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Abstract

We summarize some methods useful in formulating and solving Hansen–Sargent robust control
problems, and suggest extensions to discretion and simple rules. Matlab, Octave, and Gauss
software is provided. We illustrate these extensions with applications to the term structure of
interest rates, the time inconsistency of optimal monetary policy, the e;ects of expectations on
the variances of in<ation and output, and on whether central banks should make their forecasts
public.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For all the abundance of competing models in economic research, the agents who
populate them are, as a rule, fully devoted to the one model in which they are cast.
They know everything about their model (including parameter values) and want to
know nothing about any other. All their uncertainty is concentrated on the stochastic
elements of the model, which, under the assumption of rational expectations (RE),
coincides with the data generating process (DGP). Several approaches to relaxing these
assumptions have been explored. Here we focus on one such approach, which we
refer to as ‘Hansen–Sargent robustness’. In recent contributions, Lars Hansen, Thomas
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Sargent, and coauthors have proposed an appealing method of designing choices under
model uncertainty. 1 This method, which is based on robust control techniques adapted
from engineering, encompasses RE as a special case, and has the advantage that the
robust solution of a given program can be derived from a suitably modiKed standard
RE program.

This paper is concerned with solving the Hansen–Sargent robust version of the fa-
miliar RE program in which a planner minimizes an intertemporal loss function subject
to the law of motion of the economy. If the law of motion is completely backward
looking, the planner’s commitment technology is irrelevant. Hansen and Sargent (2002)
provide a complete treatment of the robust version of this case.

In the macroeconomic literature, however, the law of motion is often a model in-
volving expectations. It then becomes necessary to specify the commitment technology
of the planner. In the RE case, there are three standard possibilities: the planner com-
mits to the optimal policy (commitment), or to a simple linear rule (simple rule), or
she cannot commit at all (discretion). Hansen and Sargent (ch. 15) give a solution ap-
proach for the robust version of the commitment case. This paper’s main contribution
is to suggest and implement solutions for the robust versions of discretion and simple
rules.

The paper does not assume that the reader is familiar with the literature on robust
control. Section 2 provides an introduction. It attempts to convey the essence of Hansen
and Sargent’s approach, deals with backward looking models, and then moves on to
show how to solve forward looking models in the commitment case. The simple New
Keynesian model of Clarida et al. (1999) is solved as an example. This section also
establishes the notation and the key concepts used in free and user friendly software
(Matlab, Octave, and Gauss versions) which can perform all the calculations described
in this paper.

The rest of the paper proceeds as follows. Sections 3 and 4 propose an exten-
sion for the discretionary case and for simple rules, respectively. We argue that these
suggestions are consistent with Hansen and Sargent’s rationale for robustness. They
also preserve the property that the robust program can be transformed into a standard
RE program. Several examples and applications illustrate the discretionary and simple
rule cases. Within the context of the New Keynesian model of Clarida et al. (1999),
we Knd the following: robustness makes monetary policy more aggressive also in the
discretionary solution (conKrming a result often found for the commitment solution);
robustness is a promising way of interpreting deviations from the expectations hypoth-
esis of the term structure; robustness increases the in<ation bias in the discretionary
equilibrium; robustness in private agent’s expectations increases in<ation and output
volatility (even if policy is non-robust). Section 5 concludes. Technical details are
found in the Appendices.

1 The bulk of Hansen and Sargent’s work on robustness is contained in a book-length manuscript (Hansen
and Sargent, 2002), which presents results from most of their articles (and more) in a comprehensive
treatment. Chapters 1 and 2 give an introduction and a summary of the main results. Hansen and Sargent
(2000,2001) are relatively non-technical papers which o;er a good introduction. Unless otherwise stated, the
reference is to the manuscript (Hansen and Sargent, 2002).
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2. Robust control with commitment

2.1. Commitment in backward looking models

The Ellsberg paradox motivates Hansen–Sargent robustness, as well as Epstein’s
ambiguity and other theories of choice under uncertainty. 2 The experiment is as follow.
There are two urns, each containing one hundred balls. Balls may be either blue of
red. Subjects know for certain that urn A contains 50 red balls and 50 blue balls,
but they receive no further information on urn B. Subjects bet on extracting a color of
their choice from an urn of their choice (one shot game). Experimental subjects mostly
choose to draw from urn A, while expected utility theory predicts that they should be
either indi;erent between the two urns (if they have no prior on the distribution of
balls in urn B), or prefer urn B (if they have a prior). The Ellsberg paradox therefore
illustrates a (descriptive) shortcoming of expected utility theory in accounting for the
distinction between measurable and unmeasurable uncertainty (‘risk’ and ‘uncertainty’
in the terminology introduced by Knight (1921)). Hansen–Sargent robustness is one
approach to modelling the risk between risk and uncertainty.

Like a RE agent, a Hansen–Sargent robust planner aims at minimizing a loss function
and entertains a reference model 3 which represents the law of motion of the economy.
Like a RE agent, she can formulate model consistent statements on the probability of
any outcome given a model. However, unlike a RE agent, she is not certain that the
reference model coincides with the true model. For example, exact parameter values
will not be available in most circumstances.

Being uncertain about the model, the planner considers a set of them when designing
an optimal policy. Faced with the same situation, a Bayesian planner would combine
the data with her priors over the probability of each model being correct to arrive at
a probability distribution over all models. To formulate a policy function, each model
would then be weighted according to its probability and to its associated expected loss.
A Bayesian agent therefore reduces all uncertainty to calculated risk. A robust agent, on
the other hand, does not have her uncertainty as well organized. She is assumed to face
Knightian uncertainty over a set of models, where Knightian uncertainty denotes the
inability to express one’s beliefs fully in terms of well deKned probabilistic statements.
This is not equivalent to saying that all models are considered equally likely (in which
case a Bayesian solution would be straightforward). Rather, a robust agent does not
have suNcient conKdence in her beliefs to formulate consistent statements such as ‘The
probability that model A is true is �’ for any conceivable model.

An agent faced with multiple models needs to adopt a choice criterion, as each model
will generally recommend a di;erent course of action. For a robust agent, this criterion
cannot involve a probabilistic weighting of models. Hansen and Sargent (following

2 Epstein and co-authors (e.g. Epstein and Melino, 1995; Epstein and Wang, 1994) have developed an ax-
iomatic theory of choice with multiple priors that, like Hansen and Sargent, draws on Gilboa and Schmeidler
(1989). The di;erences between Hansen and Sargent robustness and Epstein’s ambiguity are discussed in
Epstein and Schneider (2003).

3 Hansen and Sargent use the expression ‘approximating model’ rather than ‘reference model’. We depart
from their terminology for reasons discussed at the end of Section 2.1.
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Gilboa and Schmeidler, 1989) adopt a min–max approach: for a proposed policy rule,
the planner Knds the worst model in the set (the maximum expected loss), eventually
selecting the rule that minimizes the maximum expected loss. Loosely speaking, the
aim of robust control is to design a policy that will work reasonably well even if the
reference model does not coincide with the true model, as opposed to a policy that is
optimal if they do coincide but possibly disastrous if they don’t. A classical application
in engineering is to program a rocket so that it will get very close to the target even
if the law of motion is not correctly speciKed, rather than be on the target if the law
of motion is exactly right but go completely astray otherwise.

Robust control in engineering is in a sense normative, because it represents engi-
neers’ best e;ort to optimize in the face of unknown misspeciKcations. An analogous
motivation can arguably be used in economics: the complexity of real economies is
so overwhelming that it is not conceivable to even formulate an exhaustive list of
all possible models, much less to assign a prior probability to each. But in economic
applications it is also possible to use robust control descriptively, as a tool to maintain
analytical tractability and mimic certain empirical violation of expected utility theorems.
In particular, robust control can rationalize agents’ aversion to situations in which the
odds are not obvious. 4 In a market setting, this ambiguity aversion tends to translate
into a higher (with respect to RE agents with the same preferences) price of risk, a
feature exploited by Hansen et al. (1999) to show that a preference for robustness
decreases the equity premium puzzle in a standard model.

Consider this example: a risk neutral Krm is planning an investment which yields a
discounted proKt pA in state of the world A, and a loss of pB otherwise. The decision
on whether to invest or not is obvious if the Krm can conKdently attach a unique
probability � to the state A. However, the solution is no longer straightforward if the
Krm considers a range of �, say �∈ [�L; �H ], to be plausible. If the Krm is a robust
decision maker, its adoption of a min–max criterion means that it will act as if the
relevant probability was �L. Some readers may infer from the example that a robust
agent is observationally equivalent to a Bayesian agent with a higher degree of risk
aversion and a <at prior. While it may be possible to establish this equivalence in
speciKc circumstances, the required degree of risk aversion would not be constant, but
rather vary with the level of uncertainty. For example, an agent who appears to be risk
neutral in bets involving a fair coin will seem risk averse if there are doubts on the
fairness of the coin.

From a technical point of view, robustness involves a switch from a minimization
problem (minimizing a loss function) to an appropriately speciKed min–max problem.
In order to set up and solve a min–max problem, it is convenient to work with a
two-agent representation: the policy function selected by the planner is the equilibrium
outcome of a two person game in which a Kctitious evil agent, whose only goal is to
maximize the planner’s loss, chooses a model from the available set, and the planner
chooses a policy function.

4 See Hansen and Sargent (2002, ch. 1) for an example.
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The loss function is assumed to be quadratic, and the model linear. 5 Because the evil
agent is just a metaphor for the planner’s cautionary behavior, he shares the planner’s
reference model and loss function (which of course he wants to maximize rather than
minimize). This describes a zero sum game, and we can conveniently write a single
loss function. Hansen and Sargent show that the program for the backward looking
model can be formulated as

min
{u}∞

0

max
{v}∞

1

E0

∞∑
t=0

�t(x′
tQxt + u′

tRut + 2x′
tUut); (1)

subject to xt+1 = Axt + But + C(�t+1 + vt+1); (2)

E0

∞∑
t=0

�tv′
t+1vt+16 �0; (3)

and where x0 is given. In this problem, xt is the state vector (n×1), ut is the planner’s
control vector (k × 1), �t+1 is the vector (n × 1) of zero mean iid shocks with an
identity covariance matrix, and vt+1 is the evil agent’s control vector (n × 1). Notice
that the planner’s control vector is indexed by t, while the evil agent’s control vector
is indexed by t+1, in spite of the fact that it is known in t. Hansen and Sargent index
v by t + 1 in some work, and by t in other. The Krst convention highlights the fact
that the distortions are camou<aged by the errors, the second that they are known in
t. The Q and R matrices are assumed to be symmetric.

The standard RE dynamic control problem corresponds to �0 = 0. In this case, the
maximization part of the problem becomes irrelevant, and the planner simply minimizes
the loss function (1), using the control vector ut , subject to the law of motion (2) with
vt+1 = 0. In the general case, the evil agent is given an intertemporal budget �0 which
deKnes the set of models (misspeciKcations) that the planner is entertaining. Therefore
the set of models that the planner is considering can be interpreted as a ball around the
reference model, where �0 is the radius of the ball. Section 2.3 considers the choice
of �0; for now we take it as given.

Notice that the stochastic shocks are important for model uncertainty. As can be
seen from (2), the evil agent’s control vector vt+1 is premultiplied by the matrix C.
This captures the fact that there can only be model uncertainty if the true parameters
of the law of motion are (at least partially) masked by random noise (C �= 0).

The constraint (3) is inserted into (1), yielding

min
{u}∞

0

max
{v}∞

1

E0

∞∑
t=0

�t(x′
tQxt + u′

tRut + 2x′
tUut − �v′

t+1vt+1); (4)

subject to xt+1 = Axt + But + C(�t+1 + vt+1); (5)

and where x0 is given. Since the value function is monotonous and concave in �0,
there is a bijective negative function from �0 to the Lagrange multiplier �, so � deKnes
the set of models available to the evil agent, with 0¡�¡∞. A very low � allows
the evil agent to wreck havoc, while �= ∞ corresponds to RE.

5 Anderson et al. (2003) and Hansen and Sargent (2002, ch. 16) discuss extensions to a more general
non-linear framework.
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MisspeciKcations distort the reference model by modifying the errors. However, re-
spect of the budget (3) is the only formal constraint imposed on the evil agent, and the
formulation (4) enforces this constraint. This means that his choice of policy functions
for vt+1 includes a wide range of misspeciKed dynamics, including wrong parameters
(vt+1 is a linear function of xt), autocorrelated errors (vt+1 is a linear function of lags
of xt), and non-linearities (vt+1 is a non-linear function of xt). At the same time, the
researcher needs to specify only one additional parameter (�) to robustify the program.
This parsimony is an advantage in some cases, as it limits the number of additional
parameters and the amount of prior knowledge about possible misspeciKcations, but it
can become a drawback if the researcher wants to focus on a speciKc misspeciKcation,
such as distortions in a given parameter.

Other approaches to robustness, whichwemay call parametric (for instance, Giannoni
(2002) and the Bayesian approach pioneered by Brainard, 1967) allow (but also re-
quire) the researcher to be more speciKc about the exact nature of the uncertainty. In
a Bayesian approach, the planner uses her prior probability distribution over models
(which a Hansen and Sargent robust planner does not have by assumption), so the re-
searcher needs to specify a prior over all possible models, which can quickly become
problematic. Moreover, the solution can be quite complex. Giannoni (2002) is closer
to Hansen and Sargent in that the planner is solving for the min–max. However, the
researcher must specify the set of possible models by setting an interval for each of the
model’s parameters. Onatski and Williams (2003) build a more general structure which
allows the researcher to be quite speciKc about the type of misspeciKcations feared by
the planner (wrong parameters, measurement errors and autocorrelated errors).

The loss function and the law of motion for the backward looking model given by
Eqs. (4)–(5) can be redeKned to write the program in standard state space RE form

min
{u}∞

0

max
{v}∞

1

E0

∞∑
t=0

�t(x′
tQxt + u∗

t
′R∗u∗

t + 2x′
tU

∗u∗
t ); (6)

subject to xt+1 = Axt + B∗u∗
t + C�t+1; where (7)

R∗ =
[

R 0k×n

0n×k −�In1

]
; u∗

t =
[

ut
vt+1

]
;

B∗ =
[
B C

]
; and U ∗ =

[
U 0n×n

]
; (8)

and where x0 is given. At Krst the min–max form of the problem may seem intrinsically
di;erent from a standard minimization. However, because Krst order conditions for a
minimum are the same as for a maximum, the problem can be treated as a standard RE
one, to which standard solution algorithms can be applied (for example, see S/oderlind
(1999) or Hansen and Sargent (2002), ch. 3 and 15). 6

6 Second order conditions ensure that the evil agent is maximizing rather than minimizing. These are
unlikely to be problematic. Hansen and Sargent (2002) prove that there is a �0 such that, for any �¿�0,
the expected value of the loss function is Knite and the second order conditions are satisKed. An easy way
to check that the second order conditions are satisKed is to make sure that the expected loss is higher than
in the RE solution (the value of the expected loss function is included in our software). However, if � is
chosen with the detection error probability approach (see Section 2.3), experience indicates that the second
order conditions are typically satisKed for any reasonable value of �.
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The solution of the program is that ut and vt+1 are linear functions of the state xt

u∗
t = −Fxt; that is;

[
ut

vt+1

]
= −

[
Fu

Fv

]
xt : (9)

Notice that in spite of all his freedom, with a backward looking linear model the evil
agent keeps things simple, and optimally chooses to set vt+1 as a linear function of
the state vector xt . From a technical point of view, the linearity of the evil agent’s
policy function should come as no surprise: the robust program has been rewritten in
standard RE form, and therefore the policy function for u∗

t must be linear, since the
RE policy function for ut is known to be linear.

Hansen and Sargent emphasize that the robust solution is not certainty equivalent:
both Fu and Fv are functions of C. Intuitively, this is due to the fact that the evil
agent hits harder where he can do the most damage with a given budget, which,
ceteris paribus, is where the variance of the forecast error is larger. Alternatively, the
planner fears misspeciKcation the most where errors with large variance better mask the
true parameters. Technically, the program (6)–(7) is still linear-quadratic: the reason
why certainty equivalence does not hold is that C appears in B∗ (see Eq. (8)).

The equilibrium dynamics of the model is found by combining the policy function
with the law of motion (7). Clearly, these dynamics depend on what the true model
actually is – which is captured here by the evil agent’s controls, vt+1. Most researchers
have focused on two cases.

First, the worst case model deKnes the behavior of the economy when the plan-
ner’s pessimism turns out to be fully warranted. Formally, this means using the policy
functions (9) in the law of motion (7) to get

xt+1 = (A − BFu − CFv)xt + C�t+1: (10)

These dynamics are typically also used to represent the beliefs of the agents in the
model – for instance, to price assets as discounted sums of expected future payo;s.

Second, the approximating model is the reference model which sets Fv=0 in (10). 7

Note that the policy is still robust, so Fu is the same as in the worst case model. Com-
paring the dynamics of these two models conveys information on the misspeciKcation
that the planner is fearing.

2.2. Commitment in forward looking models

Forward looking models introduce another player, the private sector, who forms
expectations. We consider a class of forward looking models that can be represented
by the linear law of motion[

x1t+1

Etx2t+1

]
= A

[
x1t

x2t

]
+ But + C(vt+1 + �t+1); with C =

[
C1

0n2×n1

]
; (11)

7 HS talk of ‘approximating model’ to indicate both what we have called ‘reference model’, i.e. the law
of motion with Fv = 0 prior to solving for the policy function, and the law of motion with Fv = 0 after
solving for the policy function.
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where x1t is a n1 × 1 vector of predetermined (backward looking) variables with x10
given, and x2t is a n2 × 1 vector of forward looking (or jump) variables. Only the
predetermined variables have shocks, so �t+1 is an iid n1 × 1 vector with zero mean
and an identity covariance matrix – and the last n2 rows of the C matrix are Klled
with zeros. The evil agent’s control vector always ‘hides’ behind the shocks, so vt+1

is also an n1 × 1 vector.
The planner’s loss function (1) is unchanged and the evil agent’s budget constraint

is still given by (3), with x′
t = (x′

1t x
′
2t).

Having introduced robustness in a forward looking model, we need to decide whether
private sector expectations are standard or robust. If they are robust, we must specify
the private sector’s reference model, degree of robustness and loss function. Giannoni
(2002) and Onatski (2000), who also study uncertainty in forward looking models
under commitment, assume that the private sector has no uncertainty, but knows that
the reference model is exactly correct, and also knows the planner’s loss function and
degree of robustness. On a critical stance, Sims (2001a) argues that min–max decisions
are a more appropriate modeling device for the private sector than for a central bank. 8

We follow Hansen and Sargent in taking the middle ground, and assume that the
private sector and planner share the same loss function, reference model and degree of
robustness. These assumptions greatly simplify the solution.

In the case at hand, the planner credibly commits. Unlike the backward looking case,
it matters whether or not the evil agent also commits. Hansen and Sargent assume that
he does. This is intuitively appealing, considering the rationale for the existence of an
evil agent: when designing a policy rule, the planner is uncertain about the model and
thus designs a robust rule as if she was facing an evil agent. The evil agent is just
a metaphor used to solve the min–max problem eNciently. This perspective suggests
that the evil agent should optimize when and only when the planner does.

Technically, the program can be rewritten in state space form as a standard RE
problem using the same method as in the previous section. This yields

min
{u}∞

0

max
{v}∞

1

E0

∞∑
t=0

�t(x′
tQxt + u∗

t
′R∗u∗

t + 2x′
tU

∗u∗
t ); subject to (12)

[
x1t+1

Etx2t+1

]
= A

[
x1t

x2t

]
+ B∗u∗

t + C�t+1; where (13)

R∗ =

[
R 0k×n1

0n1×k −�In1

]
; u∗

t =

[
ut

vt+1

]
;

B∗ =
[
B C

]
; U ∗ =

[
U 0(n1+n2)×n1

]
; (14)

and where x10 is given. The numerical solution algorithm we adopt is detailed in
Appendix C, and is based on the generalized Schur decomposition.

8 Sims underlines the importance of the distinction between normative and descriptive when discussing
deviations from the RE paradigm. SpeciKcally, he argues that while it is possible that private agents’ behavior
may well be described as robust, it is not clear that a central bank should be advised to choose a robust
policy, rather than try to specify priors and carry out an optimal Bayesian procedure.
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The equilibrium dynamics are more complicated than in the backward looking model:
the policy functions are history dependent and the forward looking variables (x2t)
depend on the equilibrium expectations of future values of the other model variables.

In any case, the worst case model is (as before) the equilibrium dynamics of
(12)–(14), that is, when the planner’s pessimism turns out to be fully warranted (the
evil agent is fully active). The approximating model uses the same policy function and
expectations formation – but sets the evil agent’s controls (vt+1) to zero (Appendix
B gives the details of these calculations). For example, in a monetary policy model
with forward looking price setting (a Calvo style Phillips curve, say), the approxi-
mating model uses the same central bank interest rule and mapping from the state
of the economy to the price setting as the worst case model. This means, e;ectively,
that the approximating model uses both robust policy and robust expectations. We will
return to the role of expectations formation when we discuss simple policy rules in
Section 4.2.

2.2.1. Example: A simple new Keynesian model
We provide an example of how to frame a forward looking model in state space

form. The model consists of an Euler/IS equation and of a Calvo style Phillips curve,
as in Clarida et al. (1999)

yt = Etyt+1 − �(it − Et�t+1) + e1t ; (15)

�t = �Et�t+1 +  yt + e2t ; (16)

e1t = !1e1t−1 + "1t ; where "1t is iid N(0; #2
1); and (17)

e2t = !2e2t−1 + "2t ; where "2t is iid N (0; #2
2): (18)

In this model, it is the short interest rate controlled by the central bank, yt is the output
gap, and �t is in<ation. The central bank minimizes the loss function

E0

∞∑
t=0

�s(�2
t + %yy2

t + %ii2t ): (19)

This problem can be framed in standard state space form. Write the model in matrix
form 



1 0 0 0

0 1 0 0

0 0 1 �

0 0 0 �







e1t+1

e2t+1

Etyt+1

Et�t+1


 =




!1 0 0 0

0 !2 0 0

−1 0 1 0

0 −1 − 1







e1t

e2t

yt

�t




+




0

0

�

0


 it +




#1 0

0 #2

0 0

0 0




[
�1t+1

�2t+1

]
;
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Fig. 1. Impulse response functions of the cost-push process �2t and of output to a cost-push innovation in the
model of Clarida et al. (1999), commitment solution: standard RE solution (continuous line), approximating
solution (dashed line) and worst case solution (thin dots).

where we have ordered the predetermined variables (e1t and e2t) before the forward
looking variables (yt and �t). Then, premultiply by the inverse of the matrix on the
far left we get the same form as (11). Finally, the loss function matrices are

Q =

[
02×2 02×2

02×2 Qbb

]
where Qbb =

[
%y 0

0 1

]
; R= %i; and U = 04×1:

Once the model is written in standard form, solving for the robust policy only requires
specifying the degree of robustness (the scalar �) and the solution strategy, which in
this case is commitment.

Fig. 1 provides an introduction to the e;ects of robustness in this model. The param-
eters are set as follows: �=0:99, �=0:5,  =0:645, !1 =!2 =0:8, #2

1 =#2
2 =1, %y=0:5,

and %i = 0:2. We compute both the RE solution and the robust solution. The latter of
course depends on our choice of �. For the moment we ask our readers to think of
the amount of robustness in this example as neither trivial nor unreasonably high. 9

Fig. 1(a) plots the response of the cost-push process �2t to a one-standard-deviation
innovation ('2t = 1), for the approximating model and for the worst case model. It
is evident that robust agents fear that the cost-push process �2t will turn out to be
more persistent than implied by the approximating model. In the case at hand, the
predetermined variables are independent of the endogenous variables at all lags; that
is, expectations cannot a;ect any predetermined variable, implying that the trajectory
of �2t under the approximating model is the same as under RE.

9 Formally, � corresponds to a detection error probability of 20% in a sample of 150 observations. (See
Section 2.3 for a discussion.)
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Fig. 1(b) shows the response of output (a forward-looking variable) to the same
cost-push shock. The contemporaneous response is the same for the approximating
model and for the worst case model, 10 but the dynamic paths are then di;erent,
with output feared to be more persistent than suggested by the approximating model.
The RE and the approximating solution share the same underlying dynamics for the
predetermined variables, but di;er because of the policy function and of expectation
formation.

2.3. Choosing the degree of robustness, �

In formulating a robust control problem, the choice of � is crucial, since the evil
agent’s constraint is always binding in a linear-quadratic framework. In other words,
the policy function chosen by a robust planner (who prepares for the worst) is tai-
lored on a model lying on the boundary of the set from which the evil agent can
choose.

This set is deKned by deviations from the reference model, where the allowed de-
viations are decreasing functions of the parameter � (and hence increasing functions
of �0). The choice of the parameter � is therefore crucial, as the planner’s policy
function will vary with it. Svensson (2002) uses this feature of the solution to stress
what seems like a weakness of robust control, at least from a Bayesian perspective:
a model on the boundary of the available set shapes the policy function, yet models
outside this set (including those only an epsilon away) receive no consideration. He
also warns that ‘highly unlikely models can come to dominate the outcome of robust
control’ (page 7). In a linear-quadratic framework it is easy to make a robust planner
look like a foolish catastrophist: her policy function will be implausible if the amount
of requested robustness is suNciently large (� is suNciently small).

While these warnings are appropriate, it is usually possible to deKne � so that the
planner looks cautious rather than foolish. As a guide to choosing �, Hansen and
Sargent adopt a detection error probability approach based on the idea that the models
in the set should not be easy to distinguish with the available data. Essentially, one
takes an agnostic position on whether the true data generating process is given by the
approximating model or by the worst case model, and chooses a probability of making
the wrong choice between the two models on the basis of in-sample Kt, for a sample
of given size.

The value of � corresponding to this probability is computed by simulation, inverting
the monotonous function �(�)

�(�) = Probability (LA ¿LW |W )=2 + Probability (LW ¿LA|A)=2; (20)

10 This is a general feature of the Hansen and Sargent solution, and is due to the fact that vt+1 is a function
of variables dated t or earlier.
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Fig. 2. Impulse response functions of the cost-push process �2t to a cost-push innovation in the model of
Clarida et al. (1999), commitment solution, for di;erent detection error probabilities.

where LA and LW are the values of the likelihood of the approximating and worst case
model respectively, and the notation (·|W ) and (·|A) denotes that the DGP are the worst
case model and the approximating model respectively. 11 Zero robustness corresponds
to a detection error probability of 50%. Hansen and Sargent suggest the range 10% to
20%. The larger the sample (for a given probability), the higher �, so the uncertainty
surrounding the reference model disappears as the sample goes to inKnity. However,
it is assumed that the planner makes no attempt to incorporate learning in a dynamic
fashion: when solving for a policy function at t, she does not consider the reduction
in uncertainty that future observations may provide (see Hansen and Sargent (2000)
for a discussion).

2.3.1. Example: persistence of cost-push shocks
As an example of the e;ects of varying �, consider the simple New Keynesian model

of Section 2.2 (with the same parametrization), where it was noticed that the cost-push
shock �2t is more persistent in the worst case scenario. Fig. 2 plots the response of �2t to
a one-standard-deviation innovation for varying degrees of robustness (i.e. for varying
detection error probabilities). As the detection error probability becomes smaller, �2t
becomes more persistent. The result is intuitive, since a more persistent process results
in larger in<ation and output variance, and thus higher expected loss for the planner.

11 See Hansen and Sargent (2002, ch. 8). The procedure requires a distributional assumption on �t (normality
in our software). For applied research, it is advisable to verify that the results of interest are not overly
sensitive to reasonable variations in detection error probabilities.
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3. Robust control with discretion

The discretionary solution coincides with the commitment solution in a backward
looking model, which has already been treated in Section 2.1.

3.1. Discretion in forward looking models

When working with forward looking models (particularly in the Keld of monetary
policy) it is often assumed that the planner (the central bank) cannot commit. Since
this case is of crucial interest, it seems important to extend the robust methods. 12 In
this section we propose solution concepts and algorithms for dynamic models which
preserve the property of transforming the problem to a RE form.

In order to illustrate our solution approach to the robust case, it is useful to review the
main steps involved in the RE solution (see Backus and DriNl, 1986 or the summary
in Appendix C for a more detailed description of the solution procedure).

1. At time t, the private sector observes x1t and decides on a matrix Kt+1 to use
in formulating expectations Ea

t x2t+1 = Kt+1Ea
t x1t+1, where the notation Ea

t denotes
agents’ expectations in period t. The planner moves after the private sector, so the
matrix Kt+1 incorporates a guess of the planner’s policy function.

2. At time t, the planner observes x1t and Kt+1 and chooses a policy function ut =
−Futx1t+1 to minimize the loss function (1) subject to the law of motion (11) (the
same as in the commitment case), but also subject to the expectation formation
process Ea

t x2t+1 = Kt+1Ea
t x1t+1.

3. The equilibrium solution is found when the matrix Kt+1 of the private sector’s
expectations coincides with the mathematical expectation. This happens when the
policy function Fut implied by Kt+1 is also the policy function that solves the
planner’s problem given Kt+1. In equilibrium Kt+1 and Fut are constant.

Our proposal for dealing with the discretionary case is to extend the principle that,
robustness being a metaphor for the planner’s concerns for model misspeciKcation at
the time of choosing a policy function, the evil agent should optimize when and only
when the planner does. When applied to the commitment case, this results in Hansen
and Sargent’s solution. In the discretionary case, this principle suggests that since the
planner reoptimizes at every period (taking expectations as given), the evil agent should
be allowed to do the same. The interpretation is that every time the planner considers
a policy, she will have to deal with uncertainty and design a robust rule.

We maintain the assumptions (used by Hansen and Sargent in the commitment case)
that the private sector’s loss function, reference model, and � are the same as the
planner’s.

The main steps involved in the RE solution are therefore modiKed as follows to Knd
the robust discretionary policy. First, Kt+1 now implies a guess of the policy functions
of both the planner and the evil agent (private agents share the planner’s concern for

12 Hansen and Sargent (2002, ch. 5) discuss the robust discretionary solution of the static model in Kydland
and Prescott (1977).
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robustness). Second, the evil agent chooses a policy function vt+1 = −Fvtx1t (at the
same time as the planner) in order to maximize the loss function, subject to the same
constraints as the planner, but also subject to the budget Et

∑∞
s=1 �svt+svt+s6 �. Third,

in equilibrium both policy rules are constant and consistent with the private sector’s
expectations.

This formulation of the robust discretionary case seems quite natural. Moreover,
since � does not depend on t, the size of the deviations from the reference model
contemplated by the planner is constant through time.

This formulation is also convenient, since it allows us to handle the discretionary
case by augmenting the law of motion and the loss function just like in the commitment
case. In practice, this means Knding the discretionary solution to the problem detailed
in Eqs. (12)–(14). We use algorithms developed for the standard RE discretionary case
(see Appendix C), because they solve for the Krst order conditions (which are the same
for the minimum and maximum).

In equilibrium, the predetermined variables (x1t) follow a VAR(1) process

x1t+1 =Mx1t + C1�t+1; (21)

and the forward looking variables and the controls are linear functions of the prede-
termined variables


x2t

ut

vt+1


 =




N

−Fu

−Fv


 x1t : (22)

The only di;erence between the worst case model and the approximating model
is in terms of the M matrix in (21) (see Appendix B for details). The di;erence
between the two M matrices is therefore a useful indicator of the misspeciKcation that
the planner fears.

Since (22) is the same, it is clear that the approximating model uses both robust
policy and robust expectations (the mapping from the predetermined variables to the
forward looking variables is very closely tied to expectations).

3.1.1. Application: the simple new Keynesian model
The model deKned by Eqs. (15)–(19) is written in state space form exactly as for the

commitment solution. Only the solution algorithm changes. The robust policy function
takes the form given in Eq. (22) and is therefore not history dependent.

Consider the following application. We wish to derive the central bank policy func-
tion and the behavior of the economy as the degree of robustness goes from zero (RE)
to a � which implies a 20% probability of error detection in a sample of 150 obser-
vations. The other parameters are set as in Section 2.2. Fig. 3 shows the results. Each
quadrant plots the response of a variable to a cost push shock ("2t) for three cases:
standard RE (�= ∞), the approximating model, and the worst case model.

Robustness leads to higher reactions of all variables at all horizons. The response
of the short interest rate is also higher for the approximating model (when policy
is robust but vt+1 is always zero) than for the standard RE case. Finally, the robust
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Fig. 3. Impulse response functions of in<ation, output and short interest rate to a cost-push shock in the
model of Clarida et al. (1999), discretionary solution: standard RE solution (continuous line), approximating
solution (dashed line) and worst case solution (thin dots).

monetary policy function is more aggressive: the policy vector Fu is −(3:0; 1:9)′ for the
RE solution, and −(3:5; 2:4)′ for the robust solution. This result is not new, as other
papers conclude that robustness lead to more aggressive policies under commitment. 13

However, it is of some independent interest that we reach the same conclusion in the
discretionary case.

A recurrent feature of the solution is the evil agent’s common choice of increasing the
persistence of the driving processes. In Fig. 3 the responses of all variables are in fact
more persistent in the worst case than in both the standard RE and the approximating
case. More persistent processes imply higher variances and therefore a greater loss for
the risk averse planner. 14 Fearing this outcome, a robust agent typically has a stronger
reaction to shocks than a standard agent. 15

13 See, for instance, Hansen and Sargent (2001), and, with a di;erent approach, Giannoni (2002). However,
this result is not general (Hansen and Sargent (2002, ch. 8), provide a counter-example): the outcome will
depend on the model and on the loss function parameters.

14 Hansen and Sargent (2000, 2003) analyze this point at length through spectral analysis, showing how
the evil agent often accentuates the low frequency components of the exogenous processes.

15 Kasa (2001) proves that a robust forecaster, whose loss function is the mean squared error, revises the
forecast by more than a standard forecaster following new information, because she is more vulnerable when
she underestimates the persistence of the driving processes.
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This feature of the robust solution, namely the worst case model displaying more
persistence than the approximating model, suggests that we can often expect robustness
to make forward looking prices overreact to news. This implies that robustness makes
asset prices more volatile and more forecastable, as illustrated in the applications of
Sections 3.1 and 4.1.

3.1.2. Application: the term structure of interest rates
The literature considered in this paper is young, and yet o;ers several interesting

empirical applications, including consumption/saving decisions (Hansen et al., 1999),
asset pricing (Anderson et al., 2003; Hansen et al., 1999; Tornell, 2000; Hansen
et al., 2002), and monetary policy rules (Hansen and Sargent, 2001; Giannoni, 2002;
Onatski, 2000). In the latter case the focus is on the behavior of the short interest
rate (the policy instrument). We suggest a natural extension, namely to consider the
implied behavior of multiperiod interest rates. We continue to work with the model of
Section 2.2. 16 The exercise could be carried out assuming commitment, but discretion
is arguably more realistic, so we opt for the latter.

Let it – the policy instrument – be the one period interest rate (not annualized). We
assume that multiperiod rates obey the expectations hypothesis of the term structure.
The h-period interest rate (denoted it;h) then follows

it;h = E∗
t

h−1∑
i=0

it+i ; (23)

where E∗ denotes robust expectations, that is, expectations which condition on the worst
case model. We also deKne a ‘fundamental’ rate, computed substituting the mathemat-
ical expectation E for the robust expectation E∗ in Eq. (23). The fundamental rate
therefore guarantees that no expected excess proKts are available, whereas the actual
rate does not. Referring to Fig. 3, the actual rate and the fundamental rate are derived
by plugging into Eq. (23) the path of the short interest rate for the worst case model
and for the approximating model respectively.

Fig. 4 shows the di;erence – at the time of a unit shock to the in<ation equation –
between a long (h=4) interest rate, and the corresponding fundamental rate, for di;erent
degrees of robustness (represented by error detection probabilities). This di;erence can
be considered an overreaction in the classical sense that the price of the multiperiod
bond reacts to a shock by jumping beyond its new equilibrium value (we are assuming,
of course, that the approximating model is in fact the DGP). The overreaction is around
1.25% at a 20% detection probability, and grows monotonously with the degree of
robustness.

A rather large empirical literature on the term structure has found that actual changes
in short interest rates are smaller than predicted by the slope of the yield curve. 17

Our examples show that robust expectations can contribute to an interpretation of this
Knding.

16 Parameter values are the same as in Section 2.2, and � again implies a detection error probability of
20% in a sample of 150 observations.

17 See, for example, Walsh (1998, ch. 10) and Campbell et al. (1997, ch. 10).
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Fig. 4. Over-reaction of the long interest rate to a CP shock as a function of the degree of robustness (in
terms of the detection error probability) in the model of Clarida et al. (1999) with discretionary solution.
0.01 corresponds to one basis point.

3.1.3. Application: the in@ation bias
A well known example of how the presence or absence of a commitment technology

can a;ect an economic outcome is the time inconsistency of optimal monetary policy
Krst studied by Kydland and Prescott (1977) and Barro and Gordon (1983). They
assume that the planner is targeting a level of output above potential output, and
then show that the discretionary solution involves an in<ation bias (in<ation is higher
than the optimal level). The model of Kydland and Prescott is static and involves
expectations about the control variable, so it cannot be cast into the form of Eq. (11).
However, an analytical solution is available. Hansen and Sargent (2002) show that fear
of misspeciKcation increases the in<ation bias. The intuition is that the planner fears
that the expected value of output is lower than in the reference model, which increases
the distance between desired and expected output. Thus a preference for robustness has
the same e;ect as an increase in target output: higher in<ation.

With our solution approach for discretion in dynamic models, we can recast Hansen
and Sargent’s exercise in more general settings. Here we study the in<ation bias in the
dynamic model of Clarida et al. (1999) used in the previous section (Eqs. (15)–(19)),
except that we allow for an output target level y∗ ¿ 0 in the loss function, which
becomes

Et

∞∑
s=0

�s[�2
t+s + %y(yt+s − y∗)2 + %ii2t+s]: (24)

Technically, this requires adding the constant 1 to the vector of predetermined vari-
ables. Average in<ation in the standard RE solution is then a positive function of y∗.
In our proposed solution for the discretionary case, the evil agent’s control vector, vt+1,
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Fig. 5. In<ation bias as a function of the detection error probability in the model of Clarida et al. (1999).
The horizontal line gives the in<ation bias for the RE solution.

is a linear function of the predetermined variables, just like the central bank’s policy
rule.

It turns out that the evil agent decides to a;ect both the constant and the autore-
gressive parameters, thus increasing both the mean of in<ation and its variance. The
constant is negative because y∗ is positive. Intuitively, since the loss function is sym-
metric in y around y∗ while the evil agent’s cost is symmetric in y around zero, it is
cheap and e;ective for the evil agent to set a negative constant to output. The result is
that robustness leads to an increase of average in<ation in the discretionary solution,
for the same reason as in the Kydland-Prescott example.

Fig. 5 shows how the in<ation bias varies with the degree of robustness in the
model of Clarida et al. (1999). The calibration is the same as in Section 2.2. We set
y∗ to 0.4. The in<ation rate is deKned as the growth rate in prices during one period.
Therefore, if we think of the model as applying to quarterly data, an in<ation bias of
0:8% translates into an annual bias of approximately 3:2%.

4. Robust control with simple rules

The monetary policy literature has paid a good deal of attention to the properties
of simple rules, deKned as commitment rules that set the policy instrument as a linear
function of the system variables. Examples include Taylor type rules and rules for
money growth. Simple rules are typically not optimal. In some cases they are motivated
as good empirical approximations to actual policy.

In other cases simple rules are justiKed as an attempt to identify rules that work
well in a variety of models. A prominent proponent of robustness in this sense is
McCallum (1988, 1999). An interesting example is Levin et al. (2001), who focus on
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simple monetary policy rules that work well in models that incorporate rather di;erent
views of the transmission mechanism. 18

This literature uses the term robust for a rule that performs well across models.
Hansen and Sargent propose, instead, to design rules that perform well for deviations
around a single model. Sims (2001a) argues that a Hansen–Sargent robust solution to a
single reference model may in fact not be robust in the sense of McCallum. There is of
course no reason why the two concepts should be substitutes rather than complements:
one could try to identify a rule that is robust in a Hansen–Sargent’s sense for several
reference models, or, when possible, merge the competing models and thus reduce
model uncertainty to parameter uncertainty. A preliminary requirement for this is to
specify solution concepts for simple rules in a Hansen–Sargent robust framework. A
solution for backward looking models is already available, and one for forward looking
models is proposed in this section.

Another reason why we are interested in simple rules in a robust framework is that
they allow us to isolate the e;ects of the private sector deviations from RE. In e;ect,
a planner who has committed to a given simple rule is no longer involved in any
decision, so any change in economic outcome between the RE and the robust solution
is entirely due to the role of private sector expectations.

4.1. Simple rules in backward looking models

Managing a simple rule in a backward looking model is a straightforward application
of the robust pure prediction problem analyzed in Hansen and Sargent (2002) and
Kasa (2001). The planner commits to a speciKc Fu in setting ut =−Fuxt (where xt can
be augmented by any variables that are important for policy decisions). Then the evil
agent is left with the following program

max
{v}∞

1

E0

∞∑
t=0

�t(x′
tQxt + u′

tRut + 2x′
tUut − �v′

t+1vt+1)

subject to xt+1 = (A − BFu)xt + C(vt+1 + �t+1); (25)

and where x0 is given. This is a standard RE problem of Knding the optimal policy
rule in a backward looking model. The evil agent will therefore choose to set vt+1 as
a linear function of the state xt .

Example (A simple forecasting problem): As an illustration, consider a simple robust
forecasting problem. Let the loss function be the mean squared forecast error Et(xt+i −
xet+i; t)

2, where xet+i; t denotes the forecast of xt+i made at time t. Suppose that xt is the
amount of dividends. The reference model of the dividend is an AR(1) process (A in
(25) is the autoregressive coeNcient and B= 0).

It is straightforward to show that the robust forecast of xt+i at time t, denoted by
E∗
t xt+i, is E∗

t xt+i = (A∗)ixt ; where A∗ ¿A so the investor forecasts as if the process
driving dividends was more persistent than in the reference model. The investor thus

18 Leitemo and S/oderstr/om (2004) evaluate the performance of simple monetary policy rules (compared to
optimal rules) in several variations of a baseline model.
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fears that the process has high persistence. The intuition is that more persistence gives
larger uncertainty of long horizon forecasts (as future shocks are propagated more).

If the asset price is the discounted (at rate �) sum of expected dividends, then we
get the price xt=(1−A∗�). Since A∗ is a positive function of the degree of robustness,
so too is the price variance. 19 A small degree of robustness can have large e;ects
on the behavior of prices. For example, let � = 0:98, and A = 0:99, and A∗ = 1. This
relatively small degree of robustness implies an increase of around 50% in the standard
deviation of the asset price.

4.2. Simple rules in forward looking models

The forward looking case is less straightforward. We propose to be more speciKc
about the set of models from which the evil agent can choose (that is, the type of
misspeciKcation feared), by imposing that he sets his instruments vt+1 as a linear
function of predetermined variables. That is, we allow for misspeciKcations of the
form

vt+1 = −Fvx1t ; (26)

and leave the evil agent free to choose the coeNcients of the (n1 × n1) matrix Fv

(within the limits of the budget deKned by �).
For the moment we concentrate on the technical aspects of our proposed solution,

postponing its motivation to the end of this section. Formally, we suggest to set up
the problem as

max
Fv

E0

∞∑
t=0

�t(x′
tQxt + u′

tRut + 2x′
tUut − �v′

t+1vt+1);

subject to (11); (26) and ut = −Fuxt ; (27)

and where x10 is given. The constraint vt+1 = Fvx1t has been imposed and the maxi-
mization is explicitly in terms of Fv. The interpretation is that the planner is fearing
errors in the coeNcients which relate predetermined variables to lags of predetermined
variables. As in previous cases, the problem can be written as a standard RE problem

max
Fv

E0

∞∑
t=0

�t(x′
tQxt + u∗

t
′R∗u∗

t + 2x′
tU

∗u∗
t );

subject to (13) and u∗
t =

[ −Fu

−Fv 0n1×n2

]
xt ; (28)

where x10 is given and the starred (∗) matrices are deKned in (14).
For given Fu and Fv, the solution concept is that of a simple rule in a forward

looking model: private sector expectations are consistent with the evolution of the
economy in the worst case model. The solution to (28) is then found by letting a

19 See Hansen and Sargent (2002), from which this example is adapted.
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numerical maximization routine search over Fv (the policy rule Fu is kept constant).
The solution algorithm is outlined in Appendix C.

The formal representation of the equilibrium can be written in the same form as
in the discretionary case (21)–(22) where the predetermined variables (x1t) follow
a VAR(1) process and the other variables are linear functions of the predetermined
variables (see Appendix B for details).

Example (The simple new Keynesian model): The state space form is as for the
commitment and discretionary solution, except that the researcher must provide a matrix
Fu (and of course a value of �).

4.2.1. Motivation of our robust simple solution
We will now motivate our proposed solution for the simple rule in a forward looking

model. Recall that we are constraining the vt+1 to be a linear function of predetermined
variables. Why this constraint? The problem is that an evil agent free to commit to
any rule uses agents’ expectations to his advantage, and therefore makes the set of
plausible models dependent on the expectation formation. By strategically exploiting
expectations, an agent free to commit can drive the loss function to inKnity for any
degree of robustness, for example by committing to an exponentially increasing or
decreasing series of vt+1, a highly improbable misspeciKcation to fear. This does not
happen when the planner is allowed to choose a robust policy (in the commitment or
discretionary case) – but it happens with a simple rule since the policy maker is bound
to follow a given rule. To put it simply, the planner is defenceless against the evil
agent.

On the other hand, the choice of constraining vt+1 to be linear in the predetermined
variables ensures that the set of misspeciKcations that the planner considers plausible
is given exogenously, in the sense that it does not depend on how expectations are
formed, and that there is a Knite � for which a model that has stable dynamics under
RE remains stable in the robust solution.

The following example illustrates the argument. Let the planner’s loss function de-
pend on squared in<ation rates, L0 = E0

∑∞
t=0 �t�2

t , and the law of motion of the
economy be given by the simpliKed Calvo style Phillips curve

�t = �Et�t+1 + �t ; where �t is iid with E�t = 0 and Var(�t) = 1:

In this case, the planner has no e;ect at all on in<ation – but the more general point
is that she cannot revise her policy to defend against the evil agent. Assume that the
evil agent can commit to any policy rule. He therefore solves 20

max
{v}∞

1

E0

∞∑
t=0

�t�2
t

subject to �t = �Et�t+1 + vt+1 + �t and E0

∞∑
t=0

�tv2t+16 �0: (29)

20 We write the evil agent’s constraint explicitly rather than in terms of the Lagrange multiplier �: A high
�0 corresponds to a low �. We also set c = std(�t) = 1.
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It is straightforward to prove that an evil agent who is able to commit will choose a
non-stationary (exponentially increasing or decreasing) vt+1 (see Appendix D), which
makes the loss function unbounded for any strictly positive �0. The misspeciKcation
feared is then a trend increase (or decrease) of in<ation, which is a case of limited
interest.

In contrast, this problem has a well deKned solution under our proposed approach
to the simple rule case, which here forces the evil agent to set vt+1 as a function of �t
(the only predetermined variable), say vt+1 = a�t . The robust expectations are therefore
formed as if the standard deviation of the errors was 1 + a rather than 1.

4.2.2. Application: output and in@ation volatility
The di;erences between the robust and RE solutions illustrated in Fig. 3 are due to

deviations from rational expectations of both the planner and the private sector. The
solution approach to simple rules in forward looking models developed in Section 4.2
opens up the possibility of isolating the e;ects of private sector deviations from RE.
We might then ask how a preference for robustness on the part of the private sector
a;ects macroeconomic variables and asset prices, keeping the behavior of the planner
Kxed by assuming that she has committed to a simple rule.

To illustrate, we continue to consider the simple model of Section 2.2. The goal is
to establish a link between the degree of robustness and the volatility of in<ation and
output.

The central bank is assumed to commit to the Taylor rule

it = 1:5�t + 0:5yt:

The solution takes the form[
x2t

vt+1

]
=

[
N

−Fv

]
x1t : (30)

As in the other equilibria, N is a function of � and does not depend on whether the
planner’s fears are founded or not (that is, the approximating model and the worst case
model share the same way of forming expectations).

We assume that the approximating model is correct, and therefore that x1t evolves
as (see Appendix B)

x1t+1 =Max1t + C1�1t ; (31)

from which we obtain the variance of the predetermined shocks (e1t and e2t). The
matrix N in (30) is then used to compute the variance of the corresponding series of
output and in<ation. This is done for the standard RE case (�=∞) and for the robust
case.

The variance of output and in<ation is found to be a monotonous function of the
degree of robustness (an inverse function of �). At �=850, which corresponds to a 20%
error detection probability for a sample of 150 observations, the variances of output
and in<ation are some 3% and 46% higher than in the standard RE case respectively.

To gain some intuition for this result, it is useful to compare the matrix Ma, which
actually generates the predetermined variables in (31), and M , which corresponds to
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the worst case model and therefore to agents’ expectations (see Appendix B). The
parameters in Ma are !1 and !2

Ma =

[
0:8 0

0 0:8

]
;

while M (the worst case model) is

M =

[
0:86 0:04

0:02 0:82

]
:

Comparing Ma and M , we notice that the private sector is fearing that the exogenous
processes are more persistent than in the approximating model. Expecting persistent
dynamics of the driving processes (the predetermined variables), consumers and price
setters overreact to news, in the sense that output and in<ation have a stronger response
to shocks than in the RE case.

Using the same model we can isolate the e;ects of robust expectations on the term
structure. The results (not reported) are similar to those of the discretionary solution,
shown in Figs. 3 and 4: the public fears more persistent e;ects of shocks and multi-
period interest rates overreact. 21

4.2.3. Application: publishing central bank forecasts
Sims (2001a) argues that a min–max approach to robustness is better suited to cap-

ture agents’ near rational behavior than as a normative course of action for central
banks. The following example embraces his point of view and departs from the as-
sumption that the private sector and the central bank share the same information and
the same taste for robustness. We assume that the central bank has a good and precisely
estimated model, while the private sector nurtures strong doubts about the behavior of
the economy.

To simplify the problem as much as possible, we make the following assumptions.
First, the private sector does not know the model (or simply the coeNcients) estimated
by the central bank, but it knows that the bank has an accurate representation of the
economy. Second, the central bank follows the Taylor rule it = 1:5�t + 0:5yt . Third,
the private sector’s reference model is the same as the central bank’s and it is also the
DGP.

The second assumption means that we can adopt the simple rule solution developed
in Section 4.2. Altogether, these three assumptions are admittedly unrealistic, but they
help us make the following point: the central bank can reduce the variance of in<ation
and output by releasing information to the public, for example in the form of forecasts.
To verify the statement, notice that if the central bank does not release information, the
setup and outcome is exactly as in the previous application, where robustness increases
business cycle volatility. However, if the central bank announces its forecasts of the
predetermined variables, the private sector makes these forecasts their own (by the Krst
assumption), taking the economy back to the superior RE solution.

21 We obtained similar results on the behavior of long interest rates in the model of Fuhrer (1997), with
the parameters estimated in S/oderlind (1999).
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Whether central banks should release explicit forecasts is a matter of current debate
(see Svensson (2001) for a list of central banks that do, and arguments in favor of the
practice). While our example cannot be a serious attack on the issue, it does lead us
to believe that a more thorough investigation would be worth the e;ort.

5. Conclusions

The approach to dealing with model uncertainty proposed by Lars Hansen and
Thomas Sargent seems promising from both a normative (designing a rule that works
well in a neighborhood of the reference model) and a descriptive (replicating the be-
havior of actual agents) perspective. In the discussion of Kscal and monetary policy,
much of the debate is centered around two non-history dependent sets of policies: sim-
ple rules and discretionary solutions, which Hansen and Sargent do not consider. This
paper proposes solution approaches for simple rules and discretion. These extensions
preserve the property that the robust program can be written and solved as a suitably
modiKed rational expectations program. Some applications show that these extensions
can be interesting for applied work. The analysis of the term structure of interest rates
complements previous research and suggests that standard models give a better em-
pirical description of asset returns if agents are attributed a taste for robustness. The
result that the in<ation bias increases with robustness can be interpreted as saying that
the gains from commitment increase if potential output is imprecisely estimated. The
application to the variance of in<ation and output for a given policy function is per-
haps the most interesting. It suggests that a robust private sector may amplify those
same <uctuations in in<ation and output that it fears, and can provide a theoretical
motivation for central banks to be transparent about their forecasts.
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Appendix A. Software

Our software can be downloaded freely at http://home.tiscalinet.ch/paulsoderlind. A
user’s manual and example programs are provided. The procedures follow the notation
of this paper, and their syntax is therefore immediately understood. The user needs to
write the loss function (that is, specify �; Q; R; U ), write the model in state space form
(that is, specify A; B; C; n1), select a �, and decide on a solution algorithm (commitment,
discretion, simple rule). Advanced users can Kne tune the optimization algorithms.
Bayesian error detection probability is also implemented (assuming normally distributed
errors) to assist the user in selecting �. We follow Hansen and Sargent in plotting the

http://home.tiscalinet.ch/paulsoderlind
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probability (of selecting the wrong model) against #=−1=�, rather than against �. To
Knd the � corresponding to a probability of 0.2 in the Euler+Calvo model (discretionary
solution), we solved the model 10,000 times. This took around 20 s on a Pentium III
PC using Gauss, and a few seconds more using Matlab.

Appendix B. Reduced form dynamics of the forward looking models

This appendix shows how to compute the dynamics of the worst case and of the
approximating model for the forward looking commitment case. The dynamics of the
forward looking discretionary and simple rule cases have the same general form, but
with !2t being an empty vector (or a vector of zeros).

The solution can be written in the following general form (see Appendix C)[
x1t+1

!2t+1

]
=M

[
x1t

!2t

]
+ C�t+1; (B.1)




x2t

ut

vt+1

!1t


 = N

[
x1t

!2t

]
=




N1

N2

N3

N4




[
x1t

!2t

]
; (B.2)

with !20 = 0n2×1. In the discretionary and simple rule solutions, !2t = 0 for all t.
Eqs. (B.1) and (B.2) give the dynamics of the worst case model. To retrieve the dy-
namics of the approximating model, we rewrite (B.1) as[

x1t+1

!2t+1

]
=M

[
x1t

!2t

]
+ C�t+1; (B.3)

where

M = P−1(A − BFu − BFv)P

P =

[
In1 0n1×n2

N1

]
⇒

[
x1t

x2t

]
= P

[
x1t

!2t

]
; and

[
ut

vt+1

]
=

[
N2

N3

]
P−1

[
x1t

x2t

]
=

[ −Fu

−Fv

] [
x1t

x2t

]
: (B.4)

We then set Fv = 0n1×n in (B.3), so[
x1t+1

!2t+1

]
=Ma

[
x1t

!2t

]
+ C�t+1; (B.5)

where Ma = P−1(A− BFu)P. The values x1t and x2t are then determined by (B.5) and
(B.2). In applications, Ma is sometimes not a function of �. This happens when the
predetermined variables are block exogenous, that is, independent of lagged values of
the forward looking variables.
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Appendix C. Solution algorithms

This appendix summarizes the solution algorithms by adapting some material in
S/oderlind (1999). The forward looking models are in the main focus, but we also
comment on how backward looking models can be handled.

C.1. Optimal policy under commitment

The Lagrangian of the forward looking model (12)–(13) is

L0 = E0

∞∑
t=0

�t[x′
tQxt + 2x′

tU
∗u∗

t + u∗
t
′R∗u∗

t

+2!′
t+1(Axt + B∗u∗

t + "t+1 − xt+1)]; (C.1)

where "t+1 = (C�t+1; x2t+1 − Etx2t+1). Let n= n1 + n2 be the number of elements in xt
and let q= k + n1 be the number of elements in u∗

t .
The Krst order conditions with respect to !t+1, xt , and u∗

t are


In 0n×q 0n×n

0n×n 0n×q �A′

0q×n 0q×q −B∗′







xt+1

u∗
t+1

Et!t+1


 =




A B∗ 0n×n

−�Q −�U ∗ In

U ∗′ R∗ 0q×n






xt

u∗
t

!t




+



"t+1

0n×1

0q×1


 : (C.2)

Take conditional expectations of (C.2), expand xt and !t as (x1t ; x2t) and (!1t ; !2t)
respectively, and reorder the rows by placing !2t after x1t . Write the result as

GEt

[
kt+1

%t+1

]
= D

[
kt

%t

]
; where kt =

[
x1t

!2t

]
and %t =



x2t

u∗
t

!1t


 : (C.3)

The elements in kt have initial conditions: the initial state vector x10 is given and the
forward looking variables can be chosen freely in the initial period so their shadow
prices !20 are zero (see Currie and Levine, 1993).

Given the square matrices G and D in (C.3), the generalized Schur decomposition
gives the square complex matrices Q (not the same Q as in (C.1)), S, T , and Z such
that G = QSZH and D= QTZH , where ZH denotes the transpose of the complex con-
jugate of Z . Q and Z are unitary (QHQ= ZHZ = I), and S and T are upper triangular
– see Golub and van Loan (1989). Reorder the decomposition (see Sims, 2001b and
Klein, 2000) so the block corresponding to the stable (modulus less than one) gen-
eralized eigenvalues (the diagonal of T divided by the corresponding elements in S)
come Krst.
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Introduce the auxiliary variables[
�t

7t

]
= ZH

[
kt

%t

]
; (C.4)

where �t corresponds to the stable eigenvalues.
Use the generalized Schur decomposition in (C.3), premultiply by QH , use the def-

initions in (C.4), and partition S and T conformably with �t and 7t to get[
S�� S�7

0 S77

]
Et

[
�t+1

7t+1

]
=

[
T�� T�7

0 T77

] [
�t

7t

]
: (C.5)

Since the lower right block contains the unstable roots, 7t will diverge unless 70 = 0.
From (C.5) we see that any stable solution will therefore have 7t = 0 and

Et�t+1 = S−1
�� T���t ; (C.6)

since S�� is invertible (follows from the way we have ordered the eigenvalues).
From (13) x1t+1 −Etx1t+1 =C1�t+1 and Backus and DriNl (1986) show that !2t+1 −

Et!2t+1=0. Using (C.3), stack these expressions as kt+1−Etkt+1. Invert (C.4), partition
conformably with kt , %t , �t and 7t , and use the fact that 7t = 0[

kt

%t

]
=

[
Zk� Zk7

Z%� Z%7

] [
�t

7t

]
=

[
Zk�

Z%�

]
�t : (C.7)

It follows that kt+1 − Etkt+1 can be written

Zk�(�t+1 − Et�t+1) =

[
C�t+1

0

]
: (C.8)

We can solve for �t+1 in (C.8) if Zk� is invertible. A necessary condition is that the
number of backward looking variables (the number of rows in Zk�) equals the number
of stable roots (the number of columns in Zk�) – this is the saddlepoint condition in
proposition 1 of Blanchard and Kahn (1980). Assuming this is satisKed, solve for �t+1

and substitute for Et�t+1 from (C.6)

�t+1 = S−1
�� T���t + Z−1

k�

[
C�t+1

0

]
: (C.9)

The last step is to combine this expression with (C.7) and the deKnitions in (C.4) to
write the dynamics as[

x1t+1

!2t+1

]
=M

[
x1t

!2t

]
+

[
C�t+1

0

]
; where M = Zk�S

−1
�� T��Z

−1
k� ; (C.10)



x2t

u∗
t

!1t


 = N

[
x1t

!2t

]
; where N = Z%�Z

−1
k� ; (C.11)

and where x10 is given and !20 = 0.
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This algorithm can also be used for the backward looking case (although there are
simpler algorithms that also work): x2t and !2t+1 are then empty vectors and n= n1.

C.2. Optimal policy under discretion

This section summarizes the iterative algorithm for the discretionary case used by
Backus and DriNl (1986). The policy maker reoptimizes every period by taking the
process by which private agents form their expectations as given. The solution in t+1
gives a value function which is quadratic in the state variables, x′

1t+1Vt+1x1t+1 + vt+1,
and a linear relation between the forward looking variables and the state variables,
x2t+1 = Kt+1x1t+1. Private agents form expectations about x2t+1 accordingly.

Partition the matrices A; B∗; Q; U ∗, and C in (12)–(13) conformably with x1t and x2t .
The Bellman equation for the optimization problem can then be written

x′
1tVtx1t + wt =minmax

u∗
t

[x′
1t Q̃tx1t + 2x′

1t Ũ tu∗
t + u∗

t
′R̃tu∗

t

+ �Et(x′
1t+1Vt+1x1t+1 + wt+1)]

s:t: x1t+1 = Ãtx1t + B̃tu∗
t + C1�t+1 and x1t given; (C.12)

where the matrices with a tilde (∼) are deKned as

Dt = (A22 − Kt+1A12)−1(Kt+1A11 − A21)

Gt = (A22 − Kt+1A12)−1(Kt+1B∗
1 − B∗

2 )

Ãt = A11 + A12Dt

B̃t = B1 + A12Gt

Q̃t = Q11 + Q12Dt + D′
tQ21 + D′

tQ22Dt

Ũ t = Q12Gt + D′
tQ22Gt + U ∗

1 + D′
tU

∗
2

R̃t = R∗ + G′
tQ22Gt + G′

tU
∗
2 + U ∗

2
′Gt: (C.13)

The Krst order conditions of (C.12) with respect to u∗
t are

u∗
t = −F1tx1t ; F1t = (R̃t + �B̃′

tVt+1B̃t)−1(Ũ ′
t + �B̃′

tVt+1Ãt): (C.14)

Combining with (C.12) gives

x2t = Ktx1t ; with Kt = Dt − GtF1t ; and (C.15)

Vt = Q̃t − Ũ tF1t − F ′
1t Ũ

′
t + F ′

1t R̃tF1t + �(Ãt − B̃tF1t)′Vt+1(Ãt − B̃tF1t): (C.16)

The algorithm involves iterating until convergence (‘backwards in time’) on (C.13)–
(C.16). It should be started with a symmetric positive deKnite Vt+1 and some Kt+1. If
F1t and Kt converge to constants F1 and K , the dynamics of the model are (rewrite
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the Krst n1 equations of (13))

x1t+1 =Mx1t + C�t+1; where M = A11 + A12K − B∗
1F1; (C.17)[

x2t

u∗
t

]
= Nx1t ; where N =

[
K

−F1

]
: (C.18)

For a backward looking model, the discretionary solution coincides with the com-
mitment solution (see above for a solution algorithm).

C.3. An optimal simple rule

We start by Knding the equilibrium for a given ‘decision rule’ of the evil agent,
Fv, and the private sector, Fu. Use the expression for u∗

t in (28) in (13) and take
conditional expectations to get

Et

[
x1t+1

x2t+1

]
= D

[
x1t

x2t

]
; where D = A+ B∗

[ −Fu

−Fv 0n1×n2

]
: (C.19)

This has the same form as (C.3), so the same solution method can be used: the solution
(C.10)–(C.11) still applies. The only di;erence is that u∗

t , !1t+1, and !2t+1 are empty
vectors here.

It is straightforward to show that the loss function value for given Fu and Fv matrices
is

J0 = x′
10Vx10 + trace(VC1C′

1)�=(1 − �); (C.20)

where the matrix V is the Kxed point in the iteration (‘backwards in time’) on

Vs = P′
[

Q U ∗

U ∗′ R∗

]
P + �M ′Vs+1M; where P =




In

−Fu

−Fv




[
In1

N

]
; (C.21)

where M and N are from the solution (C.10)–(C.11). The evil agent maximizes the
loss function (C.20) by choosing the optimal elements in the decision rule Fv. This
rule is found by a non-linear optimization algorithm.

For a backward looking model, the solution is trivial, but the algorithm here can
still be used if we set x2t to an empty matrix.

Appendix D. The stability problem of robust simple rules

Proposition 1. If �0 is strictly positive, the loss function is unbounded. This outcome
can be achieved by the evil agent committing to an ever increasing (or decreasing)
constant in the law of motion.

Proof. Assume that the evil agent commits to the sequence vt+1 =  �t ,  ¿ 0. Then

E0�t =
∞∑
s=0

�svt =
 �t

1 − ��
: (D.1)
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The constraint is binding, so �0 =  2(1 − ��2) and the problem can be written as

max
�

 2

(1 − ��2)(1 − ��)2
; s:t: 1 − ��2 ¿ 0: (D.2)

This problem does not have a maximum: �=
√

1=� is a supremum. However, the evil
agent can pick a �∗ such that 1¡�∗ ¡

√
1=�, which in turn makes the loss unbounded

by (D.2), and limt→∞ E0�t = ∞ by (D.1).
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