rewritten as 

m 7 

s.i 
eMATg(t) dt dr = m e-Asg(s) d’s 

0 0 1 
:gij” ecAtU(C, t) dt. X.D. 

0 

(961 

Thus, an individual who faces an exponentially-distributed uncertain age 
of death acts as if he will live forever, but with a subjective rate of time 
preference equal to his “force of mortality,” i.e., to the reciprocal of his 
life expectancy. 

9. ALTERNATIVE PRICE EXPECTATIONS To THE 

GEOMETRIC BROWNIAN MQTION 

The assumption of the geometric Brownian motion hypothesis is a 
rich one because it is a reasonably good model of observed stock price 
behavior and it allows the proof of a number of strong theorems about 
the optimal consumption-portfolio rules, as was illustrated in the previous 
sections. However, as mentioned in the Introduction, there have been 
some disagreements with the underlying assumptions required to accept 
this hypothesis. The geometric Brownian motion hypothesis best describes 
a stationary equilibrium economy where expectations about future returns 
have settled down, and as such, really describes a “long-run” equilibrium 
model for asset prices. Therefore, to explain “short-run” consumption 
and portfolio selection behavior one must introduce alternative models of 
price behavior which reflect the dynamic adjustment of expectations. 

In this section, alternative price behavior mechanisms are postulated 
which attempt to capture in a simple fashion the effects of changing 
expectations, and then comparisons are made between the optimal 
decision rules derived under these mechanisms with the ones derived in 
the previous sections. The choices of mechanisms are not exhaustive nor 
are they necessarily representative of observed asset price behavior. 
Rather they have been chosen as representative examples of price adjust- 
ment mechanisms commonly used in economic and financial models. 

Little can be said in general about the form of a solution to (28) when 
LYE and CT~ depend in an arbitrary manner on the price levels. If it is 
specified that the utility function is a member of the HARA family, i.e., 

U(C t) = (l - y) , -------F(t) (& + 17)? Y 
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subject to the restrictions in (42), then (28) can be simplified because 
J(W, P, t) is separable into a product of functions, one depending on W 
and t, and the other on P and t .32 In particular, if we take J(W, P, t) to 
be of the form 

(98) 

substitute for J in (2X), and divide out the common factor 

F(t) (6 + $ [l - e’(~-T)])y, 

then we derive a “reduced” equation for H, 

Y 

o = (1 - d2 H y-1 + (1 - Y) i+ 

Y ( 1 
P 

y (y + H,) + (1 - Y> rH 

(99) 

and the associated optimal consumption and portfolio rules are 

and 

w,*(t) w = [ 2 zJjfi(cdj - P) + zg- I( & + $ [l - ey), (101) 
1 

k = I,..., m. 

Although (99) is still a formidable equation from a computational point 
of view, it is less complex than the general equation (28), and it is possible 

32This separability property was noted in [l, 5, 6, 10, 12, and 131. It is assumed 
throughout this section that the bequest function satisfies the conditions of footnote 20. 
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to obtain an explicit solution for particular assumptions about the depend- 
ence of olic and gk on the prices. Notice that both consumption and the 
asset demands are linear functions of wealth. 

For a particular member of the HARA family, namely t 
logarithmic utility (y = 0 = q and /3 = 1 - y = 1) function, (28) can 
be solved in general. In this case, J will be of the form 

JQW, P, t) = a(t) log W+ H(P, r) with H(P, T) = a(T) = 8, (102) 

with a(t) independent of the ollc and olC (and hence, the ?,J. For 
when F(t) = 1, we find a(t) = T - t and the optimal rules become 

W 
‘“= T-t UQ3) 

and 

For the log case: the optimal rules are identical to those derived when 
CQ and CJ,~ were constants, with the understanding that the ak and crk are 
evaluated at current prices. Hence, although we can solve this case for 
general price mechanisms, it is not an interesting one because di%erent 
assumptions about price behavior have no effect on the decision rules. 

The first of the alternative price mechanisms considered is called the 
‘“asymptotic ‘normal’ price-level” hypothesis which assumes that there 
exists a ‘“normal” price function, P(t), such that 

PiI E,[P(t)/qt)] = 1, for 0 < T < t < co, 

i.e., independent of the current level of the asset price, the investor expects 
the “long-run” price to approach the normal price. A particular example 
which satisfies the hypothesis is that 

F(t) = P(0) cut ow 
and 

$ = PL# + vt - log(P(t)/P(O))] dt + 5 clz, (107) 

where V$ = k + v//3 + a2/4p and k = log[rj(O)/P(O)].“” For the purpose 
of analysis, it is more convenient to work with the variable 

33 In the notation used in previous sections, (107) corresponds to (5) with LY(P, t) = 
p[$ + vt - log (P(t)/P(O))]. Note: “normal” does not mean “Gaussian” in the above 
use, but rather the normal long-run price of Alfred Marshall. 
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Y(t) = log[P(t)/P(O)] rather than P(t). Substituting for P in (107) by 
using Ito’s Lemma, we can write the dynamics for Y as 

dY = /3[,u + vt - Y] dt + u dz, (108) 

where p E (b - 3/Z/3. Before examining the effects of this price mechanism 
on the optimal portfolio decisions, it is useful to investigate the price 
behavior implied by (106) and (107). (107) implies an exponentially- 
regressive price adjustment toward a normal price, adjusted for trend. 
By inspection of (108), Y is a normally-distributed random variable 
generated by a Markov process which is not stationary and does not have 
independent increments.34 Therefore, from the definition of Y, P(t) is 
log-normal and Markov. Using Ito’s Lemma, one can solve (108) for Y(t), 
conditional on knowing Y(T), as 

Y(t) - Y(T) = (k + VT - $ - Y(T)) (1 - e-0’) + VT + oe-at St &a dz, 
T  

(109) 

where T = t - T > 0. The instantaneous conditional variance of Y(t) is 

var[Y(t) / Y(T)] = q (1 - e++). (110) 

Given the characteristics of Y(t), it is straightforward to derive the price 
behavior. For example, the conditional expected price can be derived 
from (110) and written as 

~TWYW’N 

= ET exp[Y(t) - Y(T)] 

= exp [(k + VT - $ - Y(T)) (1 - e-0’) + VT + $ (1 - t+,]. 

(111) 

It is easy to verify that (105) holds by applying the appropriate limit process 
to (111). Figure 2 illustrates the behavior of the conditional expectation 
mechanism over time. 

For computational simplicity in deriving the optimal consumption and 
portfolio rules, the two-asset model is used with the individual having 
an infinite time horizon and a constant absolute risk-aversion utility 

34 Processes such as (108) are called Ornstein-Uhlenbeck processes and are discussed, 
for example, in [3, p. 2251. 
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I 
T 

f  

]FIG. 2. The time-pattern of the expected value of the logarithm of price under the 
%orma!)’ price-level hypothesis. 

function, U(C, t) = -ee-nC/q. The fundamental ~ptimalit~ equation then 
is written as 

0 = -e-nc*/rj + Jt + Jw[w*(/3(q5 + vt - Y) - r) w  + rw - P-j 
+ -~Jw,wr2 W2a2 + J&p + vt - Y) f &Jyyo2 + Jrww* Wo2 (112) 

and the associated equations for the optimal rules are 

w*W = -J&(4 + vt - Y) - rj/Jwwcs2 - Jyw/Jww (113) 
and 

C” = -log(J@7)/y (1141 

Solving (112), (113), and (114), we write the optimal rules in explicit 
form as 

w*w=-+&[(1 +$)(a(P,t)-r)f$ 

and 
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where c@, t) is the instantaneous expected rate of return defined explicitly 
in footnote 33. To provide a basis for comparison, the solutions when the 
geometric Brownian motion hypothesis is assumed are presented as? 

w*l;T/- (a - r) 
7p-a2 

and 

pzrw+L (ocz!ILr 
[ rp” 202 1 . 

(117) 

(118) 

To examine the effects of the alternative “normal price” hypothesis on 
the consumption-portfolio decisions, the (constant) 01 of (117) and (118) 
is chosen equal to CL(P, t) of (115) and (116) so that, in both cases, the 
instantaneous expected return and variance are the same at the point of 
time of comparison. Comparing (115) with (117), we find that the propor- 
tion of wealth invested in the risky asset is always larger under the “normal 
price” hypothesis than under the geometric Brownian motion hypothesis.37 
In particular, notice that even if a < r, unlike in the geometric Brownian 
motion case, a positive amount of the risky asset is held. Figures 3a and 3b 
illustrate the behavior of the optimal portfolio holdings. 

The most striking feature of this analysis is that, despite the ability to 
make continuous portfolio adjustments, a person who believes that 
prices satisfy the “normal” price hypothesis will hold more of the risky 
asset than one who believes that prices satisfy the geometric Brownian 
motion hypothesis, even though they both have the same utility function 
and the same expectations about the instantaneous mean and variance. 

The primary interest in examining these alternative price mechanisms 
is to see the effects on portfolio behavior, and so, little will be said about 
the effects on consumption other than to present the optimal rule. 

The second alternative price mechanism assumes the same type of 
price-dynamics equation as was assumed for the geometric Brownian 
motion, namely, 

dP - = a dt + CT dz. 
P (119 

However, instead of the instantaneous expected rate of return 01 being a 

36 For a derivation of (117) and (118), see 112, p. 2561. 
37 It is assumed that Y + 02/2 > v, i.e., the “long-run” rate of growth of the “normal” 

price is greater than the sure rate of interest so that something of the risky asset will 
be held in the short and long run. 
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FIG. 3a. The demand for the risky asset as a function of the speed of adjustment 

w*w 

a-r 

FIG. 3b. The demand for the risky asset as a function of the expected return. 

constant, it is assumed that 01 is itself generated by the stochastic dinTerential 
equation 

da = ,B(p - a) dt + 6 ($- - 01 dtj 

= ,6(p - a) dt + 6a dz. 

The first term in (120) implies a long-run, regressive adjustment of t 
expected rate of return toward a “normal” rate of return, ,u, where /3 
is the speed of adjustment. The second term in (120) implies a short-run, 
extrapolative adjustment of the expected rate of return of the “error- 
learning” type, where 6 is the speed of adjustment. I will call the assump- 
tion of a price mechanism described by (I 19) and (120) the “De Leeuw” 
hypothesis for Frank De Leeuw who first introduced this type mechanism 
to explain interest rate behavior. 
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To examine the price behavior implied by (119) and (120), we first 
derive the behavior of IX, and then P. The equation for 01, (120), is of the 
same type as (108) described previously. Hence, 01 is normally distributed 
and is generated by a Markov process. The solution of (120), conditional 
on knowing a(T) is 

.r 
* a(t) - a(T) = (p - ol(T))(l - e-flT> + Gae-Pt efls dz 3 (120 
T 

where 7 = t - T > 0. From (121), the conditional mean and variance 
of a(t) - a(T) are 

and 

ET(a(t) - a(T)) = (p - ol(T))(l - e-@) (122) 

vaMt> - 4T) I 4T)l = 28 ?!I? (1 _ e-zsT)* (123) 

To derive the dynamics of P, note that, unlike IX, P is not Markov 
although the joint process [P, a] is. Combining the results derived for 
a(t) with (119), we solve directly for the price, conditional on knowing 
f’(T) and 4T), 

Y(t) - Y(T) = (p - $9) 7 - 

+ OS /l/r e-a(s-s ) dz(s’) ds + (T 1:. dz, (124) 

where Y(t) = log[P(t)]. From (124), the conditional mean and variance 
of Y(t) - Y(T) are 

and 

IZ,[Y(t) - Y(T)] = (p - &“) 7 - ” yBacT)’ (1 - e-P’) t(125) 

var[Y(t) - Y(T) j Y(T)] = cr2r + $$- [/3~ - 2(1 - e@‘) f +(l - e-2Pr)] 

+ $$ [&r - (1 - e-p’)]. 

Since P(t) is log-normal, it is straightforward to derive the moments for 
P(t) from (124)-(126). Figure 4 illustrates the behavior of the expected 
price mechanism. The equilibrium or “long-run” (i.e., 7 -+ co) distribution 
for a(t) is stationary gaussian with mean ,u and variance 82a2/2fl, and the 
equilibrium distribution for P(t)/P(T) is a stationary log-normal. Hence, 
the long-run behavior of prices under the De Leeuw hypothesis approaches 
the geometric Brownian motion. 
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FIG. 4. The time-pattern of the expected value of the logarithm of price under the 
De Leeuw hypothesis. 

Again, the two-asset model is used with the individual having an infinite 
time horizon and a constant absolute risk-aversion utility function, 
U(C, t> = -e-qc/q. The fundamental optimality equation is written as 

() = _ cnc* - + Jt + Jw[w*(a - P) W + UW - C*] 
71 

+ &Jvvww *zW202 + J&L - a) + frJ,,62a2 + Jw,6u2w”W. (127) 

Notice that the state variables of the problem are W and 01, which are 
both Markov, as is required for the dynamic programming technique. 
The optimal portfolio rule derived from (127) is, 

The optimal consumption rule is the same as in (114). Solving (127) an 
(128), the explicit solution for the portfolio rule is 

1 
w* w = 7p2(r + 26 + 2E [ 

(r + 6 + 2/3)(cY - r) - @(IL - r) 1. 
r+6+F (129 

Comparing (129) with (127) and assuming that p > Y, we find that under 
the De Leeuw hypothesis, the individual will Hold a smaller amount of 
the risky asset than under the geometric Brownian motion hypothesis. 
Note also that IV* W is a decreasing function of the long-run normal rate 
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of return p. The interpretation of this result is that as ,u increases for a 
given 01, the probability increases that future “01’s” will be more favorable 
relative to the current 01, and so there is a tendency to hold more of one’s 
current wealth in the risk-free asset as a “reserve” for investment under 
more favorable conditions. 

The last type of price mechanism examined differs from the previous 
two in that it is assumed that prices satisfy the geometric Brownian 
motion hypothesis. However, it is also assumed that the investor does 
not know the true value of the parameter 01, but must estimate it from 
past data. Suppose’P is generated by equation (119) with 01 and cr constants, 
and the investor has price data back to time --7. Then, the best estimator 
for 01, d(t), is 

1 
s(t) = ___ 

s 
1 dP 

t+r -,P’ (130) 

where we assume, arbitrarily, that a(-~) = 0. From (130), we have that 
@a(t)) = a, and so, if we define the error term et = 01 - G(t), then (119) 
can be re-written as 

where d2 = dz + l t dt/a. Further, by differentiating (130), we have the 
dynamics for 6, namely 

dc2 = -f?-- di. 
t+r 

Comparing (131) and (132) with (119) and (120), we see that this “learning” 
model is equivalent to the special case of the De Leeuw hypothesis of 
pure extrapolation (i.e., p = 0), where the degree of extrapolation (6) 
is decreasing over time. If the two-asset model is assumed with an investor 
who lives to time T with a constant absolute risk-aversion utility function, 
and if (for computational simplicity) the risk-free asset is money (i.e., 
Y = 0), then the optimal portfolio rule is 

w*w = -$ log (*) a(t) 

and the optimal consumption rule is 

c*= w - - -A- [log(T + T) 
T-t rj 

+ & (T - t - (T + d log@ + 7) + 0 + 4 lo& + 4) 

(134) 
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By differentiating (133) with respect to t, we find that w  * W is an increasing 
function of time for t < t, reaches a maximum at t = i, and then is a 
decreasing function of time for t < t < r, where i: is defined by 

E = [T + (1 - e) i-]/e. (135) 

The reason for this behavior is that, early in life (i.e. for t < 2), the 
investor learns more about the price equation with each observation, 
and hence investment in the risky asset becomes more attractive. However, 
as he approaches the end of life (i.e., for t > r), he is generally liquidating 
his portfolio to consume a larger fraction of his wealth, so that although. 
investment in the risky asset is more favorable, the absolute dollar amount 
invested in the risky asset declines. 

Consider the effect on (133) of increasing the number of available 
previous observations (i.e., increase T). As expected, the dollar amount 
invested in the risky asset increases monotonically. Taking the limit of 
(133) as T ---f co, we have that the optimal portfolio rule is 

w*pCAC.At) 
vu2 

as 2-4~0, 

which is the optimal rule for the geometric Brownian motion case when a! 
is known with certainty. Figure 5 illustrates graphically how the optimal 
rule changes with 7. 

T 

FIG. 5. The demand for the risky asset as a function of the number of previous 
price observations. 
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10. CONCLUSION 

By the introduction of It& Lemma and the Fundamental Theorem 
of Stochastic Dynamic Programming (Theorem I), we have shown how to 
construct systematically and analyze optimal continuous-time dynamic 
models under uncertainty. The basic methods employed in studying the 
consumption-portfolio problem are applicable to a wide class of economic 
models of decision making under uncertainty. 

A major advantage of the continuous-time model over its discrete 
time analog is that one need only consider two types of stochastic pro- 
cesses: functions of Brownian motions and Poisson processes. This 
result limits the number of parameters in the problem and allows one 
to take full advantage of the enormous amount of literature written 
about these processes. Although I have not done so here, it is straight- 
forward to show that the limits of the discrete-time model solutions as 
the period spacing goes to zero are the solutions of the continuous-time 
mode1.38 

A basic simplification gained by using the continuous-time model to 
analyze the consumption-portfolio problem is the justification of the 
Tobin-Markowitz portfolio efficiency conditions in the important case 
when asset price changes are stationarily and log-normally distributed. 
With earlier writers (Hakansson [6], Leland [lo], Fischer [5], Samuelson 
[13], and Cass and Stiglitz [I]), we have shown that the assumption of 
the HARA utility function family simplifies the analysis and a number 
of strong theorems were proved about the optimal solutions. The intro- 
duction of stochastic wage income, risk of default, uncertainty about life 
expectancy, and alternative types of price dynamics serve to illustrate 
the power of the techniques as well as to provide insight into the effects 
of these complications on the optimal rules. 
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