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A round mid-March 2020, as the United States and much of the rest of the 
world was facing an unprecedented health threat in the form of COVID-19, 
an abrupt shift in the tone and policies of the United States and United 

Kingdom occurred. In early March, Prime Minister Boris Johnson said that “we 
should all basically just go about our normal daily lives.” Likewise, on March 11, 
President Donald Trump reassured the American people that for “[t]he vast majority 
of Americans, the risk is very, very low.” Just five days later, the Trump administra-
tion recommended that “all Americans, including the young and healthy, work 
to engage in schooling from home when possible. Avoid gathering in groups of 
more than 10 people. Avoid discretionary travel. And avoid eating and drinking at 
bars, restaurants, and public food courts” (as reported by Keith 2020). The British 
government likewise markedly changed course, with a series of partial measures 
preceding a March 23 lockdown order. Although Trump and Johnson had been 
receiving briefings about COVID-19 for several weeks, the proximate cause of the 

An Economist’s Guide to Epidemiology 
Models of Infectious Disease

■ Christopher Avery is Roy E. Larsen Professor of Public Policy, Harvard Kennedy School, 
Cambridge, Massachusetts. William Bossert is David B. Arnold, Jr., Professor of Science, 
Emeritus, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, 
Massachusetts. Adam Clark is Assistant Professor, Institute of Biology, University of Graz, 
Graz, Austria. Glenn Ellison is Gregory K. Palm Professor of Economics, Cambridge, Massa-
chusetts. Sara Fisher Ellison is Senior Lecturer in Economics, Massachusetts Institute of 
Technology, Cambridge, Massachusetts. Their email addresses are christopher_avery@hks.
harvard.edu, bossert@seas.harvard.edu, adam.tclark@gmail.com, gellison@mit.edu, and 
sellison@mit.edu. 

For supplementary materials such as appendices, datasets, and author disclosure statements, see the 
article page at https://doi.org/10.1257/jep.34.4.79.

Christopher Avery, William Bossert, Adam Clark, 
Glenn Ellison, and Sara Fisher Ellison

mailto:christopher_avery@hks.harvard.edu
mailto:christopher_avery@hks.harvard.edu
mailto:bossert@seas.harvard.edu
mailto:adam.tclark@gmail.com
mailto:gellison@mit.edu
mailto:sellison@mit.edu


80     Journal of Economic Perspectives

shift in both countries appears to have been the March 16 release of a headline-
grabbing epidemiological model produced by London’s Imperial College, which 
predicted that there could be as many as 2,200,000 deaths in the United States and 
510,000 in the United Kingdom” (as reported by Landler and Castle 2000).

The Imperial College model was not the only one to feature prominently in 
public policy. The Institute for Health Metrics and Evaluation (IHME) at the Univer-
sity of Washington released and frequently updated state-level estimates which 
garnered substantial attention. Its predictions contrasted markedly with (the most 
extreme) ones from Imperial College. Both sets of predictions turned out to be quite 
far off in important ways. This fact should not be surprising. There is, unavoidably, 
much uncertainty about key parameters early in an epidemic. It also takes longer 
to produce models that use frontier methods and incorporate data from multiple 
sources. Still, the models can be faulted for providing standard errors that did not 
accurately reflect the degree of uncertainty underlying the course of the epidemic.

Given the importance of the topic and the impact that these early models had, 
it is not surprising that many economists quickly became interested in applying 
their skills to improve understanding of the COVID-19 pandemic. One goal of this 
paper is to provide an overview of the extant epidemiological literature to facilitate 
the work of economists who wish to make incremental contributions. We begin by 
introducing the classic SIR (susceptible/infected/recovered) model, which serves 
as the basis of much of modern epidemiology of infectious disease, both theoretical 
and empirical. As we will discuss, the classic model is useful for building intuition 
about the possible paths of a pandemic. Researchers typically build on this model 
in a variety of ways, depending on the specific research question, the characteristics 
of the epidemic, and the available data. We then turn to methods and challenges 
of implementing these models in empirical epidemiology. With this background 
in place, we return to the two high-profile forecasting models, explain where they 
fit into the landscape of empirical epidemiology, discuss the policy imperatives 
which drove their prominence, and offer critiques. Finally, we consider the related 
economics papers, ones that expand on SIR-type models, leverage them to provide 
policy advice, and offer estimates that could help inform them.

The COVID-19 pandemic poses a wealth of policy challenges. We believe that 
there are fruitful synergies for economists who acquaint themselves with some basic 
epidemiology models and empirical techniques. We then consider how their econo-
mist’s toolbox could dovetail with the existing epidemiology literature to produce 
useful insights.

Epidemiological Theory

Epidemiological theory has been rooted in empirical facts from the start. In 
17th-century London, haberdasher turned statistician John Graunt kept weekly 
records of the causes of death in London parishes. He used these data to esti-
mate the risks of dying from different diseases. His work was instrumental in the 
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development of biostatistics, demography, and epidemiology. After him, doctors 
and medical researchers started relying on statistics and then statistical models 
to help them predict the spread of infectious disease. In the 18th century, Daniel 
Bernoulli (1766) devised the first true epidemiological model to study the spread 
of smallpox. In 1906, W.H. Hamer suggested that the spread of infection should 
depend on the number of susceptible and infected people. He introduced the mass 
action law for the rate of new infections. Kermack and McKendrick (1927) lever-
aged these insights to create the SIR model––the workhorse model still the basis of 
much of modern epidemiology. 

In the past century, the field of epidemiology has advanced along lines similar 
to those of economics. Theorists have developed more sophisticated models to 
bring out many insights. In recent years the field has taken an empirical turn, devel-
oping increasingly sophisticated models that leverage vast and detailed new data 
sources. It should be noted that just as a relatively small share of economists focus 
on real-time forecasting of the economy, a relatively small share of epidemiologists 
focus on real-time forecasting of new pandemics. Epidemiology is a much broader 
subject, encompassing the study of the distribution and determinants of health and 
disease outcomes across various populations. The particular niche of the epidemi-
ology literature that is especially relevant for the current pandemic are the models 
that focus on the spread of an infectious disease. We will start with a discussion of 
the workhorse model in this class, the SIR model. We note that this classic model 
both offers basic insights and provides a tractable framework amenable to being 
built upon.

The Standard SIR Model
SIR is an acronym for the three states (sometimes referenced as “compart-

ments”) in the model: Susceptible, Infected, and Recovered. At each time t, each 
member of the population is in one of these states, with proportions in these states 
given by S(t), I(t), and R(t) where S(t) + I(t) + R(t) = 1 for a population of unit mass. 

There are only two ways to move from one state to another. First, currently 
infected people may become noninfectious and move to the recovered state. Second, 
a susceptible person can contract the disease through contact with a currently 
infected person. People in the recovered state may still be sick (or even dead) but 
they share two key characteristics: they are not infectious and also not susceptible to 
future infection. Transition rates between states are governed by parameters γ and 
R0, which serve as summary statistics for (1) the recovery rate and (2) the number 
of people an infectious person would infect over the course of their disease in a fully 
susceptible population.

One way to motivate the model is to suppose that agents are uniformly randomly 
matched in continuous time. Assume that each meets on average R0γ others per 
unit time and that any susceptible agent matched with an infected agent becomes 
infected. As a result, new infections occur at a flow rate of γ R  0S (t)  I(t) per unit time. 
Suppose also that each infectious agent recovers with probability γ per unit time, 
creating a flow of γI(t) individuals per unit time moving from the Infected to the 
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Recovered state. These dynamics can be summarized by the following continuous 
time dynamic equations for the values of S(t)  , I(t)  , and R(t) given the two possible 
transitions from S to I  for new infections and from I to R  for sick people who 
become non-infectious:

   S ̇   (t) = –S(t) I(t) R0γ,

   I ̇   (t) = S(t) I(t) R0γ – γI(t),

   R ̇   (t) = γI(t).

The number of periods that an infected agent remains in the infected state follows 
an exponential distribution with parameter γ, so the expected amount of time in 
the infected state is    1 __ γ   . With R0γ contacts per person per unit time with others, each 
infected person has an expected number of R0 contacts while infected. That is, the 
parameter R0 can be thought of as the expected number of people that a newly 
infected person will directly infect in a population where everyone is susceptible.1

The initial level of infection at time 0 is another exogenous parameter of the 
model and is typically assumed to be quite small (for example, one infection per 
10 million people). If R0 > 1, the number of infections is larger than the number 
of recoveries in early periods, while the proportion in the susceptible state remains 
close to 1. As a heuristic approximation, we would expect contacts with people 
infectious at time 0 to directly produce a total of R0 I(0) S(0) new infections, which is 
approximately R0 I(0) if S(0) is close to 1. This set of new infections would produce 
approximately   R  0  

2   I(0) subsequent new infections, and these would produce   R  0  
3   I(0), 

and so on. For this reason, the initial growth rate of infections in an SIR model with 
R0 > 1 is approximately exponential. Formally, one equilibrium of the system is 
S(t) = 1, I(t) = 0, R(t) = 0 for all t, but if this equilibrium is locally unstable if R0 > 1, 
then adding a small number of infected agents leads to contagious growth of I(t). 
By contrast, an equilibrium with I(t) = 0 is locally stable if R0 < 1, as a small infection 
dies out in that case.

Over time, the growth rate of infections declines because the proportion of 
people in the susceptible state diminishes continuously as the infection spreads. 
Regardless of when the infection takes place, each infected person has an expected 
number R0 of contacts with others while infectious, but as time passes, more and 
more of those contacts are with people who are not susceptible. The model has 
a “herd immunity” threshold of   S ̄    ≡ 1/R0. When S(t) =   S ̄   , the expected number of 
people that a newly infected person will directly infect is equal to 1. The impor-
tant implication of this property is that once the fraction of the population that is 

1 A common alternative description of the SIR model defines   S ̇   (t) = −S(t) I(t) β and   I ̇   (t) = S(t) I(t) β − γ I(t)  , 
and then identifies R0 separately as the ratio R0 =    β __ γ   . It is also equivalent to assume a proportionally higher 
probability KR0γdt (where K is a known positive constant) that any pair of agents meet in combination 
with probability    1 __ K    that a susceptible agent matched with an infected agent becomes infected.
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susceptible is below the herd immunity threshold   S ̄   , a small infection introduced 
into the population will die out with the size of the infectious population never 
increasing.2

Importantly, note that reaching “herd immunity” does not mean that people 
will not continue to be infected. New infections continue to occur. They are just 
outnumbered by recoveries that are occurring. When R0 is large, the number of 
people who are infectious when the herd immunity threshold is reached is large, 
so being limited by the number of recoveries is not comforting. Indeed, in these 
models there can be substantial “overshooting” with many more than 1 –   S ̄    people 
eventually infected. The number of people who escape the epidemic does not have 
as simple a formula, but is obviously very important practically. In an uncontrolled 
epidemic, it can be described as the solution to a simple implicit equation.3 Numer-
ical examples indicate that overshooting can be dramatic with a significant fraction 
of the population getting infected after herd immunity is reached. For example, 
with R0 = 2 we reach “herd immunity” when half the population has been infected, 
but the infection will not completely die out until another 30 percent of the popula-
tion has been infected. With R0 = 2.5, herd immunity is reached when 60 percent 
have been infected, but only 11 percent of the population will remain uninfected in 
an uncontrolled epidemic. In short, even with a moderate R0, few escape an uncon-
trolled epidemic. The “social distancing” policies that have been used to suppress 
COVID-19 infection rates are essentially an attempt to reduce R0.

One other noteworthy feature of SIR models is that for many values of R0, 
the time-path of new infections (and deaths) has a shape that is fairly symmetric 
about its peak and looks somewhat like a normal density. This provides a potential 
explanation for one of the earliest empirical observations in epidemiology: Farr 
(1840) noted that the time series of deaths in a smallpox epidemic and in four 
other epidemics “which have not yet been effectually controlled by medical science” 
were roughly symmetric and bell-shaped. Figure 1 below reproduces Figure 1A from 
Ferguson et al. (2020) illustrating the predictions of their SIR-like model for Great 
Britain and the United States. 

Some Conceptual Lessons from the Standard SIR Model
When a serious contagious disease becomes prevalent, two reactions will typi-

cally occur: people will modify their behavior to avoid getting sick and governments 
will enact policies aimed at slowing or stopping the spread. We can think of the 
original R0 as a compound parameter, one that embodies both the underlying 
biological ability of the pathogen to jump from person to person in various types of 

2 Formally, the herd immunity threshold is such that S(t) = S, I(t) = 0, R(t) = 1 − S is a stable equilibrium in 
the model for any S ≤   S ̄   .
3 Formally, we can define the fraction who escape infection, S(∞), as S(∞) ≡ limt→∞ S(t). The equation that 
can be solved to find it is S(∞) =   e     

–R0(1–S(∞))  . Intuition for the formula is that 1 – S(∞) agents are eventually 
infected. Each on average has R0 interactions with others that would cause infection in someone who is 
susceptible. So the probability of escaping infection is the probability of zero events given a distribution 
that is Poisson with mean R0(1 – S(∞)).
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interactions as well as the number of interactions of each type that people have in 
the ordinary course of their daily lives.4 As self-interested behavior and government 
policies reduce interactions, it is as if the R0 parameter in the equation describing 
how infections transmit is reduced to some time- and state-dependent variable   R  0  

 t   .5  
It is important to remember that all the parameters of SIR models are simple encap-
sulations of more complex biological events. The cycle of infection involves the 
population biology of the pathogen outside the host, the behavior and population 

4 This approach has parallels to a classic predator-prey theory in biology, whose models have almost 
exactly the same form and dynamics as an SIR model. In that literature, there is a parameter governing 
transition from “freely roaming” to “prey,” which is a compound parameter with a fixed attack rate for a 
particular predator-prey combination as well as a contact rate between predator and prey, which can vary 
geographically and over time. See Gotelli (2008) for a description.
5 See Chernozhukov, Kasaha, and Schrimpf (2020) and Goolsbee and Syverson (2020) for empirical 
evidence on the impact of endogenous behavioral changes and various government policies.

Figure 1 
Unmitigated Epidemic Scenarios from Imperial College Model

Source: Figure reproduced from Ferguson et al. (2020)Figure 1A: “Unmitigated epidemic scanarios for 
GB and the US. (A) Projected deaths per day per 100,000 population in GB and US.” 
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biology of the host, and the interaction of the pathogen and the host. Spatial, 
temporal, and between-host differences in the details of these events lead to the 
heterogeneity of the parameters that modelers now find important. While much of 
epidemiology is focused on understanding these details, they are typically absent 
from the models currently used to predict the course of diseases.

Policies that reduce the reproduction rate R0 are often described as “flattening 
the curve,” referring to the graph that shows the rise of cumulative infections over 
time. A change in behavior that reduces R0 to   R  0  

t    at any time t affects the fraction 
of the population that permanently escapes infection. But the standard formula for 
the herd immunity threshold remains relevant to thinking about the possible long 
run outcomes: if we are not in the herd immunity region—that is, if S(t) >   S ̄   — then 
the infection will once again spread if government restrictions are removed and 
people go back to their normal behaviors. If we are in the herd immunity region, 
then the infection will die out even if all restrictions are removed. Indeed, in this way 
the SIR model illustrates a clear intuition for how temporary policies can provide 
long-term benefits: implementing policies that reduce   R  0  

t    at future times when we 
are approaching the herd immunity threshold will reduce overshooting.

In the case of COVID-19, reaching the herd-immunity threshold is widely 
believed to entail a devastating loss of life. The SIR model suggests that two other 
approaches may be appealing in such situations. First, we might put in place policies 
to reduce   R  0  

t    with the intention of maintaining those policies until a vaccine is devel-
oped, thereby keeping the system from ever reaching the herd-immunity region. 
Second, we might enact more aggressive temporary measures for a period of time 
sufficient to drive prevalence to a level that is low enough so that less economically 
costly means of keeping Rt ≡   R  0  

t    S(t) below 1 become feasible. For example, Hong 
Kong’s suppression of COVID-19 has involved, among other measures, hospitalizing 
everyone who tests positive to ensure isolation and conducting aggressive contact 
tracing. This is extremely expensive on a per-infected person basis but has cost tril-
lions less than the US approach, not to mention limiting Hong Kong’s loss of life.

The SIR model is also helpful for thinking about vaccines. Vaccines are typically 
not perfect and neither available to nor willingly received by everyone. Suppose, 
for instance, that a vaccine was effective in preventing the disease completely and 
permanently in 60 percent of the people who received it and did nothing for the 
other 40 percent who received it. Administering such a vaccine to the entire popu-
lation with, say, 10 percent infected or recovered would result in an additional 
0.9 × 0.6 = 54 percent of the population immune, so that S(t) = 1 − 0.1 − 0.54 = 0.36. 
Depending on the value of R0, that number could be sufficient to achieve herd 
immunity. Achieving herd immunity via a vaccine rather than via infections is also 
advantageous in that it mitigates overshooting.

Variants of the SIR Model
There are many variants of the SIR model. As usual, the choice to add or subtract 

complexity from a model should depend on what one is studying. Common vari-
ants of the SIR model add additional disease states, referred to as “compartments,” 
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to provide a more realistic model of disease progression and transmission. The 
SEIR model includes an “exposed” state to account for individuals who have been 
infected with the disease but are not yet themselves infectious (Hethcote 2000; Li 
and Muldowney 1995). The SAIR variant includes an “asymptomatic” compartment 
for individuals who are infectious but may never develop symptoms. Because of the 
apparently strong contribution of asymptomatic and pre-symptomatic carriers to 
the spread of COVID-19, these variants, and particularly the SEIR model, have been 
quite common in recent epidemiological studies (for example, Kissler et al. 2020; 
Prem et al. 2020). Epidemiologists sometimes also introduce additional compart-
ments not to reflect disease states but as a mathematical means of making the 
transmission time process more flexible as in Champredon et al. (2018), although 
this aim can be accomplished directly as in Zhigljavsky et al. (2020). These variants 
may be especially useful if one were interested in studying the impact of policies for 
which timing within the disease cycle is critical, like protocols for testing, contact 
tracing, and quarantining. For an excellent review of many of these extended forms, 
see Blackwood and Childs (2018).

A broader category of models divides compartments even further into dozens 
or even hundreds of different geographic and age states and then allows contact, 
infection, and recovery rates to vary across classes (Blackwood and Childs 2018; 
Hethcote 2000). Ebola, for example, is spread through contact with bodily fluids 
even after death, and one might capture this effect on disease dynamics by consid-
ering populations of health care and funeral workers (Champredon et al. 2018). 
Given the current understanding about how COVID-19 seems to be transmitted, it 
is easy to think of subpopulations who will have many more risky interactions than 
average: those living in crowded urban apartments, frequenting bars and night-
clubs, using public transportation, attending crowded religious services, working in 
a nursing home, and so forth.

Models with heterogeneous subpopulations again behave much like the classic 
SIR model whereby the growth rate of a contagious disease is initially exponential 
then slows (and eventually dies out) over time (for example, Diekmann, Heester-
beek, and Metz 1990; Dushoff and Levin 1995; Lajmanovich and Yorke 1976). A 
common pattern in these models is that variations in within-class contact or trans-
mission rates across subgroups produce a faster overall spread of infection than in a 
well-mixed SIR, with infections concentrated in certain high-risk subgroups. There-
after, however, dynamics tend to slow down relative to a well-mixed model because 
contact rates between subgroups are typically lower than the average transmission 
rate (Bolker 1999). In general, these features tend to lead to less complete spread 
of diseases in age- and spatially structured models than an analogous homogeneous 
SIR model, although this is not always the case (Gomes et al. 2020; Hébert-Dufresne 
et al. 2020). Britton, Ball, and Trapman (2020) provide an illustration in which 
heterogeneity reduces the herd immunity threshold from 60 to 43 percent. In addi-
tion, heterogeneity can also lead to a longer overall persistence of diseases. For 
example, geographic structure can make it difficult to eradicate a disease fully, 
allowing periodic resurgences (Lloyd and May 1996).
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The polio virus provides an example of the perverse impacts that can emerge 
from heterogeneity. Changes in hygiene practices in the United States around the 
middle of the twentieth century led to a decrease in infectiousness in polio, which 
in turn, led to an increase in its average age of onset. Because younger children 
typically experienced much milder cases of the virus, this increase in age of onset 
led to an overall increase in the mortality and morbidity associated with being 
infected with polio, which persisted until the widespread adoption of a vaccine 
(Melnick 1990).

Real-world disease states and processes are more complex than those assumed 
in all of these models, of course. For example, “infected” could be treated as a 
multidimensional continuum of states, instead of a single state. People can vary 
in the severity of their symptoms, their health outcomes, and the degree of infec-
tiousness. Likewise, whether an exposure results in an infection can depend on 
the nature and dosage of the exposure. The extent to which people develop immu-
nity will vary. All of these factors are subject to individual, spatial, and temporal 
heterogeneity.

Empirical Epidemiology

The field of epidemiology does not divide itself into theory and empirical work 
as neatly as does economics. There is more diversity in research styles and questions. 
It does appear, though, that like economics (as discussed in Angrist et al. 2020), 
the field of epidemiology has become more empirically oriented over time. Most 
relevant to economists, perhaps, are branches estimating parameters of disease 
processes, forecasting the courses of epidemics, and estimating policy effects. 
As noted above, forecasts by epidemiologists of the future course of COVID-19 
received tremendous attention in the early days of the epidemic. These forecasts 
can combine theoretical modeling, calibration of some parameters, and estimation 
of others. Broadly speaking, forecasting models are often regarded as falling into 
two main styles. Those based on SIR-type models are in a class called “mechanistic,” 
which, like structural empirical models in economics, assume that a model is exactly 
correct and calibrate or estimate parameters to obtain a predictive model. There is 
another class of predictive models termed “phenomenological,” which may be moti-
vated by theories of disease spread but are not derived directly from those theories. 
Instead, they posit a functional form for the evolution of cases or apply time-series 
methods to predict future outcomes based on available observations. This distinc-
tion is not a neat one, however, and forecasts can combine elements of both types.

In economics, choice of empirical model and technique is often driven by reali-
ties of data quality and availability. Economists interested in policy evaluation have, 
for instance, invested enormous effort into developing techniques for causal infer-
ence with observational data, which is what economists often have to work with. 
Something similar is true for epidemiologists interested in forecasts: their models 
are designed to leverage the data available on an epidemic in its earliest crucial 
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stages to greatest advantage. These early numbers tend to come from boots-on-
the-ground efforts such as contact tracing or case counts, and they can be used 
to estimate parameters of either phenomenological or mechanistic models. To be 
clear, data from contact tracing differs from case counts in that it has information 
about the source of and the resulting infections from a particular infection, but it 
may not include most or all infections. Case counts attempt to document all infec-
tions, but not the tree of connections among them.

Mechanistic Forecasts
Even under ideal circumstances, reliably estimating parameters of mechanistic 

epidemiological models, such as the SIR, can be quite challenging due to their 
nonlinear and dynamic nature. The simplest idea for estimating R0—that is, making 
a list of initial infections, tracking down the number of additional infections that can 
be traced directly to each of those initial ones, and dividing to obtain an estimate of 
R0—is not an accepted practice due to the fact that incomplete contact tracing and 
asymptomatic cases would lead to downward-biased estimates. Instead, researchers 
often employ some more sophisticated variant of the following two-step method-of-
moments approach: start with the log growth rate of the epidemic as implied by an 
SIR model, γ(R0 − 1), and equate that to an empirical log growth rate from the case 
counts. To identify γ and R0 separately, then, one can use (potentially incomplete) 
contact tracing data to infer the distribution of length of time between infections, 
which helps tie down γ.

Most of us have internalized the notion that more data always lead to better 
estimates, but a counterintuitive situation can exist here. As the epidemic spreads 
and more data become available, the quality of (at least some of) the data can 
be compromised. First, contact tracing efforts will inevitably fall behind in a fast-
growing epidemic, and the resulting data might be increasingly lower quality. 
Second, as an epidemic grows, behavioral responses can emerge, which could 
contaminate an estimate of R0. Third, increased testing can identify asymptomatic 
cases which could contaminate case growth rates, because cases which would not 
have been included in early case counts are included in later ones. In short, more 
data can lead to worse estimates, as discussed in Ferretti et al. (2020). There is a 
trade-off, though: these limited sample sizes early in an epidemic make capturing 
heterogeneity of many types problematic, to say nothing of capturing changes in 
parameters over time.

We should stress that epidemiologists have studied these issues in depth for many 
years. Asymptotic analyses of the properties of maximum likelihood estimation and 
other estimators of parameters in homogeneous and heterogeneous SIR models can 
be found in Rida (1991) and Britton (1998). Markov Chain Monte Carlo methods for 
the Bayesian estimation of heterogeneous SIR models are described in Demiris and 
O’Neill (2005). And modern applications of disease models typically involve param-
eterization approaches that are more sophisticated than those described above. For 
examples of work along these lines, useful starting points include Mills, Robins, and 
Lipsitch (2004), Massad et al. (2010), and Viboud et al. (2018).
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Phenomenological Forecasts
In contrast to mechanistic methods, phenomenological approaches are often 

relatively straightforward to implement for the early stages of an epidemic. Early 
case data are used to fit the assumed growth curve (for instance, using maximum 
likelihood estimation). As additional case data come in, the parameter estimates 
are refined to reflect the new information. Information on the source of any 
particular case, typically provided by contact tracing, would not be necessary. 
With limited early data, it can be difficult to estimate as many parameters as one 
would want to estimate for a realistic compartmental (mechanistic) model, and 
this fact can make simple phenomenological approaches appealing. For example, 
Tuite and Fisman (2018) use a simple functional form with just three parameters, 
estimated by maximum likelihood, in which the way an epidemic declines is deter-
mined by one of the parameters. They note that they “are agnostic about the 
nature of factors that slow growth, but they could be postulated to include behav-
ioural change, public health interventions, increased immunity in the population, 
or any other dynamic change that slows disease transmission.”

As epidemics progress, phenomenological approaches that use time-series 
techniques to predict changes remain well-suited to making near-term predic-
tions. These models can be less useful, however, for other tasks. Observation error 
can rise as larger swaths of a population are infected and contact tracing becomes 
less reliable, and tightly parameterized models lack the flexibility to respond to 
qualitative changes in disease behavior that are inconsistent with earlier apparent 
patterns. For example, a model which posits a symmetric, bell-shaped evolution of 
cases over time cannot accommodate repeated changes in the rate of spread due 
to changing regulations, changing public perception, and “quarantine fatigue.” In 
a later section, we will see how early fits from the IHME model accurately charac-
terized initial growth rates in case numbers across much of the United States, but 
its predictions of peak infection numbers and long-term dynamics have proven 
much less reliable.

Policies and Causal Inference
Epidemiologists and other health researchers have long been interested 

in the effects of healthcare interventions. The use of randomized controlled 
trials—often called the “gold standard” for causal inference—was pioneered 
by health researchers. During epidemics, however, the earliest data available 
are typically observational. Even in randomized trials, noncompliance raises 
concerns about selection biases. And, of course, the very nature of an infec-
tious disease implies that a treatment applied to one agent may affect others. 
As a result, epidemiologists have recognized that the methods most commonly 
used in other medical fields for policy evaluation may be less appropriate for 
epidemiological applications (Halloran and Struchiner 1995; Hernán and Robins 
2006). By now, however, epidemiologists have developed a variety of techniques 
to address field-specific concerns (for an extensive exposition, see Hernán and  
Robins 2020).
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Analyses of Genomic Data
Analysis of the SARS-CoV-2 genome has revealed thousands of different strains 

of the virus circulating around the world (for the current phylogeny, consult 
nextstrain.org/ncov/global). The medical community has many reasons to be inter-
ested in these multiple strains. For instance, they may differ in communicability 
or virulence, or there could be less-than-perfect immunity across strains. Korber 
et al. (2020) present laboratory and epidemiological evidence suggesting that the 
COVID-19 variant which is now most common is more infectious than the strain that 
was dominant in Wuhan.

For the purposes of estimating epidemiological models, another immediately 
useful application of these techniques is to trace the spread of various mutations to 
determine where and when epidemics began in various regions. In fact, genomic 
data can serve as a type of substitute for contact tracing or detailed micro-level 
data on social networks and other human interactions, allowing researchers to 
trace the source of a particular group of infections without ever knowing anything 
about the agents’ contacts. Researchers in Israel used genomic data, for instance, 
to produce the often-cited fact that 80 percent of all COVID infections there were 
caused by 1–10 percent of infected agents (Miller et al. 2020). In another genomic 
study, Worobey et al. (2020) note that although cases have been reported as early as 
January 2020 in the United States and Europe, genetic evidence suggests that these 
introductions failed to spread, and that it was only though later introductions at 
higher incidence that SARS-CoV-2 was able to establish in the general population. 
If these findings hold up in follow-up research, they may indicate that even if the 
virus cannot be fully eradicated, control measures may well prove to be effective if 
incidences can be brought low enough.

Early High Profile Models—What Went Wrong?

The introduction recounted how an early prediction model from Imperial 
College had a seemingly huge effect on policy decisions in the United States and 
the United Kingdom. In fact, one could argue that policy imperatives drove the 
prominence of that and another high-profile prediction model from IMHE early 
in the pandemic. Policy-makers were desperate for guidance on mask-wearing and 
social distancing, predictions on the number of intensive care hospital beds neces-
sary in a particular city, likely timing of peak infections, and so forth. Those two 
models were up and running early in the pandemic and provided those numbers 
that policy-makers needed. It is instructive to take a closer look to understand how 
their predictions were produced and what ultimately went wrong.

The headline-grabbing figures from the Imperial College model were the most 
extreme predictions out of many that they produced. They arose from assumptions 
that governments would not mandate any mitigation strategies, such as mask-wearing 
or social distancing, and indeed that people would not choose to engage in any of 
those strategies themselves. Those assumptions were often omitted from the initial 
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reporting and public discussion of the predictions. Much of the Imperial College 
report, however, consisted of discussions of the potential impact of such policies, 
along the lines of an earlier policy discussion on mitigating pandemic influenza in 
Ferguson et al. (2006). Some information about the details of the Imperial College 
model were given, but initially the source code was not public. The early reports 
made certain details clear: the model was based on the familiar SIR framework and 
that extreme predictions were derived assuming that neither official actions nor 
individual choices would be taken to slow the spread of the virus. The R0 term was 
taken as a single, fixed parameter, with a value of 2.4. Their estimated death rate for 
those infected was 0.9 percent. Both estimates were based on early experience with 
COVID-19 in places such as China and Italy but obviously associated with significant 
uncertainty. The source code for the model was eventually released at the end of 
April, and researchers were able to reproduce its results from its assumptions by 
early June (as reported by Chawla 2020). Although this delay is understandable, it 
was also arguably a contributor to confusion surrounding predictions early in the 
pandemic.

Meanwhile, as the number of COVID-19 cases was ramping up in the United 
States, alternative predictions were being offered by IHME at the University of Wash-
ington. Their phenomenological model began by assuming a particular functional 
form for how the number of cases in a locality would rise and then fall over time, 
with location-specific parameters estimated to fit early case numbers. The model 
could easily be fit separately to data on each state, and predictions were refined 
as new data came in. The intention was that local officials could then use these 
location-specific and daily predictions to plan extra hospital capacity and procure 
medical equipment, which many of them did. The notion, however, of a common 
functional form—that is, that the basic shape of increase, peak, and decline of infec-
tions would be the same in all locations, from Italy to India, from Wuhan province 
to Topeka, Kansas—seems to ignore crucial information about how mitigation 
strategies varied across locations and changed over time. More recent versions of 
the IHME model have taken an alternative approach, as we discuss in a moment. 
Roughly speaking, the originally publicized IHME model was assuming a bell shape 
for the daily deaths and trying to find the parameters governing that bell shape 
based on the early observations. In a model of this form, once growth has started 
to slow, there will be limited uncertainty about the size or timing of the peak. Also, 
the bell-shape symmetry implies that deaths will start falling as rapidly as they grew.

Figure 2 shows a series of screen grabs from the IHME model predicting 
daily US deaths (from the Internet Archive), at approximately one-week intervals 
starting in early April 2020. The first four predictions, going down the first column 
and through the end of April, have several common features resulting from the 
bell-shape assumptions: the predicted shape of deaths over time is symmetric; the 
predicted number of deaths goes to zero quickly, around June 1; and the error 
bands are large in the short run and go to zero around the time that the predicted 
number of deaths goes to zero. Note that in these first four panels, estimates of the 
parameters are being updated regularly as new data come in.
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In early May 2020, IHME switched away from the curve-fitting approach to a 
more mechanistic SIR-type framework. The model predicted roughly the deaths in 
the next few days in a phenomenological way and then fit an SIR-based model to 
the past and short-term future predictions to generate long-run predictions. The 
middle column shows that starting in May, the model allowed for asymmetry. It also 
started using a smoothing algorithm on the existing case data. The way error bands 
were calculated changed, but error bands still shrunk eventually instead of growing, 
reflecting that declining deaths implied that epidemics in SIR models in which 
Rt falls to less than 1 die out in an exponential manner. As a result of these changes, 
predictions of positive numbers of deaths stretched into summer 2020. Starting in 
June 2020, the final column of the figure, another substantial change was made 
to the calculation of error bands, whereby they start small and increase as time 
proceeds, reflecting increasing, not decreasing, uncertainty in predictions further 
into the future.6

6 For additional discussion of how the models did not reflect the degree of uncertainty early in the 
epidemic, see Avery et al. (2020). Stock (2020) also notes the importance of uncertainties that existed 
early in the pandemic.

Figure 2 
Weekly Screenshots of the IHME US Deaths Predictions

Source: covid19.healthdata.org.
Note: This figure was constructed with a series of screen grabs from covid19.healthdata.org, IHME’s 
website, from the Internet Archive located at archive.org.  The screen grabs are at approximate one-
week intervals throughout April, May, and June 2020. 

April May June

http://covid19.healthdata.org
http://covid19.healthdata.org
http://archive.org
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In Figure 3, we overlay these same predictions on a common scale, color-coded 
so that earlier predictions are lighter. For readability, we do not include error bands. 
Clearly, the IMHE predictions of US deaths over time change as it becomes clear 
that the pandemic will not die out at the beginning of the summer, and a symmetric 
model of US deaths is inaccurate. Even so, the initial predictions of the size and 
location of the (first) peak were fairly accurate.

Figure 4 shows a different output of the IHME model: predictions of hospital 
utilization. With this outcome, the initial predictions are starkly different from later 
ones. Not coincidentally, many locations prepared for much greater hospital utili-
zation during the first “surge” than was needed. We should note that IHME does 
publish their source code and is forthcoming about changes. That being said, the 
model is complicated enough that reading through the source code and docu-
mented changes is difficult and time-consuming, certainly for us, but also, one 
would imagine for most researchers.

The Imperial College and IMHE models filled a void early on for policy-
makers scrambling to understand the pandemic, to decide how strongly to react, to 

Figure 3 
IHME US Daily Deaths Predictions Overlaid

Source: covid19.healthdata.org.  
Note: This figure was constructed from data downloaded directly from IHME’s website at the University 
of Washington.  
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convey policies to constituents, and to allocate resources. But many other predic-
tive models are now available, some with well-designed online dashboards where 
users can insert different assumptions, some backed by state-of-the-art epidemi-
ology theory, and some leveraging empirical innovations and new information. We 
cannot hope to survey all of the predictive models here, but both the Centers for 
Disease Control and Prevention (CDC) and the website FiveThirtyEight.com high-
light and compare several of the most well-known and well-received ones.7 Table 1 
shows 15 models highlighted by FiveThirtyEight.com (including IHME), with a few 
words about their basic approaches and some details about their implementation. 
These models largely agree in their short-run predictions, but divergence appears 
at forecasting horizons of six weeks or more. We have organized them by predicted 

7 The Centers for Disease Control has come under criticism from many quarters for allowing political 
considerations to influence how they present and describe predictive models.

Figure 4 
IHME US Hospital Use Predictions Overlaid

Source: covid19.healthdata.org. 
Note: This figure was constructed from data downloaded directly from IHME’s website at the University 
of Washington.  
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Table 1 
Some Predictive Epidemiological Models

Source Approach Details

High Predicted Mortality Level (by Sept. 5th)

The University of Texas COVID-19 Modeling Consortium, 
University of Texas
https://covid-19.tacc.utexas.edu/projections/

Model 1 uses a curve 
fitting approach, and 
Model 2 is an SEIR 
model with compartment 
“D” (dead)

Uses anonymized mobile 
phone data and daily 
reported deaths to make 
predictions for three weeks 
ahead

COVID Scenario Pipeline, Johns Hopkins University 
https://github.com/HopkinsIDD/COVIDScenarioPipeline

SEIR model Projects the spread of the 
epidemic and impacts on 
health care for different 
interventions

ERDC SEIR Model, U.S. Army Engineer Research and 
Development Center
https://github.com/reichlab/covid19-forecast-hub/blob/
master/data-processed/USACE-ERDC_SEIR/metadata-
USACE-ERDC_SEIR.txt

SEIR model with 
compartments for 
unrecorded infections 
and isolated individuals

Uses Bayesian inference to 
choose parameters

EpiGro, University of Arizona 
https://www.sciencedirect.com/science/article/pii/
S1755436516300329

Curve fitting model Based on properties of 
curves implied by SIR 
model

Medium Predicted Mortality Level (by Sept. 5th)
DeepCOVID Model, Georgia Tech 
https://www.cc.gatech.edu/~badityap/covid.html

Deep learning model Assumes that the effect of 
interventions is implicitly 
captured in mobility data

IHME COVID-19 Projections, IHME, University of 
Washington 
https://covid19.healthdata.org/united-states-of-america

Hybrid model that 
incorporates statistical 
and disease transmission 
models

Uses social distancing 
information and mobile 
phone data to estimate 
contact between people

COVID-19 Projections Using Machine Learning, Youyang Gu
https://covid19-projections.com/

SEIR with machine 
learning to choose 
parameters

Estimates incorporate all 
infected individuals of 
SARS-CoV-2 virus, not only 
individuals who tested 
positive from a COVID-
19 test

Columbia University COVID-19 Projections, Shaman Group 
https://github.com/shaman-lab/COVID-19Projection

Metapopulation 
SEIR with filtering to 
determine parameters

Includes projections for 
daily cases, infections, 
mortality, and cumulative 
hospital usage

Global Epidemic and Mobility Model (GLEAM), 
Northeastern University 
https://covid19.gleamproject.org/

SEIR model with mobility 
data

Region-level model with 
several types of human 
mobility between regions

Low Predicted Mortality Level (by Sept. 5th)
COVID-19 Simulator, MGH, Harvard Medical School, 
Georgia Tech, Boston Medical Center 
https://www.covid19sim.org/

SEIR model Includes state-level 
variations in mobility and 
tracks hospital usage

Bayesian SEIRD Model, University of Massachusetts 
https://github.com/dsheldon/covid

SEIR model with 
additional compartments 
“D” (death) and “H” 
(hospitalized-and-will-die)

Employs Bayesian 
inference and time-varying 
dynamics

UCLA-SuEIR Model, UCLA 
https://covid19.uclaml.org/

SuEIR model Has compartment for 
unobserved infections

A Shiny App, Iowa State 
http://www.covid19dashboard.us/

New spatiotemporal 
epidemic modeling 
(STEM) framework

Nonparametric model 
emphasizing 7-day forward 
projections down to county 
level

DELPHI Epidemiological Model, MIT
https://www.covidanalytics.io/

SEIR with under-
detection, 
hospitalization, 
and government 
interventions

Varies effective contact rate 
and societal/government 
response by state

LANL Model, Los Alamos 
https://covid-19.bsvgateway.org/

Dynamic model that 
forecasts future cases and 
deaths

Allows for a variety of 
interventions, resulting in a 
wide prediction interval

https://covid-19.tacc.utexas.edu/projections/
https://github.com/HopkinsIDD/COVIDScenarioPipeline
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt
http://www.cc.gatech.edu/~badityap/covid.html
http://www.cc.gatech.edu/~badityap/covid.html
https://covid19.healthdata.org/united-states-of-america
https://covid19-projections.com/
https://github.com/shaman-lab/COVID-19Projection
https://covid19.gleamproject.org/
http://www.covid19sim.org/
https://github.com/dsheldon/covid
https://covid19.uclaml.org/
http://www.covid19dashboard.us/
http://www.covidanalytics.io/
https://covid-19.bsvgateway.org/
https://www.sciencedirect.com/science/article/pii/S1755436516300329
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mortality levels. In part, this divergence may reflect different assumptions about 
how social distancing and government policies will evolve.

As this article was being completed in late summer 2020, it seemed that predic-
tive models about the future of the epidemic had faded from popular discourse. 
Discussions of reported cases, deaths, and trends seemed, by mid-July, to be getting 
more attention than forecasts from epidemiological models. Google Trends indi-
cates that searches for “IHME Model” peaked in mid-April and had fallen by 
90 percent by early July. Attention by academics also seems to have fallen: Google 
Scholar indicates that Ferguson et al. (2020), released on March 16, had already 
been cited 828 times in early July, while the later May 21 report by the Imperial 
group (Unwin et al. 2020) providing more sophisticated estimates of R0 for US 
states had been cited just three times.

One likely reason for the initial surge and subsequent decline of interest in 
predictive models is that earlier in 2020 they were seen as relevant to policy choices: 
whether to require businesses to close and people to stay home and how much 
to invest in hospital bed capacity. By contrast, predictive models appear to have 
much less relevance to the pressing decisions of fall 2020 such as when to reopen 
in-person schools. In addition, predictive models have likely lost popular credibility. 
The initial IHME forecast predicted that the epidemic would all but die out in the 
United States by early June. The Imperial College model was often linked to its most 
extreme predictions. Finally, the waning interest may also reflect that the future 
course of the disease is not readily predictable by any model, but rather, will depend 
to a considerable extent on how individuals behave and what policies are enacted.

Epidemiology-Related Research in Economics

Economists have responded enthusiastically to demands for COVID-related 
research and analysis. We cannot attempt to cover this burgeoning literature in 
its entirety. Rather, our focus will be tighter: on research that leverages SIR-type 
models, expands upon them, or offers estimates that could help inform them. We 
chose this sub-literature as our focus because we feel that it is an area where cross-
discipline knowledge and the use of complementary models and tools have already 
continued and will continue to yield real insights.

It is useful to organize much of this sub-literature into three strands. These 
strands represent salient features of this pandemic as opposed to previous ones, 
and we feel that economists are well-positioned to make contributions in those 
three areas. First, economists have recognized the potential endogeneity of param-
eters such as   R  0  

t   , as the precautions taken could be a function of disease prevalence 
or current cases. Second, several economics papers have focused on the effects 
of allowing various types of heterogeneity in SIR-type models. Third, economists 
have taken the political economy issues involving endogenous social distancing and 
government policies seriously––issues which could also greatly influence the pattern 
of Rt over time. We will discuss each of the three strands in turn.
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Endogeneity
The   R  0  

t    parameter in an SIR model is a potentially endogenous parameter, 
which reflects both how easily communicable a particular pathogen is as well as how 
people behave and interact given the current state of an epidemic It is natural that 
economists would recognize this endogeneity and model it theoretically and allow 
for it in empirical analyses. Applying traditional economics approaches to incor-
porating behavioral responses into epidemiological models is not new and dates 
back at least to work on the AIDS epidemic in the 1990s (Kremer 1996; Philipson 
and Posner 1993). Recently, a strand of COVID-related literature accommodating 
and studying an endogenous reproduction number has emerged. Toxvaerd (2020) 
and Kudlyak, Smith, and Wilson (2020) develop models that endogenize the social 
distancing as reflecting a cost and benefit of avoiding infection and discuss impacts 
on the time path of infections. Farboodi, Jarosch, and Shimer (2020) develop a trac-
table model of forward-looking individual distancing in which they can compare 
equilibrium and social optimizing distancing. They calibrate to epidemiological 
estimates of R0 from early in the pandemic. They then show that, given a particular 
choice for the disutility of social distancing, the laissez-faire equilibrium, where 
social distancing is the result of endogenous individual choices, roughly matches 
the degree of distancing in the United States as measured by cell-phone mobility 
data. They find that the optimal government policy in the United States, taking 
externalities into account, is immediate––but not particularly restrictive––social 
distancing of long duration. Eichenbaum, Rebelo, and Trabandt (2020) develop 
another model in which the primary channel for distancing is to reduce consump-
tion of social goods, which is restrictive as a model of distancing activities but creates 
clean connections to macroeconomic activity.

Goolsbee and Syverson (2020) study endogenous social distancing from an 
empirical perspective. They provide an estimate of how important endogenous 
individual actions are relative to government policies designed to lower Rt. Using 
county-level mobility data in a border discontinuity design, they find that of the 
60 percent decrease in US activity observed, only about 7 percentage points can 
be explained by government regulations across different states and municipali-
ties. Their research suggests that ignoring endogeneity in these models could 
be problematic and could, in particular, lead researchers to mistakenly attribute 
effects on disease dynamics to government policies. Chernozhukov, Kasaha, and 
Schrimpf (2020) find substantial causal effects of government policies using a more 
sophisticated dynamic model of consumer choices, while still finding that providing 
information on risks is also quite important.

The endogeneity of   R  0  
t    has also been recognized and addressed by epidemi-

ologists. Reluga (2010) is most similar to how some economists have set up the 
problem—it develops a differential game version of the SIR model in which agents 
can, at each instant, take a costly social distancing action that reduces their instan-
taneous probability of infection. It computes equilibria for several sets of parameter 
values covering scenarios in which the disease spreads at different rates and a vaccine 
is closer or farther off, and compares equilibrium payoffs to the social optimum. 
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Reluga (2010) also provides references to earlier literature, much of which is less 
utility-focused. A recent example of work of this style is Eksin, Paarporn, and Weitz 
(2019), which discusses variants of the SIR model that make how people distance 
in response to current or cumulative cases as a primitive (instead of deriving this 
from a utility function) and notes that distancing could make the long-run frac-
tion infected much lower than would be predicted by an SIR model calibrated in 
early stages of the epidemic. While economists’ first inclination will be to regard 
it as a drawback that distancing behavior is a primitive rather than derived from 
dynamic optimization given an assumed utility function, a skeptic could easily note 
that there is quite limited evidence on the utility-consistency of the ways in which 
people socially distance over the course of an epidemic, and that models with utility 
functions calibrated to rationalize how people have distanced in past epidemics 
may not provide better predictions than would models in which behavior itself is 
calibrated to behavior in past epidemics.

Heterogeneity
In many branches of economics, it has become standard to incorporate hetero-

geneous consumer preferences and/or firm profit functions. Given this norm, it 
is not surprising that economists are also increasingly incorporating heterogeneity 
into their COVID-related work.

One of the most striking features of COVID-19 is how fatality rates vary with age. 
The calibrations in Ferguson et al. (2020), for example, assume an infection fatality 
rate of 9.3 percent for those over 80, 2.2 percent for those 60–69, 0.15 percent for 
those 40–49, and 0.03 percent for those 20–29. Economic activities also vary with 
age, of course. Therefore, it is natural to assess the potentially disparate impact that 
policies may have on different age groups, consider explicitly age-varying policies, 
or both.

Several recent papers use calibrated multi-population SIR models where sub-
populations are interpreted as age groups to discuss the economic and health 
consequences of lockdown and reopening policies. Rampini (2020) considers a 
two-population model calibrated to reflect those under and over age 55 and notes 
that a two-phase reopening in which the young are released before the old can 
reduce hospital overcrowding, mortality, and economic losses. Favero, Ichino, and 
Rustichini (2020) and Baqaee et al. (2020) make finer distinctions of subpopu-
lations. The former considers a 15-population model corresponding to subsets 
defined by five age groups and three occupation types. The latter uses a five popu-
lation model corresponding to age groups but calibrates interactions between age 
groups using contact survey data,8 data on activity differences across occupations, 
and industry-specific worker age distributions. In other words, they take an esti-
mate of the average R0 from the epidemiology literature and choose a matrix of 
subgroup-to-subgroup infection rates that is consistent both with that R0 and with 

8  “Contact surveys” are distinct from contact tracing. The former simply obtains data on typical daily 
contacts of randomly-selected people, both within and across various subgroups.
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the differences across groups in the contact surveys and mobility data. The results 
of Baqaee et al. (2020) are sobering: even slow reopening policies that prioritize 
industries on a GDP-to-risk basis tend to produce conditions that require subse-
quent reversals of policy with new shutdowns if individuals relax their levels of social 
distancing. Acemoglu et al. (2020) analyze a much broader class of time- and age-
varying policies and provide estimates of the Pareto frontier of optimal policies that 
minimize economic losses and deaths. They note that age-dependent policies can 
provide substantial gains relative to uniform policies, with the greatest improve-
ment coming from doing as much as one can to protect those in the oldest group 
when prevalence is high among those in younger age groups.

Ellison (2020) builds on models in the epidemiology literature that take a 
broader view of heterogeneity—reflecting that those who ride public transportation 
or frequent bars will have many more contacts than others in their age group, for 
example—and discusses their implications for an analysis of COVID-19. Jackson and 
López-Pintado (2013) is an example within economics. One cautionary observation 
is that these models have more parameters that need to be calibrated, and long 
run outcomes can be sensitive to activity levels of the less active, particularly when 
we are considering relaxing restrictions. It is difficult to calibrate these parameters 
early in an epidemic, and predictions that do not allow for heterogeneity may be 
overconfident.

Ellison (2020) also notes that conclusions drawn from applying homogeneous 
SIR models to a world that is more like a heterogeneous SIR model would be biased 
in a number of ways. As noted earlier, homogeneous SIR models may substantially 
overstate the fraction of the population that must be infected in order to achieve 
herd immunity. A related observation is that (targeted) lockdown policies can also 
be more cost-effective in heterogeneous populations. There can be substantial gains 
either from taking permanent measures to reduce spread among the highly active 
or from temporarily locking down less active groups to minimize overshooting of 
herd immunity thresholds. We look forward to seeing such heterogeneities incorpo-
rated into more policy analyses.9

Political Economy
An extraordinary characteristic of this health crisis in the United States is the 

degree to which it has been politicized, even to the extent that simple precautions 
like wearing a mask have become freighted with political meaning. Evidence suggests 
that social distancing and mask-wearing are very important weapons in combating 
COVID-19 (Abaluck et al. 2020; Chernozhukov, Kasaha, and Schrimpf 2020), so 
understanding political obstacles to improving, or simply variation in, these behav-
iors is quite important. A trio of papers attempt to address this issue by looking 
specifically at the role of the media. They have found evidence of correlation or 

9 Given the substantial fraction of deaths which have occurred in nursing homes, one such extension 
that seems very natural would be to incorporate a nursing home sector. This would allow one to model 
impacts of policies like those discussed in Chen, Chevalier, and Long (2020).
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causal effects of media consumption on knowledge about COVID-19 and behavior 
regarding it. Jamieson and Albarracín (2020) find that, controlling for party affili-
ation and other demographics, use of conservative media was associated with 
significantly lower levels of knowledge about the virus and the disease characteris-
tics associated with it. Simonov et al. (2020) exploit quasi-random assignments of 
channel positions in a cable lineup to estimate the effect of full Fox News viewership 
on non-compliance with stay-at-home orders, finding an increase of 12–25 percent 
noncompliance. Finally, Bursztyn et al. (2020), also interested in the effect of Fox 
viewership, exploit a different instrument, the broadcast time of Hannity and 
Tucker Carlson Tonight relative to sunset in a particular location. They document 
a much different tone to the COVID-related content on the two shows early in the 
epidemic and find that areas with greater exposure to Hannity—more dismissive of 
the risks—experienced significantly more cases and deaths.

Barrios and Hochberg (2020) use data on internet searches to document that 
Republican-dominated areas perceive less risk from the virus than do Democratic-
dominated areas. Finally, Ajzenman, Cavalcanti, and Da Mata (2020) find similar 
political effects in Brazil, another country struggling with high caseloads and 
deaths and with a president dismissive of the severity of the pandemic. They find 
differential effects on behavior following presidential speeches disparaging social 
distancing, based on the level of political support for the president by location. 
Additional papers documenting the political divide and its effects on behavior and 
health outcomes during the pandemic are cited in these papers as well.

Although none of these papers use epidemiological models or methods, their 
estimates are useful for understanding how the parameters in the epidemiological 
models might vary over time and by geographic location. In fact, their specifications 
and results suggest ways in which   R  0  

t    might be parameterized in an empirical model 
with a variety in covariates.

Conclusion

A symbiotic relationship between academic research and government policy-
making existed long before the spring of 2020. Many researchers aim to produce 
research that is topical, useful, and policy-relevant. In turn, policymakers seek out 
expert advice and prediction, often in the form of theoretical or empirical models. 
Our current crisis, however, has put the structure and the mechanics of this relation-
ship in stark relief.

We think that it is important to draw a distinction between two roles that 
models have served during the pandemic. Models can help us predict, and they can 
help us understand, and policy-makers have demanded both types. For instance, 
models can help us predict timing and magnitude of infections and hospitaliza-
tions as well as the need for equipment and other resources. The ability to generate 
detailed predictions for specific localities is important, especially for local decision-
makers who have to set policy and allocate resources. Ultimately, though, the test 
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of the usefulness of these models is typically empirical in nature, whether that be 
using retrospective data to judge various models after the fact or using previous and 
contemporary data from similar settings. The opacity of such models may not be 
entirely unimportant, but it could be second-order: as long as a “black box” works, 
we may not care what is in it.

Alternatively, models can help us understand. They can help us understand, for 
instance, an important interaction of factors, or a mechanism which can indirectly 
affect the spread of a disease. Such models need not be able to generate location- 
and day-specific predictions of the number of hospital beds needed, but they are no 
less important in informing policy-making and resource allocation in different ways.

Understanding the process by which these models’ predictions and insights 
can be accessed by policymakers has also gained importance. The normal process of 
writing, vetting, and publishing scientific and economic research is being stretched 
to its limits given the urgency of the pandemic. Direct and wide dissemination can 
work for certain types of knowledge: detailed predictions from empirical models 
lend themselves to the now ubiquitous COVID “dashboards” that make those 
predictions available to policy-makers and others with just a click or two. There is no 
reason to believe that the models which have the best designed websites and inter-
faces are the ones producing the most careful and accurate predictions, though. 
Conveying more subtle insights, such as how government policies might interact 
with endogenous social distancing, seems substantially more difficult but no less 
important. One would hope that robust lines of communication and established 
respectful relationships between experts and policy-makers could facilitate such 
dialogues.

We wrote this paper in hopes of spurring interesting and important research by 
economists on epidemics and COVID-19, in particular. If this extraordinary period 
in time also spurs a rethinking of the complicated relationship between research 
and policy-making, the dialog between experts and non-experts, and the practical 
uses of both theoretical and empirical modeling, we will all reap the benefits.

■ We are grateful to Marcy Alsan, Ben Bolker, Amitabh Chandra, Bill Clark, Jonathan 
Dushoff, Michael Kremer, Nolan Miller, Ziad Obermeyer, Elizabeth Rourke, Bruce Sacerdote, 
Doug Staiger, Jim Stock, and Richard Zeckhauser for useful conversations and Eva Demsky 
for outstanding research assistance.
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