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The general strategy is to build dynamic general equilibrium models and confront them to the data. The
focus of International Real Business Cycles (IRBC) is on the international dimension of the data, economic
connections across countries, transmission of aggregate fluctuations.

5.1 Empirical Evidence: Backus Kehoe and Kydland (JPE 1992)
or Backus Kehoe and Kydland in Cooley et al (1995)

This focus is expressed in terms of the statistical movements and comovements in aggregate variables.
Variables are first “detrended”. The most commonly used method is the Hodrick-Prescott filter (1997
JMCB, published very late even though it had a huge impact on the literature...)
Take a series yt and write it as the sum of a trend and a cycle: yt = τ t + ct. The trend is in stochastic

in general, but slow moving. We want to recover ct = yt − τ t. The idea is to minimize the variance of ct
but to attach a penalty to making the trend too volatile (otherwise the obvious solution is yt = τ t). This
is expressed by ‘choosing’ the degree of smoothness of the trend, the smoothness coefficient. So the trend is
obtained by minimizing:

TX
t=1

(yt − τ t)
2 + λ

T−1X
t=1

¡
∆2τ t+1

¢2
The rationale for the penalty term is that it forces slow moving first derivative of the trend (by penalizing
the second derivative). For quarterly data, it is typical to use λ = 1600.
The first order condition takes the following form:

τ t =
h
1 + λ (1− L)2

¡
1− L−1

¢2i−1
yt

In practice, the H-P filter is like a bandpass filter that cuts the frequencies lower than 0.4 (i.e. periods longer
than 2.5)

1 c°Pierre-Olivier Gourinchas, 2006. All rights reserved.
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How do we implement the HP filter? Consider the FOC for τ t (noting that ∆2τ t+1 = τ t+1− 2τ t+ τ t−1),
with 2 ≤ t ≤ T − 2

−yt + τ t − 2λ (τ t+1 − 2τ t + τ t−1) + λ (τ t − 2τ t−1 + τ t−2) + λ (τ t+2 − 2τ t+1 + τ t) = 0

which we can rewrite

ct = yt − τ t = λ (τ t+2 − 4τ t+1 + 6τ t − 4τ t−1 + τ t−2)

so we can write

Y =

⎛⎜⎝ y1
...
yT

⎞⎟⎠ = [I+ λM] τ

where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 5 −2
1 −2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a TxT matrix. Given M, we can construct HP filtered data as

C = Y − τ =
h
I− [I+ λM]−1

i
Y

After all variables are H-P filtered, BKK (1992) show that the following pattern hold (see figure 1 and
2):

1. output is more variable than consumption

2. output is highly autocorrelated

3. productivity is strongly procyclical (defined as log z = log (y/n)− θ log (k/n) where θ = 0.36.

4. trade balance is strongly countercyclical

5. there are positive comovements in output across countries

6. smaller comovements in consumption
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5.1. Empirical Evidence: Backus Kehoe and Kydland (JPE 1992) or Backus Kehoe and Kydland in Cooley

et al (1995)

Figure 1

Figure 2
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5.2 Introduction to linearization methods: The stochastic growth
model in closed economy

5.2.1 The problem

Equations describing the stochastic growth model:

max
{ct,it}

E0

" ∞X
t=0

βtu (ct)

#
yt = eztkαt

ct + it ≤ yt

kt+1 = (1− δ) kt + it

zt+1 = ρ zt + t+1

∼ N
¡
0, σ2

¢
z0, k0 given

Remark 1 Here, no trend growth. In models with trend growth, it is necessary to rewrite the model in terms
of stationary variables (deflate by the appropriate quantities)

Remark 2 The resource constraint takes the form: ct + kt+1 ≤ yt + (1− δ) kt. It is equivalent to maximize
over the sequence {ct, kt+1} since k0 is given.

Now we can write the Lagrangian for this problem:

L = E0

∞X
t=0

βt [u (ct) + λt (yt + (1− δ) kt − kt+1 − ct)]

The first order conditions are:

u0 (ct) = λt

λt = βEt

∙
λt+1

µ
α
yt+1
kt+1

+ 1− δ

¶¸
Combined, we obtain the standard Euler equation:

u0 (ct) = βEt [u
0 (ct+1) (1 + rt+1)]

where rt+1 = αyt+1/kt+1−δ is the rental rate of capital. The equilibrium is characterized by three conditions:

βEt

∙
u0 (ct+1)

µ
1 + α

yt+1
kt+1

− δ

¶¸
= u0 (ct) (5.1)

kt+1 = yt + (1− δ) kt − ct

zt+1 = ρ zt + t+1

The standard solution method involves linearizing the model around the steady state. This requires that
we first characterize the steady state.

5.2.2 The steady state

The steady state corresponds to the case where σ2 = 0 and zt = z∗. The equilibrium conditions are then:

u0 (c∗) = βu0 (c∗)
³
1 + αez

∗
k∗α−1 − δ

´
k∗ = ez

∗
k∗α + (1− δ) k∗ − c∗

z∗ = ρ z∗
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this is a system with three equations and three unknowns (z∗, k∗, c∗) . In this case, the system is recursive.and
we can solve for:

z∗ = 0

k∗ =

µ
β−1 + δ − 1

α

¶1/(α−1)
c∗ = k∗α − δk∗

5.2.3 The linearization

The set of equations (5.1) forms a nonlinear dynamic system that characterizes the exact solution to the
problem. In general, this exact solution cannot be characterized analytically. Instead, we resort to simulation
methods. Some simulation methods provide exact solutions (i.e. the solution to (5.1)). These exact solutions
are usually more computationally intensive. Other methods linearize the dynamic system around the steady
state and solve the linearized model. This method is usually much faster. However, it is only valid in a
neighborhood of the steady state, so only when the shocks are not too large. It also requires that the steady
state be well defined (more on this for small open economies later).
Under some reasonable conditions, the solution to the linearized system provides a first-order accurate

solution to the exact non-linear solution (see the Hartman Grobman theorem p118 in Perko, Differential
Equations and Dynamical Systems)

We linearize by taking a first order expansion of the set of equations (5.1) around x∗ = (c∗, k∗, z∗)0 .
Recall that for sufficiently smooth functions, we can write:

F (x) = F (x∗) +DF (x∗) (x− x∗) + o
¡
||x||2

¢
We now apply this method to the system to obtain:

Et

h
ψ1cĉt+1 + ψ1kk̂t+1 + ψ1z ẑt+1

i
= φ1cĉt + φ1kk̂t + φ1z ẑt

ψ2cĉt+1 + ψ2kk̂t+1 + ψ2z ẑt+1 = φ2cĉt + φ2kk̂t + φ2z ẑt

ψ3cĉt+1 + ψ3kk̂t+1 + ψ3z ẑt+1 = φ3cĉt + φ3kk̂t + φ3z ẑt + t̂+1

in this notation ψij denotes the partial derivative of the LHS of equation i with respect to variable j and
φij denotes the same thing for the RHS, evaluated at the steady state. ŷt denotes the deviation from steady
state yt − y∗ (note that ˆ = since ∗ = 0). In this notation, many coefficients are equal to zero. In fact, we
can rewrite:

ψx̂t+1 + Jŵt+1 = φx̂t + r̂t+1

where

ψ =

⎡⎣ βu00 (c∗) (1 + r∗) βu0 (c∗)α (α− 1) k∗(α−2) βu0 (c∗)αk∗(α−1)

0 1 0
0 0 1

⎤⎦
φ =

⎡⎣ u00 (c∗) 0 0
−1 1 + r∗ k∗α

0 0 ρ

⎤⎦
J =

⎡⎣ ψ11 ψ12 ψ13
0 0 0
0 0 0

⎤⎦
ŵt+1 = Etx̂t+1 − x̂t+1

r̂t+1 =

⎛⎝ 0
0

t̂+1

⎞⎠
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(note that this notation allows to write the equations with expectations and the other all together).
Alternatively, this can be rewritten as:

ψx̂t+1 = φx̂t + f̂t+1

where

f̂t+1 =

⎛⎝ −ψ1ŵt+1

0

t̂+1

⎞⎠
This is a linear system with a forcing term f̂t+1.
We solve it by premultiplying by ψ−1:

x̂t+1 = Ax̂t + ψ−1f̂t+1 (5.2)

where A = ψ−1φ. This is a canonical form for linear difference models. Observe that the first equation
involves expectations of future variables (we have subsumed that term inside f).

Remark 3 In some cases, ψ is not invertible. In that case, we have to use a slightly different method.

There are a number of ways to solve it. We follow Blanchard and Kahn (1980, AER). The BK approach
characterizes the nature of the solution (saddle path, stable, explosive) depending on the number of roots of
A that lie outside the unit circle. More specifically, suppose that the system contains n variables with n−m
pre-determined ones and m non-predetermined. A is then a nxn matrix , and BK prove the following:2

Proposition 5.2.1 (Blanchard and Kahn)

• if A has m0 > m eigenvalues outside the unit circle, there is no bounded solution for the system;

• if A has m0 < m eigenvalues outside the unit circle, there is an infinity of solutions that satisfy the
system

• if A has m0 = m eigenvalues outside the unit circle, the system has the saddle path property and there is
a unique and bounded solution to the system for each initial condition on the pre-determined variables.

In our case, the proposition implies that a unique bounded solution exists if and only if A has a unique
eigenvalue that lies outside the unit circle since consumption is the only non-predetermined variable. One
can check that this condition holds. Moreover, since the solution is bounded, it approximates the solution
to the exact equilibrium conditions. Since the solution is unique it gives an approximate characterization of
the unique equilibrium.
In practice, define the matrix Q with the n eigenvectors of A on the columns and a diagonal matrix Λ

with the n eigenvalues (here n = 3)

Q =

⎡⎣ v1(1) ... vn(1)

v1(n) ... vn(n)

⎤⎦ ; Λ =
⎡⎣ λ1 0 0
0 . 0
0 0 λn

⎤⎦
By definition of the eigenvectors and eigenvalues,

Q0A = ΛQ0

Premultiply (5.2) by Q0 to obtain:
Q0x̂t+1 = ΛQ

0x̂t +Q0ψ−1f̂t+1

Define ŷt = Q0x̂t. Each equation now has the form:

ŷit+1 = λiŷ
i
t + ηif̂t+1

2Recall that μ is an eigenvalue if there exists a vector v (called and eigenvector associated with μ) such that: v0A = μ v0.
Equivalently, μ solves det (A− μI) = 0 where I is the identity matrix.
An eigenvalue μ lies outside the unit circle if |μ| > 1 where |μ| is the modulus of μ.
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where ηi is the i
th row of the matrix η = Q0ψ−1.

First, consider the unstable root λu such that |λu| > 1. Then, we can calculate:

Etŷut+1 = λuŷut

since Etf̂t+1 = 0. Inverting, we obtain:

ŷut = λ−1u Etŷut+1 → 0

since by construction the solution is bounded and
¯̄
λ−1u

¯̄
< 1. This implies that ŷut = 0 at all times. Denoting

vu = (vuz, vuk, vuc)
0 the eigenvector associated with the eigenvalue λu, this implies that

v0ux̂t = 0

In other words, there is a linear combination of ĉt, k̂t and ẑt that must be satisfied at all times. We can
write for instance:

ĉt = ckk̂t + cz ẑt (5.3)

where ck = −vuk/vuc and cz = −vuz/vuc.
Second, rewrite the equation for yut :

ŷut+1 = λuŷut + ηuf̂t+1

using the fact that ŷut = 0, we conclude that there is no role for expectation errors (i.e. no sunspots here):
ηuf̂t+1 = 0 or:

ψ1ŵt+1 = −
ηu3
ηu1

t̂+1

this implies that the innovations to xt+1 are simply a function of the fundamental shock.3

Finally, we complete the characterization by substituting the expression for ĉt into (5.1) to obtain the
capital dynamics:

k̂t+1 =
¡£

A22 A23
¤
+A21 (ck, cz)

¢µ k̂t
ẑt

¶
(5.4)

To summarize, the solution takes the form:

ĉt = ckk̂t + cz ẑt

k̂t+1 = kkk̂t + kz ẑt

ẑt+1 = ρẑt + t+1

The steps of the linearization can be performed numerically once the parameter values of the model
are set. Standard computational packages such as MATLAB or GAUSS will calculate the eigenvectors and
eigenvalues.

5.3 The SOE model

We now apply this methodology to solve open economy macro problems.

3 It is this result that does not hold anymore when m0 < m : the exectational innovation is not anchored by fundamental
shocks anymore, so that sunspots can drive the dynamics of the system.
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5.3.1 Without uncertainty

We start with a non stochastic small open endowment economy.

max
{ct}

∞X
t=0

βtu (ct)

ct + at+1 ≤ yt + (1 + r) at

lim
T→∞

aT+1

(1 + r)
T
≥ 0

a0 given

the second condition is a no-ponzi condition.
The trade balance in this economy is TBt = yt − ct while the current account is CAt = TBt + rat.
The Lagrangian for this problem is

L =
∞X
t=0

βt [u (ct) + λt (yt + (1 + r) at − at+1 − ct)]

The first order condition for this problem takes the following form:

u0 (ct) = λt

λt = β (1 + r)λt+1

When β (1 + r) = 1, we can solve for the consumption level as:

c0 =
r

1 + r

(
(1 + r) a0 +

∞X
t=0

yt

(1 + r)
t

)
There are two observations that are important at this stage:

1. this is the intertemporal approach to the current account. It implies that the trade balance is positive in
response to temporary positive shocks. In other words, this model predicts a procyclical trade balance.
Yet we observe instead countercyclical trade balances (see BKK tables). Need a more complicated
story.

2. Consider now an increase in assets at time 0, a0, by ∆ The model implies that consumption increases
by r∆. In other words, the household consumes the interest income on the higher level of assets, but
saves the principal (consumes the annuity). So at is non stationary: if a increases, it stays permanently
higher. Any level of foreign assets is consistent with the steady state. This is a problem if we want to
linearize to solve the dynamics.

5.3.2 Extensions

5.3.2.1 Adjustment costs to capital

Needed to get the volatility of investment right. Consider the model with production, without adjustment
costs. The resource constraint takes the following form:

at+1 + ct + it = (1 + r) at + ztk
α
t

kt+1 = (1− δ) kt + it

The FOC is:

λt = βλt+1 [1− δ + zt+1f
0 (kt+1)]

λt = βλt+1 (1 + r)
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so that
zt+1αk

α−1
t+1 = r + δ

and investment is decoupled from saving. This pins down the stock of capital as soon as the capital account
is open. This makes the investment dynamics completely trivial in this model:

kt+1 =

µ
r + δ

αzt+1

¶1/(α−1)
it =

µ
r + δ

αzt+1

¶1/(α−1)
− (1− δ)

µ
r + δ

αzt

¶1/(α−1)
To get interesting investment dynamics, we can add adjustment costs so that

at+1 + ct + it +
ω

2

(it − δk∗)2

kt
= (1 + r) at + zf (kt)

kt+1 = (1− δ) kt + it

The Lagrangean is:

L =
∞X
t=0

βt

(
u (ct) + λt

Ã
ztf (kt) + (1 + r) at − at+1 − ct − it −

ω

2

(it − δk∗)2

kt
− qt (kt+1 − (1− δ) kt − it)

!)

where qt is the relative price of an installed unit of capital in terms of investment goods (Tobin’s q).
The FOC are (setting ω = 1 and assuming that β (1 + r) = 1):

1. investment (it)

λt

µ
1 +

it − δk∗

kt
− qt

¶
= 0

it − δk∗ = kt (qt − 1)

2. Capital (kt+1):

λtqt = β
1

2
λt+1

(it − δk∗)

k2t+1
+ βqt+1λt+1 (1− δ) + βλt+1zt+1f

0 (kt+1)

3. External asset holdings (at+1):
λt = β (1 + r)λt+1 = λt+1

this implies:

qt = β
1

2

(it − δk∗)

k2t+1
+ βqt+1 (1− δ) + βzt+1f

0 (kt+1)

=
1

1− δ

∞X
s=t+1

µ
1− δ

1 + r

¶s−t "
zsf

0 (ks) +
1

2

µ
is − δk∗

ks

¶2#
+ lim

T→∞

µ
1− δ

1 + r

¶T
qt+T

the right hand side is the PDV of future MPK plus the impact on the future adjustment costs.
Assume δ = 0. In steady state q = 1 and r = zf 0 (k∗) . The dynamic system is characterized by the

following two equations:

kt+1 − kt = kt (qt − 1)

qt+1 − qt = qtr − zt+1f
0 (qtkt)−

1

2
(qt+1 − 1)2

These two equations define a saddle-path equilibrium (to convince yourself, draw the phase diagram, or
check Blanchard-Fisher).
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5.3.2.2 Adding non tradables.

Same model but now consumption is an index of tradable and non tradable:

u (c) =
c1−σ

1− σ

c =
h
γ
¡
cT
¢ρ
+ (1− γ)

¡
cN
¢ρi 1ρ

with ρ < 1. Equilibrium on the nontradable goods market requires cN = yN . Note that = 1/σ is the
IES while η = 1/ (1− ρ) is the elasticity of substitution between tradable and non tradable. Assume that
β (1 + r) = 1 and that the conditions for a convex problem are satisfied (second order sufficient conditions
satisfied). This requires that u11 < 0 where u = u

¡
cT , cN

¢
.

With perfect smoothing, the equilibrium conditions satisfy

λ = u1t

where λ > 0 is constant because β (1 + r) = 1. Recall from previous discussions that the sign of dcT /dyN

depends upon the sign of − η.

• When η > , the elasticity of substitution between T and N is high so what matters is intertemporal
consumption smoothing. If yN increases, cT decreases so as to keep aggregate consumption smooth
over time.

• When η < , T and N are complements and an increase in yN requires an increase in cT . This can
generate a countercyclical trade balance (if increase in output coming from increase in yN )

5.3.2.3 Stationary asset distribution

There are a number of ways to make a stationary so that we can solve the model by linearization (see Schmitt
Grohe and Uribe JIE (2004) for a comparison of these different methods)

1. The interest rate is a decreasing function of net foreign assets:

1 + r = 1 + r∗ + p (A)

where A denotes the aggregate asset level, taken as given by the agents. In equilibrium A = a. The
function p satisfies p0 (A) < 0. For instance, we can use:

p (A) = χ
³
eA
∗−At − 1

´
The premium is such that the country faces the world interest rate r∗ when A = A∗.

2. The discount rate is a decreasing function of consumption and leisure. This makes countries with
higher levels of assets more impatient, so that they run down these assets. (Mendoza)

β =

µ
1 + C − ψ0

ψ1
Nψ

¶−χ

3. Costs of adjusting the international portfolio: (at+1 − at)
2

4. Overlapping generations with perpetual youth. This also generates a stationary level of assets since
young agents are born without initial assets.
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5.3.3 Quantitative evaluation of the SOE model (bond only)

Model includes production, as well as consumption-leisure trade-off and adjustment costs of capital.

max
{ct,nt,kt+1,bt+1}

E0

" ∞X
t=0

βtu (ct, nt)

#
ct + kt+1 + at+1 = yt + gt −

ω

2
(kt+1 − kt)

2 + (1− δ) kt + (1 + r∗ + p (A)) at

lim
T→∞

aT+1

(1 + r)T
≥ 0

a0, k0 and z0 given

yt = f (kt, nt, zt)

zt+1 = ρzt + t+1

ω > 0 is needed to calibrate the relative volatility of investment (otherwise in the SOE model, capital would
jump to its steady state value instantly). Assume that β (1 + r) = 1.

The equilibrium conditions are:

at = At

fn (kt, nt, zt) = −unt
uct

uct = βEtuct+1 (1 + r + p (at+1))

uct [1 + ω (kt+1 − kt)] = βEtuct+1 [1− δ + fk,t+1 + ω (kt+2 − kt+1)]

ct + kt+1 + at+1 = ft −
ω

2
(kt+1 − kt)

2 + (1− δ) kt + [1 + r + p (At)] at

Remark 4 Before we proceed, note two differences with the previous setup:

1. the system involves kt+2 as well as kt+1 and kt : it is a second order system. This is due to the adjustment
cost term.

2. some equations (intratemporal) do not involve t+ 1 variables at all (e.g. first order condition for nt)

We follow the usual procedure. First, we characterize the steady state, then we linearize around that
steady state, and finally we solve the linear system of difference equations.
We assume the following functional forms:

u (ct, nt) =
1

1− σ

∙
c− nψ

ψ

¸1−σ
f (k, n, z) = ezkαn1−α

p (A) = χ
³
eA
∗−At − 1

´
This representation of preferences (due to Greenwood, Hercowitz and Huffman (1988), or GHH preferences)
guaranties that there is no wealth effect on the labor supply (i.e. that the labor supply remains constant as
consumption increases). An often used alternative is to assume KPR preferences (after King Prescott and
Rebelo (1983)):

u (ct, nt) =
1

1− σ

³
cψ (1− n)

1−ψ
´1−σ
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5.3.3.1 Steady State

In steady state, t = 0 and we obtain the following equations:

a∗ = A∗

z∗ = 0

(1− α)

µ
k∗

n∗

¶α
= n∗ψ−1

1 = β

Ã
1− δ + α

µ
k∗

n∗

¶α−1!

c∗ = k∗
µ
r∗ + (1− α) δ

α

¶
+ r∗A∗

The first two equations determine the steady state capital stock and choice of hours:

(1− α)

µ
r∗ + δ

α

¶ α
α−1

= n∗ψ−1

r∗ + δ

α
=

µ
k∗

n∗

¶α−1
while the last equation determines consumption.
Note that the trade deficit is equal to

tb∗ = f∗ − c∗ − i∗

= −r∗A∗

so that the ratio of the equilibrium trade balance to GDP is given by:

tby∗ =
tb∗

f∗
= −rA

∗

f∗

while the current account is:
ca∗ = tb∗ + r∗A∗ = 0

5.3.3.2 Log-linearization

We log-linearize the system around the steady state. The log linearization proceeds as follows. First, denote
x̂ the log-deviation of variable x, i.e.: xt = x∗ex̂t (equivalently, x̂t = ln (xt/x∗) is the percent deviation from
steady state). Now consider a function of two variables x and y, denoted g (x, y) . We write a first order
approximation as follows:

g (x, y) = g
¡
x∗ex̂t , y∗eŷt

¢
= g (x∗, y∗) +

∂g

∂x
(x∗, y∗)x∗x̂t +

∂g

∂y
(x∗, y∗) y∗ŷt

Taking logs, we obtain:

ln g (xt, yt) = ln

µ
g∗ +

∂g

∂x
(x∗, y∗)x∗x̂t +

∂g

∂y
(x∗, y∗) y∗ŷt +O

³
k tk2

´¶
= ln g∗ + ηgxx̂t + ηgyŷt +O

³
k tk2

´
≈ ln g∗ + ηgxx̂t + ηgyŷt

where ηgx =
∂g
∂x (x

∗, y∗)x∗/g∗ is the elasticity of g wrt x, evaluated at (x∗, y∗) .
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We deal with kt+2 by defining the variable k0t = kt+1. Observe that k0t is non-predetermined at time t.
We also substitute At = at directly.

The state variables are (kt, at, zt) while the control variables (non-predetermined) are ct, nt, k0t. We can
write the system as:

zt+1 = ρzt + t+1

ct + kt+1 + at+1 = ft −
ω

2
(kt+1 − kt)

2
+ (1− δ) kt + [1 + r + p (at)] at

uct = βEtuct+1 (1 + r + p (at+1))

uct [1 + ω (kt+1 − kt)] = βEtuct+1
£
1− δ + fk,t+1 + ω

¡
k0t+1 − k0t

¢¤
eztkαt n

1−α
t = nψ−1t

kt+1 = k0t

where we note that the last equation is an auxiliary equation so that we can include kt+2 in the equations.
This is a system of 6 equations and 6 unknowns. We linearize it as follows (note that we are linearizing, not
log-linearizing, in z, since z∗ = 0) :

zt+1 = ρzt + t+1

ψykk̂t+1 + ψyaât+1 = φycĉt + φynn̂t + φykk̂t + φyaât + φyzzt

ψccĉt+1 + ψcnn̂t+1 + ψcaât+1 = φccĉt + φcnn̂t

ψkkk̂t+1 + ψkcĉt+1 + ψknn̂t+1 + ψkk0 k̂
0
t+1 + ψkzzt+1 = φkcĉt + φkkk̂t + φkk0 k̂

0
t

zt + αk̂t + (1− α) n̂t = (ψ − 1) n̂t
k̂t+1 = k̂0t

where the various coefficients correspond to the elasticities of the log-linearization
[For instance, ψkc = −σc∗/

¡
c∗ − n∗ψ/ψ

¢
, ...]

If we define x̂t =
³
k̂t, ât, ẑt, ĉt, n̂t, k̂

0
t

´0
, we can write the system as:

ψx̂t+1 = φx̂t + ft+1

where f̂t+1 takes the following form:

ft+1 =

⎛⎜⎜⎝
t+1

−ψjŵt+1

−ψj0ŵt+1

0

⎞⎟⎟⎠
contains expectational error terms of the form ψjŵt+1 = ψj (Etx̂t+1 − x̂t+1) in the equations j that contain
expectational terms (the two euler equations)

As was mentioned before, it is often the case that the matrix ψ is not invertible, so that the method
proposed in the simple stochastic growth model does not apply any longer. In that case, we have to use
slightly more powerful linear algebra results. This is the case when there is an intratemporal equilibrium
condition (e.g. a leisure-consumption trade-off) since the corresponding row in the linearized system does
not involve time t+ 1 variables.
Here is how we proceed in that case:

1. order variables and equations so that:

(a) x̂t lists first the predetermined variables (already done here)

(b) Intertemporal conditions come first, intratemporal conditions below (already done, see above)

(c) Euler equations are placed last in the set of intratemporal equations (already done, see above)



International Finance, ECO280B 14

2. Perform a Generalized Complex Schur Decomposition (or QZ decomposition). Given ψ and φ, this
returns Q, Z, S and T such that:

ψ = QSZH

φ = QTZH

where Q and Z are unitary matrices (i.e. matrices such that QHQ = I, if Q is real, it is an orthogonal
matrix) and S and T are upper triangular. QH denotes the complex transpose of Q.4 The dynamic
system can then be rewritten as:

QSZH x̂t+1 = QTZH x̂t + f̂t+1

The generalized eigenvalues of ψ and φ are equal to the diagonal elements of T (tii) divided by the
diagonal elements of S (sii) .

5 The generalized complex Schur decomposition can be obtained in a
number of ways. In Matlab, the qz M-file computes the generalized Shur decomposition. In GAUSS,
one can use either Paul Soderlind routines (available at http://www.hhs.se/personal/PSoderlind/).
One can also use the lapgschur instruction (GAUSS 4.0 and beyond) although Lapgschur will not
provide the necessary sorting (see below).

3. Order the decomposition so that the stable generalized eigenvalues come first (again, this is performed
automatically in P. Soderlind routine; in MATLAB, you can use Chris Sims’ qzdiv and qzswitch M-
files). In general these programs require a cut-off value (to decide what generalized eigenvalues are
stable or unstable). In most cases the value for the cut-off should be 1. The final result is a set of
matrices Q,Z, S and T so that the generalized eigenvalues tii/sii are increasing in norm.

4. Count the number of stable eigenvalues, i.e. such that ktii/siik < 1 (call it ns) and define nu = nvar−ns
where nvar is the number of variables in the system (in our example nvar = 6). The system is saddle
point stable, iff ns equals the number of pre-determined variables. [This is the equivalent of the
Blanchard and Kahn result]. In our case, you can check that ns = 3.

How do we characterize the dynamics? This is easy when ns ≥ nu.
Start by premultiplying the system by QH = Q−1 :

SZH x̂t+1 = TZH x̂t +QH f̂t+1

Now define ŝt and ût such that: µ
ŝt
ût

¶
= ZH x̂t

where ŝt has dimension ns. This means that we partition the nvarx1 vector ZH x̂t into ns and nu elements.
This implies:

S

µ
ŝt+1
ût+1

¶
= T

µ
ŝt
ût

¶
+QH f̂t+1

Now partition conformably S and T to ŝt and ût to obtain (recall that S21 = T21 = 0 since S and T are
upper triangular and ns ≥ nu)

S11ŝt+1 + S12ût+1 = T11ŝt + T12ût +QH
11f̂st+1 +QH

12f̂ut+1

S22ût+1 = T22ût +QH
21f̂st+1 +QH

22f̂ut+1

where I have partitioned f̂t+1 and QH conformably as well.
Now since the last nu general eigenvalues are unstable, the only possible solution is ût = 0 (the argument

is the same as before: iterate and take expectations).

4This implies that Q and Z are invertible and that Q−1 = QH , Z−1 = ZH .
5The generalized eigenvalue problem for a pair of matrices (A,B) is the problem of finding the pairs (αk, βk) and the vectors

xk such that :
βkAxk = αkBxk

The scalars λk = αk/βk are called the generalized eigenvalues. If βk = 0, then λk is set to ∞.
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Parameters σ ψ α ω r δ ρ σ2 A∗ χ
Values 2 1.45 0.32 0.028 0.04 0.1 0.42 0.0129 -0.7442 0.000742

Table 5.1 Parameters of the Schmitt-Grohe and Uribe paper

Substituting ût = 0, the first equation becomes:

S11ŝt+1 = T11ŝt +QH
11f̂st+1 +QH

12f̂ut+1

while the second equation imposes that (assuming that QH
22 is invertible):

f̂ut+1 = −
¡
QH
22

¢−1
QH
21f̂st+1

Finally, ût = 0 implies: µ
Z11
Z21

¶
ŝt =

µ
x̂st
x̂ut

¶
Suppose that Z11 is invertible. Then,

ŝt = Z−111 x̂st

and we can substitute to obtain the law of motion of the state variables (premultiplying by S−111 and
by Z11):

x̂st+1 = Z11S
−1
11 T11Z

−1
11 x̂st + Z11S

−1
11

³
QH
11f̂st+1 +QH

12f̂ut+1

´
x̂st+1 = Z11S

−1
11 T11Z

−1
11 x̂st + Z11S

−1
11

³
QH
11 −QH

12

¡
QH
22

¢−1
QH
21

´
f̂st+1

The law of motion for the controls (non predetermined variables) satisfies:

x̂ut = Z21ŝt

= Z21Z
−1
11 x̂st

This completes the analysis.6

See the Schmitt-Grohe and Uribe simulations for impulse response functions.
SGU’s parameters are reported in Table 5.1. χ is selected to match the variability of the current account

from the data.
The model’s statistics are reported in figure 3 and the impulse responses in figure 4. We observe that the

model is able to reproduce a number of stylized facts (the data is for Canada, a SOE)

1. ranking of volatilities (ascending order): consumption, output and investment

2. component of aggregate demand and hours are procyclical

3. trade balance slightly negative or close to zero (note the role of investment here).

But the model overestimate correlation output and hours (1 in the model, only 0.8 in the data).

As for the impulse reponse functions to a productivity shock, the model predicts that consumption and
investment increase, so that the country runs initially a trade deficit. Hours increase after the productivity
shock. This is in part because there is no wealth effect on labor supply. With KPR preferences, the response
of hours would be smaller as the increase in wealth and consumption would lead to an increase in leisure
too.7

6Note that this is not the only method for solving this problem. Other common methods are: (a) a lin-
ear quadratic approach (similar to Kydland and Prescott), (b) an undetermined coefficients methods (see Christiano:
http://pubweb.nwu.edu/~rdi611/larry/main.htm for details).

7KPR preferences take the following form:

u (c, n) =
³
cψ (1− n)1−ψ

´1−σ
/ (1− σ)

You can check that

−un

uc
=
1− ψ

ψ

c

1− n
so that the labor supply changes when consumption changes.
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Figure 3 Schmitt-Grohe and Uribe

Finally, the predictions in terms of second moments are very similar regardless of the method adopted to
stationarize the economy (this is the main point of the SGU paper). The only exception is when markets are
complete. Note that the complete market case is also stationary since the claims are traded at time 0 and
after that relative wealth remains unchanged. In that case, consumption is smoother and the trade balance
is more procyclical. Still, observe how stationary incomplete markets and complete markets are similar.
See http://www.econ.duke.edu/~uribe/closing.htm for some MATLAB code.

5.4 The LOE model (incomplete)

The large economy model typically assumes that there are two countries, and that the bonds are in zero net
supply.

5.4.1 The setup

We borrow the set-up from Kehoe and Perri (2002). There are two countries, i = 1, 2. Each country
has an infinitely lived representative agent. The countries produce the same good and they have identical
preferences. The production process is similar in both countries, but labor input and productivity shocks
are local.

In each period, the world experiences one of many finite events st. Define st = (s0, s1, ..., st) for the world
history up to and including time t. We endow st with the probability π (st), as of time 0 (by convention,
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Figure 4 Schmitt-Grohe and Uribe

π
¡
s0
¢
= 1). We can also define π

¡
sT /st

¢
as the probability of history (st+1, st+2, ..., sT ) as of time t, given

history st. This is given by π
¡
sT /st

¢
= π

¡
sT
¢
/π (st) .

In each period, a single good is produced in each country. The initial amount of capital in country i
is denoted ki

¡
st−1

¢
and the amount of labor engaged in production is li (st) . The notation makes clear

that the capital stock in period t is chosen in period t − 1 given history st−1. Output is given by yi (s
t) =

F
¡
ki
¡
st−1

¢
, Ai (s

t) li (s
t)
¢
where Ai (s

t) denotes the labor-neutral country specific productivity shock.

Preferences take the following form:

∞X
t=0

X
st

βtπ
¡
st
¢
U
¡
ci
¡
st
¢
, li
¡
st
¢¢

(5.5)

where the summation is over periods and states of the world. Finally, the resource constraint of the world
is: X

i=1,2

£
ci
¡
st
¢
+ ki

¡
st
¢¤
=
X
i=1,2

"
yi
¡
st
¢
+ (1− δ) ki

¡
st−1

¢
− φki

¡
st−1

¢µ xi (s
t)

ki (st−1)
− δ

¶2#
(5.6)

The last term represents the effect of the adjustment costs on capital.

The bond economy assumes that there is a one-period risk free bond in zero net supply. Define q (st)
as the time t price of the risk free bond (that pays 1 next period) and denote bi (st) the bond holdings of
country i. The budget constraint becomes:

ci
¡
st
¢
+ki

¡
st
¢
+q
¡
st
¢
bi
¡
st
¢
= wi

¡
st
¢
li
¡
st
¢
+ri

¡
st
¢
ki
¡
st−1

¢
+bi

¡
st−1

¢
−φki

¡
st−1

¢µ xi (s
t)

ki (st−1)
− δ

¶2
(5.7)

where wi and ri are respectively the wage and the return on domestic capital. The representative agent of
country i solves the following problem.
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(Pi): Maximize (5.5) subject to (5.7) taking the wage and the price processes as given, and imposing the
following no-ponzi condition:

lim
T→∞

βT q
¡
sT
¢
bi
¡
sT
¢
= 0

In addition, market must clear:

1. market for goods (5.6)

2. market for labor:
Ai

¡
st
¢
Fl
¡
ki
¡
st−1

¢
, Ai

¡
st
¢
li
¡
st
¢¢
= wi

¡
st
¢

3. market for domestic capital:

1 + Fk
¡
ki
¡
st−1

¢
, Ai

¡
st
¢
li
¡
st
¢¢
− δ = ri

¡
st
¢

4. the market for the international bond: X
i=1,2

bi
¡
st
¢
= 0

Remark 5 The model with two countries and incomplete markets also suffers from a unit root. Although the
world interest rate will now increase when one country’s willingness to borrow increases (limiting the extent to
which borrowing takes place in equilibrium), it is still the case that transitory shocks have permanent effects
on the wealth distribution. Think about a positive productivity shock at home. This increases domestic wealth
permanently. So the linearization methods will also require that the problem be ‘stationarized’ using one of the
standard methods. One possibility is to add very small costs of bond holdings. Another option is to ‘assume the
problem away’ and linearize around the initial debt/output ratio and hope that the shocks will not be too big.
But one should keep in mind that this amounts to having one too many unstable roots.

Remark 6 The economy exhibits wealth effects since shocks are smoothed by adjusting wealth levels perma-
nently. Whether this will deliver very different results from the complete market model depends upon the nature
of the shocks. Baxter and Crucini (1995) show that when productivity shocks are either transitory or correlated
across countries (so that the shocks are symmetric) then a bond only economy is sufficient to quasi replicate the
complete market allocation.

Writing the Lagrangian for the home problem and maximizing over the choices of ci (st) , li (st) , ki (st)
and bi (s

t) , the following equilibrium conditions obtain (in the case without adjustment costs):

L =
∞X
t=0

X
st

βtπ
¡
st
¢ £
U
¡
ci
¡
st
¢
, li
¡
st
¢¢
+

+λi
¡
st
¢ ¡
wi

¡
st
¢
li
¡
st
¢
+ ri

¡
st
¢
ki
¡
st−1

¢
+ bi

¡
st−1

¢
− ci

¡
st
¢
− ki

¡
st
¢
− q

¡
st
¢
bi
¡
st
¢¢¤

We obtain:

Uc
¡
st
¢
= λi

¡
st
¢

Un
¡
st
¢
= −λi

¡
st
¢
wi

¡
st
¢

λi
¡
st
¢
q
¡
st
¢
= β

X
st+1|st

π
¡
st+1|st

¢
λi
¡
st+1

¢
λi
¡
st
¢
=

X
st+1|st

βπ
¡
st+1/st

¢
λi
¡
st+1

¢
ri
¡
st+1

¢
These are simply the usual equilibrium conditions. The model’s state variables are: ki, Ai and bi while the
control variables are ci, li and q, for a total of 11 variables. There are 11 equilibrium conditions, rewritten
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as follows:

Un
¡
st
¢
= −Uc

¡
st
¢
Ai

¡
st
¢
Fl
¡
ki
¡
st−1

¢
, Ai

¡
st
¢
li
¡
st
¢¢

Uc
¡
st
¢
q
¡
st
¢
= β

X
st+1|st

π
¡
st+1|st

¢
Uc
¡
st+1

¢
Uc
¡
st
¢
=

X
st+1|st

βπ
¡
st+1/st

¢
Uc
¡
st+1

¢ £
1− δ + Fk

¡
ki
¡
st−1

¢
, Ai

¡
st
¢
li
¡
st
¢¢¤

ci
¡
st
¢
+ ki

¡
st
¢
+ q

¡
st
¢
bi
¡
st
¢
= wi

¡
st
¢
li
¡
st
¢
+ ri

¡
st
¢
ki
¡
st−1

¢
+ bi

¡
st−1

¢
b1
¡
st
¢
+ b2

¡
st
¢
= 0µ

logA1 (s
t)

logA2 (s
t)

¶
=

µ
a1 a2
a2 a1

¶µ
logA1

¡
st−1

¢
logA2

¡
st−1

¢ ¶+µ 1t

2t

¶
The standard method can then be applied to linearize the system around the equilibrium.
The parameters are in figure 5. Quantitative results and impulse responses in table 6—9.

The results indicate that the main puzzles (consumption correlation, cross country correlation of invest-
ment and employment, volatility of investment and trade balance) remain largely identical in the bond only
economy as in the complete market economy. Looking at the impulse response to a productivity shock, we
see:

1. a decline in foreign output, foreign investment and foreign labor

2. an increase in domestic and foreign consumption

3. a trade deficit (a good thing)

4. small deviations from perfect risk sharing.

5.4.2 The endogenous borrowing constraint version (Kehoe and Perri 2002).

Kehoe and Perri propose an alternative model where borrowing is endogenously constrained by enforcement
constraints. The key idea is that the foreign country cannot force the home country to repay (this is a central
idea in the literature on sovereign borrowing), so any level of borrowing must be sustained in equilibrium
by the threat of some punishment. The punishment that is considered here is that the country that fails to
repay will not have access to international borrowing any more (financial autarky).

The extent to which a country will be able to borrow will then depend upon how severe a punishment
autarky would be. A direct implication is that the more a country receives positive shocks, the harder it
will be for that country to borrow. The reason is that better productivity (especially when productivity is
persistent) make autarky relatively more attractive.

Consider now the effect of a positive productivity shock. In the bond only economy, this leads to an
increase in investment at home, as domestic investment is more productive. In the enforcement economy, a
positive productivity shock may lead to a decline in investment and a trade surplus. The reason? It becomes
relatively harder for the country to borrow, and that dampens the investment response . One possible
interpretation is that the country needs to ‘post a bond’ by investing abroad, even if domestic productivity
is high.

The model is the same as before, except that countries must satisfy the following enforcement constraints:

∞X
r=t

X
sr

βr−tπ
¡
sr|st

¢
Ui (s

r) ≥ Vi
¡
ki
¡
st−1

¢
, st
¢

(5.8)
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Figure 5 Kehoe-Perri

where Vi represents the value of autarky onward and solves the following problem:

Vi
¡
ki
¡
st−1

¢
, st
¢
= max

∞X
r=t

X
sr

βr−tπ
¡
sr|st

¢
Ui (s

r)

s.t.

ci (s
r) + ki (s

r) ≤ yi (s
r) + (1− δ) ki

¡
sr−1

¢
Kehoe and Perri’s model allows for a full menu of contingent claims, but impose the enforcement con-

straints. In fact, given that all the state contingent claims are available, the competitive equilibrium will be
equivalent to the solution to the constrained planner problem:

max
X
i=1,2

∞X
t=0

X
st

λiβ
tπ
¡
st
¢
Ui
¡
st
¢

subject to the ressource constraint (5.6) as well as the enforcement constraints (5.8).
In general, this is a difficult problem since the autarky values Vi at future dates depend on the consumption

and investment choices today. So future decision variables enter the current enforcement constraints and
direct dynamic programming techniques are not going to work.

Instead, Kehoe and Perri extend the work of Marcet and Marimon (1999) and show that we can introduce
a new state variable that captures “promised utility”. With this additional state, recursive contracts can be
derived.

Write βtπ (st)μi (s
t) the Lagrange multiplier on the enforcement constraint at time t for country i. The

trick is to realize that the contribution of the enforcement constraints to the Lagrangian

βtπ
¡
st
¢
μi
¡
st
¢ " ∞X

r=t

X
sr

βr−tπ
¡
sr|st

¢
Ui (s

r)− Vi
¡
ki
¡
st−1

¢
, st
¢#
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Figure 6 Kehoe and Perri
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Figure 7 Kehoe and Perri
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Figure 8 Kehoe and Perri
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Figure 9 Kehoe and Perri
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can be re-arranged using the fact that π (st)π (sr|st) = π (sr) to give:

∞X
t=0

X
st

X
i

βtπ
¡
st
¢ £
Mi

¡
st−1

¢
Ui
¡
st
¢
+ μi

¡
st
¢ £
Ui
¡
st
¢
− Vi

¡
ki
¡
st−1

¢
, st
¢¤¤

plus usual terms having to do with the resource constraint. In this expression, Mi (s
t) satisfies:

Mi

¡
st
¢
= Mi

¡
st−1

¢
+ μi

¡
st
¢

Mi

¡
s−1

¢
= λi

So the weights are simply the original planner’s weights, incremented each time the enforcement constraint
is binding.

Why? when the enforcement constraint binds, the planner must allocate more utility to the country
whose IC constraint binds, otherwise the country would choose autarky. This is equivalent to increasing the
weight that the planner puts on the country. This will give higher current and future consumption to the
country.

In fact, the equilibrium conditions are:

U1c (s
t)

U2c (st)
=

M2 (s
t)

M1 (st)

−Uil (s
t)

Uic (st)
= Fl

¡
st
¢

Uic
¡
st
¢
= β

X
st+1|st

π
¡
st+1|st

¢ "Mi

¡
st+1

¢
Mi (st)

Uic
¡
st+1

¢ £
1− δ + Fik

¡
st+1

¢¤
−

μi
¡
st+1

¢
Mi (st)

Vik
¡
st+1

¢#

The last condition incorporates the fact that a higher capital stock today changes the promised utility
Vi
¡
st+1

¢
. After a positive productivity shock in country 1, not so much capital is shifted because that would

increase Vi.

5.4.3 The 2-good, 2-country model.

TBD.


