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Under rational expectations and risk neutrality the linear projection of exchange-rate

change on the forward premium has a unit coefficient. However, empirical estimates of

this coefficient are significantly less than one and often negative. We show that replacing

rational expectations by discounted least-squares (or ‘‘perpetual’’) learning generates a

negative bias that becomes strongest when the fundamentals are strongly persistent, i.e.

close to a random walk. Perpetual learning can explain the forward-premium puzzle while

simultaneously replicating other features of the data, including positive serial correlation

of the forward premium and disappearance of the anomaly in other forms of the test.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The ‘‘forward-premium puzzle’’ is a long-standing empirical paradox in international finance. The puzzle refers to the
finding that the forward exchange rate consistently predicts the expected depreciation in the spot exchange rate with a smaller
magnitude and often the opposite sign than specified by rational expectations (RE). A large literature documents and attempts
to explain the puzzle, but mostly with very mixed success. This paper proposes a resolution from a new perspective.

As McCallum (1994) emphasized, the forward-premium puzzle (or ‘‘anomaly’’) coexists with a number of other stylized
facts. The R2 of the forward-premium regression is typically very low, and the forward premium itself is positively
correlated. When alternative forms of the test are performed, the anomaly disappears. Our proposed explanation—that
private agents are engaged in econometric learning—is capable not only of generating the forward-premium puzzle, but
also of matching these other stylized features of the data.

According to theory, if the future rate of depreciation in the exchange rate is regressed on the forward premium (the
forward rate less the current spot rate in logarithms), then the slope coefficient on the forward premium should be unity
provided the agents are risk neutral and do not make systematic errors in their forecast. More formally, if st is the natural
. All rights reserved.

nt no. SES-0617859 is gratefully acknowledged. We are greatly indebted to the referee for comments,

discussions and comments, and for comments received at the July 2006 ‘‘Learning Week’’ workshop,

ce on Monetary Policy, Asset Markets and Learning, Frankfurt, and in numerous seminars.

: +1541346 1243.

s).

www.sciencedirect.com/science/journal/monec
www.elsevier.com/locate/jme
dx.doi.org/10.1016/j.jmoneco.2008.03.002
mailto:gevans@uoregon.edu


ARTICLE IN PRESS

Table 1
Regressions of quarterly depreciation on 3-month forward premium

USD/GBP USD/DEM USD/JAY GBP/DEM GBP/JAY DEM/JAY

Dstþ1 ¼ aþ bðFt � stÞ þ utþ1

1976:I– 1994:I

âOLS �1.340 0.638 3.294 1.622 7.702 1.041

(0.895) (0.886) (0.964) (1.116) (1.687) (0.648)

b̂OLS
�1.552 �0.136 �2.526 �0.602 �4.261 �0.755

(0.863) (0.839) (0.903) (0.782) (1.133) (1.042)

Note: Reproduced from Table 1 of Mark and Wu (1998).
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log of the current spot exchange rate (defined as the domestic price of foreign exchange), Dstþ1 is the depreciation of the
natural log of the spot exchange rate from period t to t þ 1, i.e. Dstþ1 ¼ stþ1 � st , and Ft is the natural log of the one-period
forward rate at period t, then in the true regression equation

Dstþ1 ¼ aþ bðFt � stÞ þ utþ1, (1)

b is unity and utþ1 is uncorrelated with the forward premium Ft � st . It follows that Plim b̂ ¼ 1, where b̂ is the least-squares
estimate of the slope coefficient on the forward premium.

This theoretical result is based on assumptions of risk neutrality and RE. If agents are risk neutral then they must set
today’s forward rate equal to their expectation about the future spot rate, i.e. Ft ¼ Êtstþ1, where Êtstþ1 denotes their
expectation of stþ1 formed at time t. If, moreover, their expectations are rational then Êtstþ1 ¼ Etstþ1, where Etstþ1 denotes
the true mathematical expectation of stþ1 conditioned on information available at time t, assumed to include Ft and st .
With RE, agents’ forecast errors utþ1 ¼ stþ1 � Etstþ1 satisfy Etutþ1 ¼ 0, i.e. agents do not make systematic forecasting errors.
Combining risk neutrality and RE we obtain

stþ1 ¼ Ft þ utþ1,

and thus the depreciation of exchange rate from t to t þ 1 is given by

Dstþ1 ¼ ðFt � stÞ þ utþ1,

where Etutþ1 ¼ 0, which gives the theoretical prediction Plim b̂ ¼ 1.
A large volume of research has empirically tested the hypothesis b ¼ 1, and concluded that the least-squares estimate b̂

is often significantly less than 1. In fact, in the majority of cases, b̂ is less than zero. Froot and Thaler (1990), McCallum
(1994) and Engel (1996) provide comprehensive reviews of the empirical results. We reproduce part of Table 1 from Mark
and Wu (1998) documenting the existence of the puzzle. In the table they used quarterly data ranging from 1976.I to 1994.I
on USD (dollar) rates of GBP (pound), DEM (deutsche-mark) and JAY (yen) as well as three cross rates.1 The evidence thus
strongly refutes the theoretical prediction that b ¼ 1, and hence apparently contradicts the efficient market hypothesis.
This is the renowned ‘‘forward-premium puzzle’’ (or ‘‘forward-premium anomaly’’).

The key to the resolution of the puzzle seems to be hidden in the ordinary least-squares formula for b̂. Assuming b ¼ 1
we have

b̂ ¼
dcovðDstþ1; Ft � stÞ

dvarðFt � stÞ
¼ 1þ

dcov½ðFt � stÞ;utþ1�

dvarðFt � stÞ
,

where dcov and dvar denote sample covariance and sample variance. Therefore, dcov½ðFt � stÞ;utþ1�o0 is needed to explain the
downward bias in b̂.

Existing research follows two major approaches. One of them assumes that investors in the foreign exchange market are
risk averse. Consequently, the forward rate not only incorporates their expectations about the future depreciation but also
includes a risk premium as a hedge against the risk from investing in a more volatile asset characterized by a higher rate of
return. As a result, expected depreciation is not a conditionally unbiased forecast of actual depreciation. Despite its
intuitive appeal, empirical studies have shown the difficulty of the risk-premium approach in providing a satisfactory
explanation of the puzzle. Fama (1984) demonstrates that, for this to happen, the variance of the risk premium must be
greater than the variance of expected depreciation, and their covariance must be negative. These requirements do not
appear to be supported empirically. This has led to a general skepticism of the risk-premium explanation.

The other main approach centers around the potential ability of nonrational expectations to explain the results. This
potential is apparent from some of the other findings related to exchange-rate behavior. De Long et al. (1990) demonstrates
that the presence of both rational and nonrational traders in the market tends to distort asset prices significantly away
from the fundamental values and therefore has the potential to explain many financial market anomalies. Mark and Wu
1 For more details about the data see Mark and Wu (1998). In Table 1, standard errors of estimates are in parentheses.
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(1998) show that while the behavior of the variance and covariance of the risk premium as required by Fama (1984) does
not have empirical support, the existence of noise traders in the market under certain numerical assumptions yields results
compatible with the data. Furthermore, Lewis (1989) used Bayesian learning to provide an explanation for the forward-
premium puzzle, though the model could not explain its persistence since the magnitude of the prediction errors shrinks,
over time, to zero. Finally, for the closely related issue of uncovered interest parity, McCallum (1994) argues that monetary
policy response to exchange-rate changes may account for the econometric findings. However, as he notes, this and the
view that expectations are less than fully rational are potentially complementary explanations.

Our paper is motivated by this research, which suggests the potential importance of deviations from RE in foreign
exchange markets. If traders do not have perfectly RE, their forecast errors may be correlated with previous period’s
information and this would introduce an observed bias in the forward-premium regression results.2 The question we want
to examine is whether a natural form of bounded rationality would yield cov½ðFt � stÞ;utþ1�o0 and hence explain the
systematic under-prediction of future depreciation.

In fact, we require only a small and quite natural deviation from RE, based on the econometric learning approach
increasingly utilized in macroeconomics. Recent applications include the design of monetary policy (Bullard and Mitra,
2002; Evans and Honkapohja, 2003; Orphanides and Williams, 2005a), recurrent hyperinflations in Latin America (Marcet
and Nicolini, 2003), US inflation and disinflation (Sargent, 1999; Orphanides and Williams, 2005b; Bullard and Eusepi,
2005; McGough, 2006), asset prices (Timmermann, 1993; Brock and Hommes, 1998; Bullard and Duffy, 2001; Adam et al.,
2006; Branch and Evans, 2008), and currency crises and exchange rates (Kasa, 2004; Kim, 2006).

In the present paper we show that when the fundamentals driving the exchange rate are strongly persistent, a
downward bias in b̂ necessarily arises for arbitrarily small deviations from RE due to learning. In particular our theoretical
results imply the large sample limiting value of plimðb̂Þ ¼ 0 in the empirically realistic case in which the fundamentals
follow (or approximate) a random walk. In addition, we show numerically that this downward bias is magnified in small
sample sizes, yielding mean negative b̂ in line with those observed empirically.

Our key assumption is that while agents do know the true form of the relationship between the fundamentals and the
exchange rate that would hold under RE, they do not know the parameter values and must estimate them from observed
data. In the model we analyze, the exchange rate st , under RE, satisfies

stþ1 ¼ bvt þ utþ1,

where vt is the observed value of the fundamentals, assumed exogenous, and utþ1 is unforecastable white noise. Under RE b

takes a particular value b̄ that depends on the model parameters and on the parameters of the stochastic process vt . The
rational one-step ahead forecast is then given by Etstþ1 ¼ b̄vt. However, we instead make the assumption that the agents do
not know the true value of b and must estimate it from the data by running a regression of stþ1 on vt .

More specifically, agents estimate b by ‘‘constant-gain’’ or ‘‘discounted’’ least-squares learning of the type studied by
Sargent (1999), Bischi and Marimon (2001), Cho et al. (2002), Kasa (2004), Williams (2004) and Orphanides and Williams
(2005a).3 Orphanides and Williams refer to this as ‘‘perpetual’’ learning, since agents remain perpetually alert to possible
structural change. We show that under this form of learning the agents’ estimates bt are centered at the RE value b̄, but
gradually and randomly move around this value as the estimates respond to recent data. Because bt is not exactly equal to b̄

in every period, we have a deviation from full RE. However, agents are in many ways very rational and quite sophisticated
in their learning: they know the form of the relationship and estimate the true parameter value, adjusting their estimates,
in response to recent forecast errors, in accordance with the least-squares principle. Furthermore, for small gains, the value
of bt and the agents’ forecasts will be quite close to RE.

Is this form of least-squares learning sufficient to explain the forward-premium puzzle? We argue that indeed it may.
Using theoretical results from the macroeconomics learning literature, we can derive the stochastic process followed by bt

under learning and derive an approximation for the asymptotic bias of the least-squares estimate b̂t of the forward-
premium slope coefficient. This bias turns out to depend on all the structural parameters in the model, including the
autoregressive coefficient r of the fundamentals process, which we model as a simple AR(1) process. We are interested in
results for the case of large 0oro1, and especially for r! 1, since in this limiting case the exchange rate under RE would
follow a random walk, in accordance with the well-known empirical results of Meese and Rogoff (1983). A large
econometric literature, initiated by the findings of Nelson and Plosser (1982), has established that most macroeconomic
time-series either contain a unit root or a near-unit root. Empirically the case of interest thus concerns fundamentals
processes with r close to or equal to one. Under learning this will lead to exchange rates that are close to a random walk.
Our principal finding is that precisely in this case the downward bias in the forward-premium regression is substantial.
Perpetual learning therefore appears capable of entirely explaining the forward-premium puzzle.

Some other features of the empirical evidence appear also to be consistent with perpetual learning. McCallum (1994)
documents other regularities of the foreign exchange market that are related to the forward-premium puzzle. These
include very low R2 for the forward-premium regressions, estimates of b close to one in level form tests and in n-period
2 Chakraborty and Haynes (2005) demonstrate, in the context of deviations from rationality, that nonstationarity in the relevant variables can explain

the related puzzle of little or no bias in ‘‘level’’ specification between the future spot and current forward rate, yet significant negative bias with frequent

sign reversals in the standard forward-premium specification.
3 For a general discussion of constant-gain learning, see Evans and Honkapohja (2001, Chapter 14).
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difference versions of the test with nX2, and strong positive serial correlation of the forward premium itself. We will verify
numerically that in addition to providing an explanation of the standard forward-premium anomaly, perpetual learning is
able to reproduce these other key aspects of the data.

2. Framework

To illustrate our central point we use a very simple monetary exchange-rate model based on purchasing power parity,
risk neutrality and covered interest parity4:

Ft ¼ Êtstþ1, (2)

it ¼ i�t þ Ft � st , (3)

mt � pt ¼ d0 þ d1yt � d2it , (4)

pt ¼ p�t þ st . (5)

Here st is the log of the price of foreign currency, Ft is the log of the forward rate at t for foreign currency at t þ 1, and Êtstþ1

denotes the market expectation of stþ1 held at time t. Eq. (2) assumes risk neutrality and Eq. (3) is the closed parity
condition, with it and i�t the domestic and foreign interest rate, respectively. Eq. (4) represents money market equilibrium,
where mt is log money supply, pt is log price level and yt is log real GDP. The purchasing power parity condition is given by
(5), where p�t is the log foreign price level. The parameters d1; d2 are assumed to be positive.

These equations can be solved to yield the reduced form

st ¼ yÊtstþ1 þ vt , (6)

where y ¼ d2=ð1þ d2Þ, so that 0oyo1.

vt ¼ ð1þ d2Þ
�1
ðmt � p�t � d0 � d1yt þ d2i�t Þ

represents the ‘‘fundamentals.’’ We will treat vt as an exogenous stochastic process, which implicitly assumes the ‘‘small
country’’ case with exogenous output.5 We will focus on the case in which vt is an observable stationary AR(1) process6

vt ¼ dþ rvt�1 þ �t

with 0oro1. For application of the theoretical learning results we need to make the technical assumption that vt has
compact support.7 Our results would also apply to the case in which vt is trend-stationary, with compact support around a
known deterministic trend (and could be extended to the case in which the trend is unknown). As discussed above, we are
particularly interested in the case r close to one, but the theory we develop will be valid for any 0oro1.

In modeling expectation formation by the agents we make the assumption that their forecasts Êtstþ1 are based on a
reduced form econometric model of the exchange rate, specifically st ¼ aþ bvt�1 þ Zt, where Zt is treated as exogenous
white noise, using coefficients that are estimated from the data using discounted least squares. Specifically, we assume that
at the beginning of time t, agents have estimates at�1, bt�1 of the coefficients a, b, based on data through time t � 1. These,
together with the observed current value of the fundamentals vt , are used to forecast the next period’s exchange rate
Êtstþ1 ¼ at�1 þ bt�1vt . The fundamentals, together with the forecasts, determine the exchange rate according to (6), and
then at the end of period t the parameter estimates are updated to at ; bt , for use in the following period. We now turn to a
detailed discussion of the learning rule and the theoretical results for the system under learning.

3. Formal results under learning

We now develop results for the monetary exchange-rate model under learning. We begin with theoretical results based
on stochastic approximation tools, which is the main technique for analyzing least-squares learning in macroeconomic
models. Since these formal results focus on approximations that are valid for small gains and large sample sizes, we also
present numerical simulation results for a range of gain parameters and plausible sample sizes.

3.1. Stochastic approximation results

For theoretical convenience we examine the system

st ¼ yÊtstþ1 þ vt ,

vt ¼ rvt�1 þ �t ,
4 See, for example, Frenkel (1976), Mussa (1976) and Engel and West (2005). This model is the simplest version of the ‘‘asset market approach’’ to

exchange rates. Engel and West (2005) describe the various ways in which the model can be generalized.
5 For the large country case see Chakraborty (2005, 2008).
6 It would be straightforward to allow for an additional unobserved white noise shock.
7 This rules out the normal distribution, but is compatible with a truncated normal distribution in which the distribution is restricted to an

(arbitrarily large) closed interval. Our assumption of compact support ensures that vt has finite moments of all orders.
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where �t�iidð0; s2
� Þ and 0pro1. Here we have normalized the intercept to zero, which is equivalent to assuming that

agents know its true value and that we are looking at the system in deviation from the mean form. In the RE solution

st ¼ b̄vt�1 þ c̄�t where b̄ ¼ ð1� ryÞ�1r and c̄ ¼ ð1� ryÞ�1,

and market participants forecast using the known coefficient b̄. Under learning, they instead estimate this coefficient by
constant-gain least squares.8,9 This is most conveniently expressed in recursive form.10 The estimate based on data through
time t is given by the algorithm

bt ¼ bt�1 þ gR�1
t�1vt�1ðst � bt�1vt�1Þ,

Rt ¼ Rt�1 þ gðv2
t � Rt�1Þ, (7)

where g40 is a small positive constant. Rt can be viewed as an estimate of the second moment of the fundamentals. Since
forecasts are formed as

Êtstþ1 ¼ bt�1vt , (8)

the exchange rate under learning is given by

st ¼ ðybt�1 þ 1Þvt . (9)

Using stochastic approximation results it can be shown that the mean path of bt and Rt can be approximated by the
differential equations11

db=dt ¼ R�1s2
v ððyr� 1Þbþ rÞ,

dR=dt ¼ s2
v � R, (10)

where t ¼ gt. This differential equation system has a unique equilibrium ðb̄; R̄Þ ¼ ðð1� ryÞ�1r; s2
v Þ that is globally stable, so

that, whatever the initial values for the learning algorithm, we have Ebt ! b̄ as t!1.
Under ordinary (‘‘decreasing gain’’) least-squares learning g is replaced by 1=t and it can be shown that in the limit we

obtain fully RE, i.e. bt ! b̄ with probability one as t!1. We instead focus on the natural modification in which ordinary
least squares are replaced by constant-gain least squares, as above, so that g is a small fixed positive number, e.g. g ¼ 0:02 or
0.05. This assumption—that agents weight recent data more heavily than past data—is being increasingly studied in the
macroeconomic literature, as noted in the Introduction.

Why would constant-gain learning be natural to employ? As emphasized by Sargent (1999), applied econometricians
and forecasters recognize that their model is subject to misspecification and structural change. Constant-gain least squares
are a natural way to allow for potential structural change taking an unknown form, because it weights recent data more
heavily than older data. This procedure is well known in the statistics and engineering literature, see for example,
Benveniste et al. (1990, Chapters 1 and 4, Part I). As noted by Orphanides and Williams (2005a), an additional theoretical
advantage is that it converts the model under learning to a stationary environment, so that results can be stated in a way
that does not depend on the stage of the learning transition. In effect, under constant-gain least squares, agents are engaged
in perpetual learning, always alert for possible changes in structure.

Of course the appropriate choice of gain parameter g will be an issue of some importance. In principle this parameter
might be chosen by agents in an optimal way, reflecting the trade-off between tracking and filtering. This is discussed in
Benveniste et al. (1990) and analyzed in a simple economic set-up in Evans and Ramey (2006). In the current paper, in line
with most of the literature, we do not directly confront this issue, but instead investigate how our results depend on the
value of the gain. Empirical macroeconomic evidence on forecaster expectations and forecast performance for GDP growth
and inflation,12 suggest values of the gain for quarterly data in the range g ¼ 0:02–0.05. Reasonable values for g in our
setting will depend on the amount of perceived structural change in the link between the exchange rate and fundamentals
and may, therefore, be different.

Under constant-gain learning, a natural result is obtained that goes beyond the decreasing gain asymptotic convergence
result. RE can still be viewed as a limiting case, but constant-gain learning turns out to yield surprising results for small
deviations from this limit. Our central starting point is the unsurprising result that with a small constant gain g40, the
parameter bt remains random as t!1, with a mean equal to the RE value b̄, and with a small variance around b̄. We have
the following13:
8 If da0 then the REE is st ¼ āþ b̄vt�1 þ c̄�t , where b̄; c̄ are unchanged and ā ¼ ð1� yÞ�1
ð1� ryÞ�1d. Under learning agents would estimate ða; bÞ using

constant-gain recursive least squares.
9 Under RE the regression obeys standard assumptions for 0oro1. When r ¼ 1 agents would be estimating a cointegrating relationship.
10 See, e.g. Marcet and Sargent (1989), Sargent (1999) or Evans and Honkapohja (2001).
11 Technical details are given in the ‘‘Supplementary materials: technical details and proofs’’ for this paper, available on the Science Direct website.
12 See Orphanides and Williams (2005b) and Branch and Evans (2006).
13 For proofs of propositions, see the ‘‘Supplementary materials: technical details and proofs’’ for this paper, available at the Science Direct website.

The proof of Proposition 1 applies results given in Evans and Honkapohja (2001, Chapter 7), which in turn are based on the stochastic approximation

results of Benveniste et al. (1990).
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Proposition 1. Consider the model under constant-gain learning. For g40 sufficiently small, and gt sufficiently large, bt is

approximately normal with mean b̄ and variance gC; where

C ¼
1� r2

2ð1� ryÞ3
,

and the autocorrelation function between bt and bt�k is approximately e�ð1�yrÞgk.

It follows that, provided the process has been running for sufficiently long so that the influence of initial conditions is
small, the distribution of bt at each time t can be approximated by

bt�Nðb̄; gCÞ

for g40 small. Note that RE arises as the limit in which g! 0, since in this case at each time t the parameter estimate bt has
mean b̄ and zero variance. Thus for small g40 we are indeed making small deviations from rationality.

Up to this point the results may appear straightforward and fairly uncontroversial: under perpetual gain learning with
small constant gain g40, the agents’ estimate of the key parameter used to forecast exchange rates has a mean value equal
to its RE value, but is stochastic with a standard deviation depending on the structural parameters and proportional to

ffiffiffi
g
p

.
However, the implications for the forward-premium puzzle are dramatic, as we will now see.

Using Proposition 1 we can obtain the implications for the bias of the least-squares estimate b̂, in the forward-premium
regression (1), under the null hypothesis H0 : a ¼ 0; b ¼ 1, when private agents forecast exchange rates using constant-gain
least squares updating with a small gain g. For convenience we assume that a ¼ 0 is imposed so that the econometrician
estimates a simple regression without intercept.14 We have the following result:

Proposition 2. Under the null hypothesis H0 the asymptotic bias plim b̂� 1, for g40 sufficiently small, is approximately equal to

Bðg; y; rÞ ¼ �
gð1� yÞð1þ rÞð1� yrÞ

gð1� yÞ2ð1þ rÞ þ 2ð1� rÞð1� yrÞ
.

Thus for all parameter values 0pyo1 and 0pro1, we have a negative bias, which is particularly strong for r near 1.
More specifically we have:

Corollary 3. Bðg; y; rÞo0 for all 0pyo1, 0pro1 and 0ogo1, and the size of the approximate bias jBðg; y;rÞj is increasing in g
and in r and decreasing in y. For g40 sufficiently small, we obtain the limiting approximations

lim
r!1
ðplim b̂� 1Þ ¼ �1 and plim b̂� 1 ¼ �

gð1� yÞ

gð1� yÞ2 þ 2
if r ¼ 0.

Corollary 3 implies that, for small g, the value of plim b̂ approaches 0 as r! 1. Below, in Section 3.2, we investigate the
situation numerically and find that small samples can further magnify the bias: for typical sample sizes and plausible
values of g, median values of b̂ are negative as r! 1.

Finally we can also examine the t-statistic for the test of H0 : b ¼ 1, given by tb̂ ¼ ðb̂� 1Þ=SEðb̂Þ. Since for all 0pro1 we
have plim b̂� 1o0 it follows that:

Corollary 4. For g40 sufficiently small, tb̂ !�1 as the sample size T !1.

Our results are stated for sufficiently small g because this is needed to invoke the stochastic approximation results. Below
we look at the quality of the approximation for plausible values of g40. The theoretical results are illustrated in Fig. 1,
which shows the approximation plim b̂ ¼ 1þ Bðg; y;rÞ, as a function of r over 0prp1, for fixed y ¼ 0:6, and for three values
g ¼ 0:01; 0:05 and 0.10.

As expected, the asymptotic bias depends upon g, and for sufficiently small g40 the size of the bias, given r, is
proportional to g. For any given 0pro1, as g! 0 we approach the RE limit and in this limit the bias of b̂ is zero. However, a
striking and surprising feature of our results is the behavior of plim b̂ as r! 1 for fixed g: given g, the asymptotic bias of b̂
approaches �1 as r! 1, regardless of the size of g. The intuition for this result is given in Section 4. Here we emphasize the
powerful implications for the forward-premium test, which we state as follows:

Corollary 5. For any �40 there exists g40 and r̂o1 such that for all r̂pro1 we have both Eðbt � b̄Þ2o� for all t and plim b̂o�.

Thus, for learning gain parameters sufficiently small, provided the autocorrelation parameter of the fundamentals
process is sufficiently high, the deviation from RE will be arbitrarily small, at every point in time, as measured by mean
square error, and yet the downward bias in the forward-premium regression can be made arbitrarily close to �1.
14 This makes no difference asymptotically. Below we numerically investigate how inclusion of the intercept in the test regression affects the small

sample results.
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Fig. 1. Theoretical plimðb̂Þ for y ¼ 0:6 and g ¼ 0:01, 0.05 and 0.10.

Table 2

Theoretical and simulated b̂ for large samples

y g r

0.98 0.99 0.995 1.0

b̂theory b̂sim b̂theory b̂sim b̂theory b̂sim b̂theory b̂sim

0.6 0.01 0.83 0.94 0.71 0.78 0.55 0.39 0 �0.01

0.02 0.71 0.75 0.55 0.35 0.38 �0.09 0 �0.02

0.03 0.62 0.48 0.45 0.01 0.29 �0.22 0 �0.02

0.05 0.50 0.09 0.33 �0.22 0.20 �0.24 0 �0.04

0.1 0.32 �0.31 0.19 �0.31 0.11 �0.23 0 �0.06

0.9 0.01 0.95 1.00 0.91 1.00 0.83 0.94 0 �0.01

0.02 0.91 0.96 0.83 0.87 0.71 0.53 0 �0.01

0.03 0.87 0.90 0.77 0.67 0.62 0.09 0 �0.03

0.05 0.80 0.69 0.66 0.21 0.49 �0.31 0 �0.08

0.1 0.65 0.03 0.48 �0.50 0.31 �0.55 0 �0.11

Note: Results from 100 simulations with sample size of T ¼ 20;000 after discarding first 20,000 data points. b̂sim is the mean value across simulations. No

intercept in test regression.
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3.2. Numerical and small sample results

Our theoretical results are based on the asymptotic limit for large samples and small gains. Using Eqs. (7) and (9) we
now simulate paths for bt and st and investigate numerically, for realistic sample sizes and plausible gain parameters, the
bias that arises in the forward-premium regression (1). Table 2 reports the simulation results for a large sample T ¼ 20;000
and a range of gains g40. Table 3a and b gives the small sample results, for T ¼ 120 and 360, realistic samples sizes with
quarterly and monthly data, respectively, both for b̂ and for the t-statistic of the test of H0 : b ¼ 1. Table 4 studies the
impact of sample size in more detail. We focus on the empirically plausible cases of ro1 close to one and the limit case
r ¼ 1, i.e. a pure random walk.

Table 2 presents the comparison between b̂ values predicted by Proposition 2 and the mean values generated by
simulations under learning with different combinations of parameter values.15 The key qualitative predictions of
Proposition 2, and Corollary 3, hold in the numerical results of Table 2. In particular, an increase in g or r (and the smaller
value of yÞ leads to a smaller value of plim b̂. For g ¼ 0:05 or 0.10 (and in most cases for g ¼ 0:03) the simulation results in
Table 2 show an even stronger downward bias in b̂ than is predicted by our theoretical results for small g40.

We next consider the small sample results given in Table 3. The sample size employed in Table 3a of T ¼ 120
corresponds to 30 years of nonoverlapping quarterly data and in Table 3b of T ¼ 360 corresponds to 30 years of
15 In all of our numerical results we have chosen �t to be iid with a standard normal distribution. We have also set d ¼ 0 unless otherwise specified.
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Table 3

Simulated b̂ and tb̂ for sample size (a) T ¼ 120 and (b) T ¼ 360

y g r

0.98 0.99 0.995 1.0

b̂sim
tb̂ b̂sim

tb̂ b̂sim
tb̂ b̂sim

tb̂

(a)

0:6 0.01 1:10 0:10 0:96 �0:02 0:74 �0:15 �0:82 �0:77

0.02 0:87 �0:11 0:29 �0:51 �0:30 �0:76 �0:50 �0:96

0.03 0:54 �0:47 �0:18 �0:90 �0:44 �1:11 �0:55 �1:15

0.05 �0:04 �1:03 �0:46 �1:39 �0:45 �1:47 �0:36 �1:35

0.1 �0:44 �2:10 �0:44 �2:14 �0:40 �2:12 �0:28 �1:85

0:9 0.01 1:22 0:20 1:39 0:25 1:70 0:26 �1:33 �0:52

0.02 1:22 0:21 1:26 0:15 0:76 �0:10 �1:21 �0:66

0.03 1:15 0:12 0:83 �0:10 0:08 �0:37 �1:01 �0:78

0.05 0:86 �0:11 0:24 �0:47 �0:73 �0:95 �1:03 �0:96

0.1 �0:07 �0:98 �0:82 �1:36 �1:23 �1:55 �0:76 �1:23

(b)

0:6 0.01 0:96 �0:06 0:77 �0:26 0:39 �0:51 �0:47 �1:14

0.02 0:74 �0:47 0:19 �0:89 �0:31 �1:31 �0:29 �1:47

0.03 0:48 �0:88 �0:14 �1:46 �0:43 �1:79 �0:20 �1:70

0.05 0:02 �1:77 �0:33 �2:31 �0:37 �2:48 �0:15 �2:15

0.1 �0:36 �3:51 �0:38 �3:63 �0:35 �3:65 �0:12 �2:99

0:9 0.01 1:09 0:15 1:24 0:25 1:19 0:14 �1:11 �0:85

0.02 1:04 0:07 1:07 0:06 0:57 �0:34 �0:72 �1:01

0.03 0:97 �0:06 0:69 �0:32 �0:14 �0:87 �0:53 �1:13

0.05 0:74 �0:42 0:12 �1:02 �0:78 �1:55 �0:50 �1:35

0.1 0:06 �1:61 �0:68 �2:29 �0:77 �2:50 �0:40 �1:80

Note: Results from 1000 simulations with sample sizes of T ¼ 120 and T ¼ 360 after discarding the first 20,000 data points. Table gives medians of b̂sim

and of tb̂ for testing H0 : b ¼ 1, without intercept in the test regression.

Table 4

Effect of sample size on estimated b̂

Sample size y ¼ 0:6 and g ¼ 0:02

r ¼ 0:99 r ¼ 1:0

Intercept Intercept

Without With Without With

100 0.57 1.08 �1.04 �4.02

200 0.39 0.66 �0.35 �2.37

500 0.28 0.35 �0.26 �0.95

1000 0.32 0.33 �0.11 �0.46

2000 0.35 0.36 �0.09 �0.20

5000 0.30 0.30 �0.06 �0.11

10;000 0.33 0.34 �0.05 �0.07

20;000 0.31 0.31 �0.02 �0.03

Note: Results from 100 simulations after discarding the first 20,000 data points. Table gives medians of b̂sim for test regression without and with intercept.
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nonoverlapping monthly data. Although the results again show a substantial downward bias in b̂ for an important range of
parameter values, there are significant differences in the small sample results and the pattern is more erratic. On the one
hand, there are cases of positive bias that arise with small g, lower r and higher y. On the other hand, especially for r close
to or equal to one, the downward bias is even more extreme. Inspection of the detailed results show a substantial number
of extreme values for b̂ and the t-statistic (which is why we report their median values).

One of the reasons for the complex small sample results can be seen from the following argument. If we have both a
small gain g and a small sample size T the value of bt will vary little within the sample. Useful insights can thus be obtained
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by considering the limiting case of bt ¼ b fixed over the sample period at some value possibly different from b̄. If agents
believe that st ¼ bvt�1 þ c�t , we have Ft ¼ Êtstþ1 ¼ bvt and st ¼ ð1þ ybÞvt so that the forward premium is

Ft � st ¼ ðð1� yÞb� 1Þvt (11)

and the forecast error utþ1 ¼ stþ1 � bvt is given by

utþ1 ¼ ð1þ ybÞðrvt þ �tþ1Þ � bvt .

Although we cannot calculate Eðb̂Þ for a finite T it is revealing to compute

aðbÞ ¼
cov½ðFt � stÞ;utþ1�

varðFt � stÞ
¼ �

ð1� yrÞðb� b̄Þ

ð1� yÞðb� ð1� yÞ�1
Þ
, (12)

which is the asymptotic bias that would result as T !1 if b were kept fixed.
The asymptotic bias is negative for bob̄ and less than �1 for b41=ð1� yÞ. However, for b̄obo1=ð1� yÞ the asymptotic

bias is positive and there is a singularity at b ¼ 1=ð1� yÞ, with both arbitrarily large negative and positive values in a
neighborhood of the singularity.16 Calculating aðbÞ is artificial since it holds bt ¼ b fixed as T !1, whereas under perpetual
learning bt is a stochastic process centered at b̄. However, it clearly indicates the complexities that can be expected in small
sample simulations.

In Table 4 we show, for selected parameter values of interest, how the differences between the asymptotic results of
Table 2 and the small sample results of Table 3a and b depend on the sample size. In Table 4 we also investigate the small
sample effect of including an intercept in the test regression. It can be seen that in small samples the inclusion of an
intercept in the test regression further magnifies the deviation from the asymptotic results. For r ¼ 1 we obtain negative
values of b̂ for all sample sizes, and if an intercept is included in the test regression the effect can be pronounced.17 Whether
or not an intercept is included, as the sample size T becomes large there is convergence to the theoretical and large sample
results given earlier.18 The theoretical prediction plimðb̂Þ ¼ 0 for r ¼ 1 is in principle testable in data sets with large sample
sizes.

One other small sample result, not shown in the tables, is nonetheless worth emphasizing: the variation in b̂ across
simulations is substantial for small samples. Consider, for example, y ¼ 0:6, g ¼ 0:05 and a sample size of T ¼ 120. For r ¼ 1
the first and third quartiles for b̂ are approximately ðQ1;Q3Þ ¼ ð�1:26;0:26Þ if no intercept is included and ðQ1;Q3Þ ¼
ð�3:13;�0:77Þ with an intercept in the test regression. Similarly for r ¼ 0:99 the quartiles are approximately ðQ1;Q3Þ ¼
ð�0:96;0:29Þ without intercept and ðQ1;Q3Þ ¼ ð�1:42;0:55Þ with intercept. For larger samples this range shrinks and it
becomes small in very large samples. However, for typical sample sizes like T ¼ 120 or 360 one would expect to see
considerable variation in b̂ across data sets. A substantial cross-country variation is indeed evident in Table 1.

On balance these numerical findings reinforce the theoretical results of Section 3.1 and the central thrust of this paper.
For r near or equal to 1, and for empirically plausible values of g, the median value of b̂ is not only biased downwards from
1, but negative values for b̂ would be entirely unsurprising. Thus for fundamentals processes that are close to a random
walk, perpetual learning clearly has the potential to explain the forward-premium puzzle.

Although we have focussed attention on the ability of perpetual learning to explain the forward-premium puzzle results
when least squares are used to estimate (1), it is important to know whether perpetual learning is consistent with the
empirical exchange-rate evidence in other dimensions. McCallum (1994) pointed out two other features of the forward-
premium regression that stand out empirically. First, when the forward model is tested in levels form, i.e. by estimating

stþ1 ¼ aþ bFt þ utþ1.

McCallum found that estimated values of b were close to one in the data in line with theory. To see if this feature is
matched by the learning model we constructed analogs of Table 3a and b for the levels form regression. Our numerical
findings are that the median values of b̂sim lie in the range 0.975–1.000 for every entry in the tables. Thus the perpetual
learning model successfully reproduces this feature of the data.19

Second, there are other forms of the test of bias in the forward exchange rate that are identical under the null but differ
under the alternative. In particular, a multiperiod version of (1) could be examined, taking the form

stþ1 � stþ1�n ¼ aþ bðFt � stþ1�nÞ þ utþ1 for n ¼ 1;2;3 . . . .

The standard test, based on (1), sets n ¼ 1. McCallum (1994) estimates the multiperiod version for n ¼ 1;2 and 3 and finds
that the forward-premium anomaly is present only for n ¼ 1. For n ¼ 2 and 3 his estimates of b are close to one, in line
with theory. Again we investigate this issue numerically using simulated data from our learning model. Table 5 presents
the results for n ¼ 2 and T ¼ 120: These results provide a striking contrast to the corresponding results for n ¼ 1 given in
16 This phenomenon disappears in the limiting case r ¼ 1 since then b̄ ¼ 1=ð1� yÞ.
17 Chakraborty (2005) shows that similar qualitative results are obtained for ARIMA(p,1,q) estimates of the fundamental processes.
18 The reason for the greater downward bias of the estimate of b when an intercept is included, and the sample size is small, would be worth

investigating in future research.
19 The table for T ¼ 120 can be found in the ‘‘Supplementary materials: extensions and further discussion,’’ available on the Science Direct website.

The relationship between the levels and the forward-premium regressions is discussed in Chakraborty and Haynes (2005).
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Table 5

Simulated b̂ and tb̂ for regression of ðstþ1 � st�1Þ on ðFt � st�1Þ and sample size T ¼ 120

y g r

0.98 0.99 0.995 1.0

b̂sim
tb̂ b̂sim

tb̂ b̂sim
tb̂ b̂sim

tb̂

0:6 0.01 1:01 0:10 1:01 0:11 1:01 0:11 1:01 0:07

0.02 1:02 0:16 1:02 0:19 1:02 0:17 1:01 0:10

0.03 1:02 0:23 1:02 0:24 1:02 0:26 1:02 0:21

0.05 1:04 0:42 1:04 0:39 1:02 0:26 1:02 0:22

0.1 1:05 0:56 1:05 0:57 1:05 0:52 1:04 0:40

0:9 0.01 1:01 0:06 1:01 0:07 1:01 0:13 1:01 0:07

0.02 1:02 0:21 1:02 0:20 1:02 0:23 1:02 0:22

0.03 1:03 0:34 1:03 0:34 1:03 0:31 1:02 0:27

0.05 1:04 0:41 1:04 0:42 1:05 0:52 1:05 0:50

0.1 1:09 0:95 1:08 0:87 1:09 0:95 1:08 0:91

Note: Results from 1000 simulations with sample size of T ¼ 120 after discarding the first 20,000 data points. Table gives medians of b̂sim and of tb̂ for

testing H0 : b ¼ 1, without intercept in the test regression.
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Table 3a: for n ¼ 2 there is no forward-premium puzzle, fully in line with the empirical results of McCallum (1994). Similar
results to Table 5 are obtained for n ¼ 3 and T ¼ 12020 and for n ¼ 2;3 and T ¼ 360. Thus the perpetual learning model
correctly predicts both the cases in which the forward-premium puzzle is found empirically and the cases in which it is not
observed empirically.21

4. Discussion

What is the source of the downward bias to b̂ that we have established theoretically and numerically? We now provide
the intuition for the limiting case in which the fundamentals follow a random walk. Our starting point is the result that
bt�Nðb̄; gCÞ. Since, for small g40, the parameter bt is near b̄ and moves very gradually over time, it is useful again to
consider the impact on b̂ of an arbitrary value for b held fixed at a value close to but not equal to b̄. As r! 1 the fixed b

asymptotic bias function (12) satisfies aðbÞ ! �1 at every point other than the singularity, which for r ¼ 1 coincides with
the RE solution b̄. This is fully consistent with the theoretical findings of Section 3.1. What is the underlying reason for this
result?

When r ¼ 1, the fundamentals vt follow a pure random walk, the RE solution is st ¼ ð1� yÞ�1vt , or equivalently
st ¼ ð1� yÞ�1vt�1 þ ð1� yÞ�1�t , and Ft ¼ Etstþ1 ¼ ð1� yÞ�1vt . Thus under RE

st ¼ b̄vt ¼ Ft where b̄ ¼ ð1� yÞ�1 and

Ft � st � 0 and utþ1 ¼ stþ1 � Ft ¼ b̄�tþ1.

Consider now the situation for bab̄. As discussed in the Introduction, b̂ is biased downward from one if
covtðFt � st ;utþ1Þo0.22 If agents believe that st ¼ bvt�1 þ c�t , we have from (11) that

Ft � st ¼ ð1� yÞðb� b̄Þvt

when r ¼ 1. The intuition is clearest if we split utþ1 into

utþ1 ¼ Dstþ1 � ðFt � stÞ,

i.e. the difference between Dstþ1 and the forward premium. Then

covtðFt � st ;utþ1Þ ¼ covtðDstþ1; Ft � stÞ � vartðFt � stÞ ¼ �vartðFt � stÞo0 if bab̄,

since in the random walk case Dstþ1 ¼ ð1þ ybÞ�tþ1, whatever the value of b, and since covtð�tþ1; Ft � stÞ ¼ 0.
To summarize, under the true regression model H0 : a ¼ 0, b ¼ 1, but with (arbitrarily) small deviations from RE, the

error term utþ1 in the forward-premium regression is negatively correlated with the forward premium because utþ1 is
simply the difference between the (unforecastable) exchange rate change and the forward premium itself. This negative
20 This table is given in the ‘‘Supplementary materials: extensions and further discussion’’ for this paper, available on the Science Direct website.
21 There is also a sizable literature on the predictability of the exchange rate over multiple periods. We reserve for future research the theoretical

implications and empirical results for this aspect of the perpetual learning model.
22 Here we use conditional covariances and variances because for bab̄ the unconditional moments are not well-defined when r ¼ 1. However, as seen

below, the conditional moments are independent of t. Furthermore, the unconditional moments are well-defined for all 0oro1 and

limr!1ðcovtðutþ1; Ft � st Þ=vartðFt � st ÞÞ ¼ �1.
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Fig. 2. Model generated time paths of log exchange rate, for y ¼ 0:6, r ¼ 1, under rational expectations and under learning with g ¼ 0:04.
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correlation is present unless b ¼ b̄, i.e. RE holds exactly, in which case vartðFt � stÞ ¼ 0. Furthermore, for bab̄ we have
covtðFt � st ;utþ1Þ=vartðFt � stÞ ¼ �1, for all t. Since this holds for all bab̄, since under learning bt will be close to but (with
probability one) not equal to b̄, and since with a small gain g40 the agents’ estimates bt will be almost constant over time,
it is not surprising that Proposition 2 was able to establish a downward bias of plimðb̂� 1Þ ¼ �1 for the limiting case r! 1.

What is, perhaps, unexpected and surprising is that arbitrarily small deviations from RE yield a downward bias approaching
�1 as r approaches 1. The reason for this is that the asymptotic bias depends on the ratio covðFt � st ;utþ1Þ=varðFt � stÞ. Under
RE covðFt � st ;utþ1Þ ¼ 0 for all 0prp1 but varðFt � stÞ ! 0 as r! 1. Thus under RE the ratio is always zero except at r ¼ 1,
when the ratio is undefined since Ft � st � 0. Under learning we also have plimðdcovððFt � stÞ;utþ1ÞÞ ! 0 and plimðdvarðFt �

stÞÞ ! 0 as g! 0 but the ratio is close to �1 for ro1 near 1. Furthermore, as our numerical computations have shown, for
r ¼ 1 itself, the system under learning is well-behaved, with an asymptotic bias for b̂ of �1 and an even stronger downward
bias for b̂ in small samples.

Figs. 2 and 3 give the results of a typical simulation of our model over T ¼ 200 periods, with parameters set at y ¼ 0:6
and r ¼ 1.23 Fig. 2 gives the time paths for the log of the exchange rate under RE, and under least-squares learning with
constant gain g ¼ 0:04. The two time paths, which are generated by the same sequence of exogenous random shocks, are
almost indistinguishable. Some mild ‘‘overshooting’’ under learning can be seen under close inspection, which is another
immediate implication of learning for r! 1.24 Fig. 3 gives the corresponding simulation results for depreciation and the
forward premium under learning. The estimated value from the forward-premium regression in this simulation is
b̂ ¼ �0:66, with a t-statistic of t ¼ �2:23, a typical illustration of the forward-premium puzzle.25 Similar results are
obtained for values of r that are close to but less than one.

For comparison Fig. 4 presents the monthly depreciation and forward-premium data (from Bloomberg) for the log
Canadian dollar price of the US dollar, December 1988–September 2005. The data and the regression estimate b̂ ¼ �0:60,
with a t-statistic of t ¼ �2:04, are quite similar to the simulated results under learning given in Fig. 3.26 Note that the
explanatory power of the forward-premium regressions is low in each, which is another standard finding in the data. This
phenomenon was stressed by McCallum (1994).27

A feature of our analysis worth emphasizing is that exchange-rate paths under learning and under RE can be almost
identical, and yet lead to very different results for the test of the forward-premium bias. This finding, illustrated in Figs. 2
and 3, results from two factors. First, with small gains the model under learning has estimates bt that are close to the RE
value. As a result forecasts and hence exchange rates are close to what would be observed under RE. Second, for r close to
or equal to one, variation over time of the forward premium Ft � st is small, leading to the low explanatory power of Ft � st

in predicting exchange-rate changes that was noted by McCallum (1994). Because the bias of b̂ is determined by the ratio of
dcovðDstþ1; Ft � stÞ to dvarðFt � stÞ, the downward bias resulting from dcovðDstþ1; Ft � stÞo0 can still be large, despite the
23 The standard deviation of the innovation to the fundamentals has been chosen so that the scale for depreciation is similar to that seen in the

Canadian–US data.
24 The somewhat greater variation of st under learning is consistent with the excess volatility results of Kim (2006). The extent of overshooting and

excess volatility seen in our simulations depends on the parameters y; r and g.
25 The results shown are typical, but we remark that there is a wide variation across simulations. For example, for this parameter setting, 80% of the

values of b̂ lie in the interval ð�3:67;0:13Þ.
26 For a comprehensive empirical analysis see Chakraborty (2008).
27 See also Engel and West (2005).
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Fig. 3. Model generated data with learning, for y ¼ 0:6, r ¼ 1 and g ¼ 0:04. Test statistic b̂ ¼ �0:66.
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Fig. 4. Time path of USD/CAD (Canadian Dollar) log exchange rate (monthly data December 1988–September 2005). Test statistic b̂ ¼ �0:60.
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minimal impact on the st path. An implication of these results is that profiting from the deviation from RE would require
taking large and risky positions in the foreign exchange market.

In the Introduction we argued that nonrational expectations were a potential explanation of the forward-premium
puzzle. A natural question to raise is whether other types of deviation from RE would yield results similar to perpetual
learning. To investigate this, consider modeling expectations as equal to the RE value plus a white noise expectation shock,
i.e. Ft ¼ Êtstþ1 ¼ b̄vt þ Zt , where Zt�iidð0; s2

Z Þ is an exogenous process independent of the vt process. It can be shown that
this leads to

Ft � st ¼ ð1� yrÞ�1
ðr� 1Þvt þ ð1� yÞZt ,

Dstþ1 ¼ ð1� yrÞ�1
ðr� 1Þvt � yZt þ ð1� yrÞ�1�tþ1 þ yZtþ1.

For jrjo1 the asymptotic bias plim b̂� 1 ¼ covðDstþ1; Ft � stÞ=varðFt � stÞ � 1 can be computed to be

plim b̂� 1 ¼ �
ð1� yÞðs2

Z=s
2
v Þ

ð1� rÞ2=ð1� ryÞ2 þ ð1� yÞ2ðs2
Z=s2

v Þ
.

Hence there is indeed a downward bias. For given r and s2
v the asymptotic bias tends to zero as s2

Z ! 0. However, for given
s2
Z and s2

v (or for given s2
Z and s2

� ) the asymptotic bias tends to �ð1� yÞ�1 as r! 1. Thus as the fundamentals tend to a
random walk, there is again a strong downward bias that could potentially explain the forward-premium puzzle. However,
there are other empirical implications that in our view make the perpetual learning model clearly preferable.
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In the case of white noise expectation shocks, the autocorrelation of the forward premium Ft � st is low for r near one.
In fact, it can be seen that Ft � st ! ð1� yÞZt as r! 1, so that the first-order autocorrelation corðFt � st ; Ft�1 � st�1Þ ! 0 as
r! 1. This is counterfactual since the forward premium is known to be heavily positively serially correlated. For example,
McCallum (1994) reports estimated first-order autocorrelations of Ft � st , for monthly data over 1978.01–1990.07 of 0:829,
0:897 and 0:906 for the $/DM, $/£ and $/yen, respectively (and first-order autocorrelations are known to be downward
biased in small samples). Similarly, for the Canadian data illustrated above, the estimated first-order autocorrelation is
0:902. In contrast to the case of white noise expectation shocks, strong positive autocorrelation of the forward premium
will be present in the perpetual learning model for r near one. Under learning Ft � st ¼ ðð1� yÞbt�1 � 1Þvt , and Proposition
1 implies that for small gains g the agents’ parameter estimates bt are strongly positively serially correlated. It follows that
as r! 1 the forward premium itself will be positively serially correlated. Intuitively, under constant-gain least-squares
learning bt is revised each period by small amounts, leading to positive correlation in bt around the RE value. This in turn
induces positive serial correlation of the forward premium Ft � st , and when r is close to one the degree of positive serial
correlation of Ft � st will be high, as found in the data.

We conclude our discussion with brief comments on several extensions.28 Our formulation of learning based on (6) uses
a ‘‘self-referential’’ approach in which st depends on Êtstþ1 as well as on the current fundamentals vt . An alternative is to
solve (6) forward for st as a present-value type of sum of current and expected future vtþj, j ¼ 0;1;2; . . . . Under learning
agents estimate the vt process using constant-gain least squares. This formulation leads to similar results to the self-
referential version. Other variations incorporate actual structural change into the model: either unobserved structural
change of the type described in Evans and Ramey (2006), or infrequent but observed structural change. In both cases we
find that for r near one the forward-premium puzzle arises under learning. Thus our central findings appear robust to the
detailed specification of the model under learning.

We have developed our results under learning using the basic canonical monetary exchange-rate model. We have
isolated a simple and powerful mechanism for explaining the forward-premium anomaly, based on the combination of
econometric learning by private agents and random walk or near random-walk behavior of the fundamentals driving the
exchange rate. More elaborate models would allow for risk aversion, incomplete price adjustment, incomplete information
processing, or heterogenous expectations. We anticipate that the impact of learning will remain prominent in more
complex exchange-rate models.

5. Conclusions

The forward-premium anomaly is a long outstanding puzzle that has proved difficult to explain based on risk premia
and other orthodox approaches. While it has long been recognized that the anomalous empirical results might be due to
irrationality in the exchange markets, the present paper shows that an adaptive learning approach increasingly employed
in the macroeconomics literature appears able to reproduce the key empirical results. Modeling expectations by constant-
gain least-squares learning ensures that deviations from RE are both small and persistent in realistic ways. Agents continue
to update their parameter estimates because of concern for structural change, in a way similar to the use of rolling data
windows. The result is perpetual learning by agents that keeps expectations close to RE, but with small random deviations
due to revisions to the forecast rule driven by recent forecast errors.

We have shown theoretically that as the fundamentals process approaches a random walk, an empirically realistic case,
even arbitrarily small deviations from RE, in accordance with perpetual learning, induce a large downward asymptotic bias
in the estimated forward-premium regression coefficient. Specifically, we obtain for this case the limiting value of plimðb̂Þ ¼
0 in sharp contrast to the RE coefficient value of b ¼ 1. In our numerical results we find that this downward bias is magnified
in small samples, and that the large negative values of this coefficient observed empirically are fully consistent with our
theory. The results of this paper thus suggest that the learning theory approach to expectation formation in the foreign
exchange markets should be considered a serious contender in future empirical work on the forward-premium puzzle.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version at 10.1016/j.jmoneco.2008.03.002.
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