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1 MASS-BALANCE MODEL DESCRIPTION27

The climatic mass balance 9bsfcpx, yq is calculated as the difference between surface accumulation and surface

ablation 9asfcpx, yq. Ablation is approximated as surface melt (M ; mw.e.) minus meltwater that is refrozen

(R; mw.e.). Melt is calculated using the enhanced temperature-index model of Hock (1999),

M “

$

’

’

&

’

’

%

pMF ` asnow{iceIqT if T ą 0 0C

0 if T ď 0 0C,
(1)

where T (0C) is air temperature and I is the potential direct clear-sky solar radiation (Wm´2), calculated28

using the Hock (1999) shading module, which accounts for the effects of topographic shading, slope, and29

aspect. MF (mw.e. 3hr´1 0C´1), asnow and aice (mw.e. 3hr´1 0C´1 m2 W´1) are, respectively, the melt30

factor and radiation factors for snow and ice that are empirically determined during the tuning process.31

The retention of meltwater via percolation and refreezing in the snowpack is accounted for using a

thermodynamic parameterization to estimate the maximum amount of liquid water that can be retained,

referred to as the total potential retention mass Pτ (mw.e.) (Janssens and Huybrechts, 2000). Pτ is

approximated as a proportion (Pr) of the total annual precipitation in a given hydrological year (Pannual;

mw.e.):

Pr “
c

L
|minpTmean, 0q|

d

Pmean
, (2)

where c (2097 J kg´1 K´1) is the specific heat capacity of ice, L (333.5 kJ kg´1) is the latent heat of fusion

Cuffey and Paterson (2010), Tmean is the local mean annual air temperature for a given hydrological year,

Pmean (mw.e.) is the mean annual precipitation over the whole study period (1980–2022), and d is a

prescribed thickness of the thermal active layer, set to 2m (Janssens and Huybrechts, 2000; Young and

others, 2021). The retention fraction Pr can have a maximum value of 1, such that the maximum possible

potential retention mass Pτ is equal to the annual precipitation (Pannual), since

Pτ “ Pr Pannual. (3)

While Pτ ą 0, any melt that occurs is assumed to refreeze, therefore the maximum amount of refreezing32

that can occur is capped at Pτ . Once the upper limit of Pτ has been reached, any additional snowmelt or33

rainfall is assumed to run off (Huybrechts and De Wolde, 1999; Janssens and Huybrechts, 2000).34
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2 CATCHMENT HYPSOMETRY35
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Fig. S1. Hypsometry of the Kaskawulsh River headwaters. Glacierized areas (light blue bars) account for 69%

(1173 km2) of the catchment area, while the other 31% (531 km2) of the catchment is non-glacierized (brown bars).



Robinson and others: 5

3 AVERAGE CUMULATIVE MASS BALANCE CURVE AND ONSET OF NET36

ABLATION37
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Fig. S2. a) Average accumulation (blue), ablation (red), and cumulative mass balance (black) from 1980–2022 for

the glacierized area of the Kaskawulsh River Headwaters catchment. Red shading on the ablation timeseries shows

˘ 1σ of variability in the 100 simulations that comprise the model. The average onset of net ablation (where 9B “ 0)

is July 28. b) The date when 9B “ 0 during each mass balance year. The onset of net ablation is occurring earlier

in the melt season by approximately five days per decade. Grey bars represent years where the cumulative balance

remains positive for the entire year.
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4 OBSERVED DISCHARGE ON THE ALSEK RIVER (1979–2019)38

4.1 Annual discharge on the Alsek River above Bates River39
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Fig. S3. Annual discharge measured at the Environment and Climate Change Canada Alsek River above Bates

River hydrometric station (navy blue). Dashed line represents the hydrological rerouting (see Shugar and others

(2017)) in May of 2016 when runoff from the Kaskawulsh River headwaters was routed to the Alsek River basin.

Modelled annual discharge from the Kaskawulsh River headwaters (red) are shown from 2016 onwards only, since

contributions to the Alsek Basin were minimal prior to the rerouting event (Shugar and others, 2017). Discharge

data from the Alsek River were extracted from the Environment and Climate Change Canada Historical Hydrometric

Data web site (https:wateroffice.ec.gc.camainmenuhistorical_data_index_e.html) on 2024-02-16.
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4.2 Average monthly discharge on the Alsek River compared to the Kaskawulsh River40

headwaters41
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Fig. S4. Mean monthly discharge (m3 s´1) from 2016–2019 at the Alsek River above Bates River hydromet-

ric station (dark blue bars) and mean monthly discharge from the Kaskawulsh River Headwaters (KRH), sep-

arated into sources from glacier ice, snow, rain, and refrozen ice. KRH discharge bars are stacked, i.e., to-

tal discharge from KRH is the top of the turquoise bars. Monthly discharge data from the Alsek River

were extracted from the Environment and Climate Change Canada Historical Hydrometric Data web site

(https:wateroffice.ec.gc.camainmenuhistorical_data_index_e.html) on 2024-02-16.
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4.3 Decadal-average monthly discharge on the Alsek River42
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Fig. S5. Mean monthly discharge (bars) measured at the Alsek River above Bates River hydrometric station for

each decade in the study period, with decadally averaged daily discharge (lines) smoothed using a zero-phase-shift

filter and a window size of 51 days (see Supp. Mat. Section 7). Monthly and daily discharge data from the Alsek

River were extracted from the Environment and Climate Change Canada Historical Hydrometric Data web site

(https:wateroffice.ec.gc.camainmenuhistorical_data_index_e.html) on 2024-02-16.
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5 MANN-KENDALL TEST RESULTS43
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Fig. S6. Results of the original Mann-Kendall test applied to the computed discharge variables (see Table 1 in

main text). Blue squares indicate a statistically-significant positive trend over time, while red squares indicate a

statistically-significant negative trend over time. Grey squares indicate no statistically-significant trend. Values

reported inside each square are the magnitude of the trend (for statistically-significant trends only), while the value

in brackets is the p-value.
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6 TRENDS IN THE 1980–2022 CLIMATE AND MASS BALANCE44

6.1 Seasonal temperature and accumulation45
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Fig. S7. Mean seasonal air temperature (top row) and seasonal accumulation (bottom row) computed from down-

scaled and bias-corrected North American Regional Reanalysis (NARR) data. p values represent the statistical

significance of the trend determined using the Modified Mann-Kendall test. Statistically significant trends (based

on a p value ď 0.05) are coloured blue, while non-statistically significant trends are grey. Values in brackets in each

panel are the magnitude of the trend, estimated using the Sen’s slope. Black dashed lines are a linear regression

through the data.
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6.2 Annual climate and mass-balance variables46
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Fig. S8. Annual climate and mass-balance trends. a) Mean annual air temperature, b) positive-degree days, c)

mean annual accumulation, d) mean annual rainfall, e) equilibrium line altitude, f) accumulation area ratio, g) winter

balance (Cogley and others, 2010), and h) summer balance (Cogley and others, 2010).
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6.3 Catchment-wide decadal discharge47

Glacier-ice melt

(km3 a´1)

Snowmelt

(km3 a´1)

Rainfall

(km3 a´1)

Refrozen snowmelt/

rain (km3 a´1)

Total discharge

(km3 a´1)

1980–1989 1.00 ˘ 0.32 0.56 ˘ 0.20 0.09 ˘ 0.004 0.04 ˘ 0.11 1.69 ˘ 0.64

1990–1999 1.09 ˘ 0.35 0.57 ˘ 0.21 0.10 ˘ 0.004 0.04 ˘ 0.11 1.80 ˘ 0.68

2000–2009 1.25 ˘ 0.39 0.61 ˘ 0.22 0.12 ˘ 0.004 0.04 ˘ 0.12 2.01˘ 0.74

2010–2019 1.27 ˘ 0.39 0.58 ˘ 0.21 0.14 ˘ 0.004 0.04 ˘ 0.11 2.02 ˘ 0.72

2020–2022 1.20 ˘ 0.38 0.64 ˘ 0.24 0.15 ˘ 0.006 0.05 ˘ 0.13 2.04 ˘ 0.76

1980–2022 1.15 ˘ 0.36 0.58 ˘ 0.21 0.11 ˘ 0.004 0.04 ˘ 0.11 1.89 ˘ 0.70

Table S1. Modelled annual catchment-wide discharge partitioned by source for the Kaskawulsh River headwaters.

Uncertainties reported are the standard deviations of the 100 simulations comprising the model.
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7 AVERAGE DECADAL DISCHARGE AND SMOOTHING APPROACH48

We estimate changes in the magnitude and timing of peak annual discharge by comparing decadally average49

hydrographs (Figure SS9). Daily discharge is averaged over a 10-year period and smoothed using a zero-50

phase-shift filter to reduce the noise from interannual variability. We explored a range of window sizes51

for filter to reduce noise in the data while still preserving the shape of the hydrograph. A window size of52

51 days smooths the data while preserving the magnitude and shape of the hydrographs for glacier ice,53

snow, refrozen ice, and total discharge, as assessed by eye. For rainfall, a window size of 91 days is used54

to achieve a similar smoothing (Figure SS9). The discharge curves shown in Figure SS9 are the same as55

those in Figure 6 of the main text.56
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Fig. S9. Catchment-wide daily discharge (m3 s´1) (thin solid lines) averaged over a) 1980–1990, b) 1990–2000, c)

2000–2010, and d) 2010–2020. Thick dashed lines are discharge timeseries smoothed using a zero-phase-shift filter

and a window size of 51 (91 for rain). Pie chart and percentages represent fractional contributions from each source

to total discharge. Dates printed in top right of each panel are the estimated date when Qgl.ice exceeds Qsnow (format

MM-DD). The discharge curves shown in here are the same as those in Figure 6 of the main text.
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8 EXTREME MASS-BALANCE YEARS AND THE SUBSEQUENT WATER57

BUDGETS58

8.1 Negative mass-balance years59

Fig. S10. Mass balance and water budgets corresponding to (a,c) 1988-1989 (one the most negative mass-balance

year between 1980–2022), and (b,d) the following year. (e) The distributed mass balance for the 1988-1989 hydro-

logical year (1 Oct–30 Sept), with the 1988-1989 modelled ELA (purple line) compared to the long-term modelled

ELA (cyan line).



Robinson and others: 16

Fig. S11. Mass balance and water budgets corresponding to (a,c) 2018-2019 (one the most negative mass-balance

year between 1980–2022), and (b,d) the following year. (e) The distributed mass balance for the 2018-2019 hydro-

logical year (1 Oct–30 Sept), with the 2018-2019 modelled ELA (purple line) compared to the long-term modelled

ELA (cyan line).
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8.2 Positive mass-balance years60

Fig. S12. Mass balance and water budgets corresponding to (a,c) 1991-1992 (one the most positive mass-balance

year between 1980–2022), and (b,d) the following year. (e) The distributed mass balance for the 1991-1992 hydro-

logical year (1 Oct–30 Sept), with the 1991-1992 modelled ELA (purple line) compared to the long-term modelled

ELA (cyan line).
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Fig. S13. Mass balance and water budgets corresponding to (a,c) 1999-2000 (one the most positive mass-balance

year between 1980–2022), and (b,d) the following year. (e) The distributed mass balance for the 1999-2000 hydro-

logical year (1 Oct–30 Sept), with the 1999-2000 modelled ELA (purple line) compared to the long-term modelled

ELA (cyan line).
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Fig. S14. Mass balance and water budgets corresponding to (a,c) 2011-2012 (one the most positive mass-balance

year between 1980–2022), and (b,d) the following year. (e) The distributed mass balance for the 2011-2012 hydro-

logical year (1 Oct–30 Sept), with the 2011-2012 modelled ELA (purple line) compared to the long-term modelled

ELA (cyan line).
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9 MODEL SENSITIVITY TO CLIMATE61
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Fig. S15. Relationships between modelled discharge from glacier ice melt (a–d) or snowmelt (e–h) and: (a,e)

winter balance, (b,f) winter accumulation (CDJF), (c,g) spring accumulation (CDJF), and (d,h) fall accumulation

(CDJF), fitted with a linear regression. ρ is the Spearman’s correlation coefficient, p is the p-value from Spearman’s

correlation test, and m is the slope of the linear regression (dashed line).
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Fig. S16. Relationships between modelled discharge from rainfall (a–d) or melt from refrozen snowmelt/rain (e–h)

and: (a,e) mass balance, (b,f) mean annual air temperature (Ta), (c,g) mean summer air temperature (TJJA), and

(d,h) total summer accumulation (CJJA), fitted with a linear regression. ρ is the Spearman’s correlation coefficient,

p is the p-value from Spearman’s correlation test, and m is the slope of the linear regression (dashed line).
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