Chapter 2
Application Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

= If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

= If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2025
J.F Kurose and K.W. Ross, All Rights Reserved

COMPUTER
NETWORKING

A TOP-DOWN A

oy

PPROACH

[\ A

KUROS

EMIR@SS

Computer Networking: A
Top-Down Approach

oth edition
Jim Kurose, Keith Ross
Pearson, 2025

Application Layer: 2-1

Application layer: overview

= video streaming and content

" Principles of network distribution networks
applications = socket programming with
= Web and HTTP UDP and TCP

" E-mail, SMTP, IMAP

" The Domain Name System
DNS

Application Layer: 2-2

Application layer: overview

Our goals: = |earn about protocols by
examining popular

= conceptual and application-layer protocols

implementation aspects of and infrastructure
application-layer protocols e HTTP
* transport-layer service * SMTP, IMAP
models * DNS
e client-server paradigm * video streaming systems, CDNs
" programming network

5 -to- di
peer-to-peer paradigm applications

 socket API

Application Layer: 2-3

Some network apps

" social media = voice over IP

= Web " real-time video conferencing
= text messaging (e.g., Zoom)

s e-mail " |[nternet search

= multi-user network games " remote login

= streaming stored video
(YouTube, Hulu, Netflix)

= P2P file sharing Q: your favorites?

Application Layer: 2-4

Creating a network app

application
write programs that: tdttw‘l’E

physical

" run on (different) end systems
" communicate over network

" e.g., web server software
communicates with browser software

no need to write software for
network-core devices

. application
=" network-core devices do not run user ranspor \
applications i lnk

; ranspo
| physical networ

data link
physical

= applications on end systems allows
for rapid app development,
propagation

Application Layer: 2-5

Client-server paradigm

server:
= always-on host
= permanent IP address

= often in data centers, for scaling

clients:
= contact, communicate with server
" may be intermittently connected
=" may have dynamic IP addresses
=" do not communicate directly with
each other 2

" examples: HTTP, IMAP, FTP

Application Layer: 2-6

Peer-peer architecture

" no always-on server

= arbitrary end systems directly
communicate

" peers request service from other
peers, provide service in return to
other peers

* self scalability — new peers bring new
service capacity, as well as new service
demands

= peers are intermittently connected
and change IP addresses
e complex management

= example: P2P file sharing [BitTorrent]

Application Layer: 2-7

Processes communicating

process: program running - clients, servers

within a host client process: process that

= withi host t initiates communication
within same host, tWo server process: process

Processes communicate that waits to be contacted
using inter-process
communication (defined by

OS) = note: applications with
L. P2P architectures have
" processes in different hosts client processes &
communicate by exchanging server processes

MeSSages

Application Layer: 2-8

Sockets

" process sends/receives messages to/from its socket
= socket analogous to door
* sending process shoves message out door

* sending process relies on transport infrastructure on other side of
door to deliver message to socket at receiving process

 two sockets involved: one on each side

application

application

controlled by
app developer

socket
\

controlled
by OS
==

>

Internet

A
v

Application Layer: 2-9

Addressing processes

" t0 receive messages, process = jdentifier includes both |IP address
must have identifier and port numbers associated with
= host device has unique 32-bit process on host.
IP address = example port numbers:
» Q: does IP address of host on * HTTP server: 80
which process runs suffice for * mail server: 25
identifying the process? " to send HTTP message to
= A: N0, Many processes gaia.cs.umass.edu web server:
can be running on * |IP address: 128.119.245.12
same host * port number: 80

=" more shortly...

Application Layer: 2-10

An application-layer protocol defines:

" types of messages exchanged, open protocols:
° e.g., request, response = defined in RFCs, everyone
= message syntax: has access to protocol
* what fields in messages & definition
how fields are delineated " allows for interoperability
" message semantics =e.g., HTTP, SMTP
* meaning of information in proprietary protocols:
fields
=e.g.,/oom

" rules for when and how
processes send & respond to
messages

Application Layer: 2-11

What transport service does an app need?

data integrity throughput

" some apps (e.g., file transfer, " some apps (e.g., multimedia)
web transactions) require require minimum amount of
100% reliable data transfer throughput to be “effective”

= other apps (e.g., audio) can = other apps (“elastic apps”)
tolerate some loss make use of whatever

throughput they get

timing

" some apps (e.g., Internet security
telephony, interactive games) = encryption, data integrity,

require low delay to be “effective”

Application Layer: 2-12

Transport service requirements: common apps

file transfer/download

application data loss throughput time sensitive?
no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

streaming audio/video
Interactive games
text messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5Kbps-1Mbps
video:10Kbps-5Mbps
same as above
Kbps+

elastic

ves, 10’s msec

yes, few secs
ves, 10’s msec
yes and no

Application Layer: 2-13

Internet transport protocols services

TCP service: UDP service:
 reliable transport between sending " ynreliable data transfer

and receiving process between sending and receiving
= flow control: sender won’t Process

overwhelm receiver " does not provide: reliability,

flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Q: why bother? Why
is there a UDP?

® congestion control: throttle sender
when network overloaded

" connection-oriented: setup required
between client and server processes

" does not provide: timing, minimum
throughput guarantee, security

Application Layer: 2-14

Internet applications, and transport protocols

file transfer/download

Internet telephony

streaming audio/video

application

application layer protocol transport protocol
FTP [RFC 959] TCP
e-mail SMTP [RFC 5321] TCP
Web documents HTTP [RFC 7230, 9110] TCP
SIP [RFC 3261], RTP [RFC TCP or UDP

3550], or proprietary
HTTP [RFC 7230], DASH TCP
interactive games WOW, FPS (proprietary) UDP or TCP

Application Layer: 2-15

Securing TCP

Vanilla TCP & UDP sockets:

" No encryption
= cleartext passwords sent into socket
traverse Internet in cleartext (!)
Transport Layer Security (TLS)
" provides encrypted TCP connections
= data integrity
" end-point authentication

TLS implemented in

application layer

= apps use TLS libraries, that
use TCP in turn

= cleartext sent into “socket”
traverse Internet encrypted

=" more: Chapter 8

Application Layer: 2-16

Application layer: overview

= \Web and HTTP

Application Layer: 2-17

Web and HTTP

First, a quick review...

" web page consists of objects, each of which can be stored on
different Web servers

" object can be HTML file, JPEG image, Java applet, audio file,...

" web page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www . someschool.edu/someDept/pic.gif

— ———

host name path name

Application Layer: 2-18

HTTP overview

HTTP: hypertext transfer protocol -
= Web’s application-layer protocol

: R &rr,
= client/server model: oC run‘{{n&
. - H
e client: browser that requests, Firefox browser 777752

-S‘,o 0’73@

receives, (using HTTP protocol) and
“displays” Web objects
e server: Web server sends (using

HTTP protocol) objects in response
to requests

0056 server running
5 @ Apache Web
server

iPhone running
Safari browser

Application Layer: 2-19

HTTP overview (continued)

HTTP uses TCP: HTTP is “stateless”
= client initiates TCP connection " server maintains no

(creates socket) to server, port 80 information about past client
= server accepts TCP connection requests |

from client aside

protocols that maintain
“state” are complex!

= past history (state) must be

" HTTP messages (application-layer
protocol messages) exchanged
between browser (HTTP client) and aintained
Web server (HTTP server) = if server/client crashes, their

= TCP connection closed views of “state” may be
inconsistent, must be reconciled

Application Layer: 2-20

HTTP connections: two types

Non-persistent HTTP
1. TCP connection opened

2. at most one object sent
over TCP connection

3. TCP connection closed

downloading multiple
objects required multiple
connections

Persistent HT TP

= TCP connection opened to
a server

" multiple objects can be
sent over single TCP

connection between client,
and that server

=" TCP connection closed

Application Layer: 2-21

Non-persistent HTTP: example

User enters URL: www.someSchool.edu/someDepartment/home. index
(containing text, references to 10 jpeg images)

g
&> la. HTTP client initiates TCP ﬁ
connection to HTTP server \ 1b. HTTP server at host
uon www.someSchool.edu waiting for TCP

(process) at www.someSchool.ed
port 80 connection at port 80 “accepts”
_ connection, notifying client
2. HTTP client sends HTTP

request message (containing
URL) into TCP connection 3. HTTP server receives request message,

socket. Message indicates forms response message containing

that client wants object / requested object, and sends message

someDepartment/home.index into its socket

Application Layer: 2-22

Non-persistent HTTP: example (cont.)

User enters URL: www.someSchool.edu/someDepartment/home. index
(containing text, references to 10 jpeg images)
: V{

.

ﬁ 4. HTTP server closes TCP
5. HTTP client receives response / connection.

message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

Application Layer: 2-23

Non-persistent HTTP: response time

RTT (definition): time for a small N
packet to travel from client to _ i
initiate TCP
server and back connection 7

RTTX

request file — /

= one RTT to initiate TCP connection r |
= one RTT for HTTP request and first few RTTX y time to
transmit
bytes of HTTP response to return \ file
file received —%

= object/file transmission time

HTTP response time (per object):

v v

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Application Layer: 2-24

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues: Persistent HTTP (HTTP1.1):
" requires 2 RTTs per object = server leaves connection open after
= OS overhead for each TCP sending response
connection " subsequent HTTP messages

between same client/server sent

" browsers often open multiple .
over open connection

parallel TCP connections to
fetch referenced objects in = client sends requests as soon as it
parallel encounters a referenced object

" 3s little as one RTT for all the
referenced objects (cutting
response time in half)

Application Layer: 2-25

HTTP request message

" two types of HTTP messages: request, response

= HTTP request message:

e ASCIl (human-readable format)
carriage return character

request line (GET, POST, line-feed character

HEAD commands)

A 4

carriage return, line feed —
at start of line indicates

end of header lines * Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-26

HTTP request message: general format

cr| If

~ entity body

)
(¢

method |Sp URL sp| version |cr| If
header field name value |cr| If
header field name value |cr| If

request
line

header
lines

body

Application Layer: 2-27

Other HTTP request messages

POST method: HEAD method:

= web page often includes form = requests headers (only) that
input would be returned if specified

= yser input sent from client to URL were requested with an
server in entity body of HTTP HTTP GET method.

POST request message

PUT method:
= uploads new file (object) to server
= completely replaces file that exists

GET method (for sending data to server):

" include user data in URL field of HTTP at specified URL with content in
GET request message (following a ?’): entity body of POST HTTP request
message

www.somesite.com/animalsearch?monkeysé&banana

Application Layer: 2-28

HTTP response message

status line (protocol > HTTP/1.1 200 OK
status code status phrase)

Application Layer: 2-29

HTTP response status codes

= status code appears in 1st line in server-to-client response message.
= some sample codes:

200 OK

* request succeeded, requested object later in this message

301 Moved Permanently

* requested object moved, new location specified later in this message (in
Location: field)

400 Bad Request
* request msg not understood by server

404 Not Found

* requested document not found on this server

505 HTTP Version Not Supported

Application Layer: 2-30

Trying out HTTP (client side) for yourself

1. netcat to your favorite Web server:

= opens TCP connection to port 80 (default HTTP

% nc -c -v gaia.cs.umass.edu 80 (for Mac) _
server port) at gaia.cs.umass.edu.

>ncat —C gaia.cs.umass.edu 80 (for Windows) anything typed in will be sent to port 80 at

gaia.cs.umass.edu

2. type in a GET HTTP request:

GET /kurose ross/interactive/index.php HTTP/1.1

Host: gala.cs.umass.edu = by typing this in (hit carriage return twice), you

send this minimal (but complete) GET request to
HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Application Layer: 2-31

Maintaining user/server state: cookies

a stateful protocol: client makes

Reca”: HTTP GET/reSponse two changes to X, or none at all
interaction is stateless g
" no notion of multi-step exchanges of -

HTTP messages to complete a Web
“transaction”

* no need for client/server to track
“state” of multi-step exchange

e all HTTP requests are independent of
each other

* no need for client/server to “recover”
from a partially-completed-but-never- v |
completely-completed transaction

Tee e A

Q: what happens if network connection or

client crashes at t’ ?
Application Layer: 2-32

Maintaining user/server state: cookies

Web sites and client browser use
cookies to maintain some state
between transactions

four components:

1) cookie header line of HTTP response
message

2) cookie header line in next HTTP
request message

3) cookie file kept on user’ s host,
managed by user’ s browser

4) back-end database at Web site

Example:

= Susan uses browser on laptop,
visits specific e-commerce site
for first time

= when initial HTTP requests
arrives at site, site creates:

* unique ID (aka “cookie”)

* entry in backend database
for ID

e subsequent HTTP requests
from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Application Layer: 2-33

Maintaining user/server state: cookies

client /w

ebay 8734

cookie file

ebay 8734

amazon 1678

E Amazon server

e —

usual HTTP request msg

usual HTTP response
set-cookie: 1678

- —

usual HTTP request msg

cookie: 1678

one week later:

ebay 8734
amazon 1678

—

usual HTTP response msg
usual HTTP request msg
cookie: 1678 L

usual HTTP response msg

Amazon server
creates ID
1678 for user

cookie-
specific
action

cookie-
specific
action

create
entry __ database

daccess
—

access

e

backend

Application Layer: 2-34

HTTP cookies: comments

What cookies can be used for:

= authorization

" shopping carts

" recommendations

= user session state (Web e-mail)

Challenge: How to keep state?

" gt protocol endpoints: maintain state at
sender/receiver over multiple
transactions

" jn messages: cookies in HTTP messages
carry state

cookies and privacy:

= cookies permit sites to
learn a lot about you on

their site.

= third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple

web sites

aside —

Application Layer: 2-35

Example: displaying a NY Times web page

GET base html file
from nytimes.com

(1) fetch ad from nytimes.com
© AdX.com |
HTTP HTTP
(7) display composed GET 1) € reply
page !

Q0

NY times page with
embedded ad displayed

Cookies: tracking a user’s browsing behavior

nytlmeS.com (sports)

a

“first party” cookie —
from website you chose
to visit (provides base

HTTP | | HTTP -
GET reply htmlf//e)

Set cookie: 1634

&
« /5\ 7493: NY Times sports, 2/15/22
“third party” cookie — HTTP reply
from website you did not NY Times: 1534 Set cookie: 7493 AdX com

choose to visit AdX: 74193

Cookies: tracking a user’s browsing behavior

AdX.com ad
§ will go here

AdX:

" tracks my web browsing
over sites with AdX ads

" can return targeted ads
based on browsing history

HTTP GET
Referrer: socks.com, cookie: 7493

@ ' —
i
) 7\ \ 7493: NY Times sports, 2/15/22
) - I 7493:socks.com, 2/16/22
HTTP reply
' - 16 Set cookie: 7493
imes: 1634 Adx.com

Cookies: tracking a user’s browsing behavior (one day later)

a

HTTP HTTP
GET reply
cookie: 1634 Set cookie: 1634

HTTP GET
Referrer: nytimes.com, cookie: 749

) 7N\ 7493: NY Times sports, 2/15/22

) S 7493:socks.com, 2/16/22

HTTP reply | 7493;NY Times arts, 2/15/22
NY [Times: 1634 Set cookie: 7493 AdX com

Cookies: tracking a user’s browsing behavior

Cookies can be used to:
" track user behavior on a given website (first party cookies)

" track user behavior across multiple websites (third party cookies)
without user ever choosing to visit tracker site (!)

= tracking may be invisible to user:

* rather than displayed ad triggering HTTP GET to tracker, could be an invisible
link

third party tracking via cookies:
= disabled by default in Firefox, Safari browsers
= to be disabled in Chrome browser in 2023

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online
identifiers [...] such as internet protocol addresses,
cookie identifiers or other identifiers [...].

This may leave traces which, in particular when
combined with unique identifiers and other
information received by the servers, may be used to
create profiles of the natural persons and identify
them.”

GDPR, recital 30 (May 2018)

v

when cookies can identify an individual, cookies
are considered personal data, subject to GDPR
personal data regulations

Institut national de recherche en sciences et technologies du
numérique

User has explicit control over
whether or not cookies are
allowed

Web caches
Goal: satisfy client requests without involving origin server

" user configures browser to
point to a (local) Web cache

" browser sends all HTTP
requests to cache

* jf object in cache: cache
returns object to client

* else cache requests object
from origin server, caches
received object, then
returns object to client

origin
server

client

Application Layer: 2-42

Web caches (aka proxy servers)

= \Web cache acts as both

client and

server

e server for original

requesti

ng client

* client to origin server

= server tel
object’s a

s cache about
lowable caching in

response

neader:

Cache-Control: max-age=<seconds>

Cache-Control: no-cache

Why Web caching?

" reduce response time for client
request
e cache is closer to client

= reduce traffic on an institution’s
access link

" |Internet is dense with caches

* enables “poor” content providers
to more effectively deliver content

Application Layer: 2-43

Caching example

Scenario:

0 accesslinl.<rat.e: 1..54Mbps E Eﬂ Eﬂ origin

RTT from institutional router to server: 2 sec Servers
= web object size: 100K bits public

o Internet
= average request rate from browsers to origin ﬁ

servers: 15/sec @

= avg data rate to browsers: 1.50 Mbps .

,N 1.54 Mbps
Performance: /| access link

i ih 1 ‘ r l : |ar utilization 1 i i i
= access link utilization qu uein“ eglaeys Inrs]’g’iutg)rrllal A~
1 Gbps LAN

= LAN utilization: .0015 at high utilization!
= end-end delay = Internet delay + 3

. —e S
access link delay + LAN delay T
= 2secC ++ usecs

|
= |

Application Layer: 2-44

Option 1: buy a faster access link

Scenario: 154 Mbps

= access link rate: Mbps

= RTT from institutional router to server: 2 sec
= web object size: 100K bits

= average request rate from browsers to origin
servers: 15/sec

= avg data rate to browsers: 1.50 Mbps

Performance:
= access link utilization = =—.0097
= | AN utilization: .0015

= end-end delay = Internet delay +
access link delay + LAN delay

= 2sec+ + usecs
Cost: faster access link (expensivel) msecs

g o

Eﬂ Eﬂ origin

servers
public

Internet ﬁ
; 154 Mbps

754 Mbps

access link

institutional

network 1 Gbps LAN

Application Layer: 2-45

Option 2: install a web cache

Scenario:

= access link rate: 1.54 Mbps
= RTT from institutional router to server: 2 sec
= web object size: 100K bits

= average request rate from browsers to origin
servers: 15/sec

= avg data rate to browsers: 1.50 Mbps

Cost: web cache (cheap!)

Performance:

= LAN utilization: .? How to compute link
= access link utilization=? utilization, delay?

= average end-end delay =7

g dHE .

servers
public
Internet ﬁ
1.54 Mbps
access link
institutional
network

local web cache

Application Layer: 2-46

Calculating access link utilization, end-end delay
with cache:

suppose cache hit rate is 0.4:

= 40% requests served by cache, with low ﬁ Eﬂ Eﬂ origin

(msec) delay Eﬂ e SCTVers
" 60% requests satisfied at origin Internet ﬁ

* rate to browsers over access link @

=0.6 * 1.50 Mbps = .9 Mbps
 access link utilization = 0.9/1.54 = .58 means ;itxblﬁfk
low (msec) queueing delay at access link

institutional (g

= average end-end delay: network 4 Gbps LAN

B ” .

= 0.6 * (delay from origin ser\./elfs) g g g}
+ 0.4 * (delay when satisfied at cache) <& - S

=0.6(2.01) + 0.4 (™msecs) =~ 1.2 secs local web cache

lower average end-end delay than with 154 Mbps link (and cheaper too!)

Application Layer: 2-47

server

Browser caching: Conditional GET
client g
Goal: don’t send object if browser
has up-to-date cached version S i SR I
* no object transmission delay (or use not

—— modified
of network resources) HTTP response before
. . “ HTTP/1.0
= client: specify date of browser- 304 Not Modified <date>
cached copy in HTTP request
If-modified-since: <date>
" server: response contains no] HTTPrequestmsg |
. . . If-modified-since: <date> . object
object if browser-cached copy is modified
u p-tO-d ate: HTTP response — after
g - HTTP/1.0 200 OK <date>
HTTP/1.0 304 Not Modified /

<data>

Application Layer: 2-48

HTTP/2

Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection

= server responds in-order (FCFS: first-come-first-served scheduling) to
GET requests

= with FCFS, small object may have to wait for transmission (head-of-
line (HOL) blocking) behind large object(s)

" loss recovery (retransmitting lost TCP segments) stalls object
transmission

Application Layer: 2-49

HTTP/2

Key goal: decreased delay in multi-object HTTP requests

HTTP/2: [rec 7540, 2015] increased flexibility at server in sending
objects to client:

" methods, status codes, most header fields unchanged from HTTP 1.1

" transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

" push unrequested objects to client
= divide objects into frames, schedule frames to mitigate HOL blocking

Application Layer: 2-50

HTTP/2: mitigating HOL blocking

HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
ObjeCtS server

GETO, GETO
g 3 GET 02 GET 01

client

object data requested

-

fa
2

A A A I
A
\\\

0O
U3n
Yz

objects delivered in order requested: O,, O;, O, wait behind O,

Application Layer: 2-51

HTTP/2: mitigating HOL blocking

HTTP/2: objects divided into frames, frame transmission interleaved

server

g 3 GET 02 GET 01
client

{

object data requested

N

/1N
oNeoNe
H W

4
|£3
A

0,, O;, O, delivered quickly, O;slightly delayed

Application Layer: 2-52

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:

= recovery from packet loss still stalls all object transmissions

* asin HTTP 1.1, browsers have incentive to open multiple parallel
TCP connections to reduce stalling, increase overall throughput

" no security over vanilla TCP connection

= HTTP/3: adds security, per object error- and congestion-
control (more pipelining) over UDP

Application Layer: 2-53

QUIC: Quick UDP Internet Connections

" application-layer protocol, on top of UDP

* increase performance of HTTP
* deployed on many Google servers, apps (Chrome, mobile YouTube app)

Application

Network

HTTP/2 over TCP

Application Layer: 2-54

QUIC: Quick UDP Internet Connections

adopts approaches we’ll study in chapter for connection
establishment, error control, congestion control

* error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QuIC specification]

* connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

Application Layer: 2-55

QUIC: Connection establishment

B/
N

TCP handshake \
(transport layer) <
TLS handshake

(security) /

\
data —

TCP (reliability, congestion control
state) + TLS (authentication, crypto
state)

=) serial handshakes

<

QUIC \
1RTT handshake /

QUIC: reliability, congestion control,

authentication, crypto state

= 1 handshake

Application Layer: 2-56

QUIC: O-RTT Connection establishment

Client uses last session
ticket for encryption,
authentication for new

TLS session ticket

sent by server,
cached at client

end of first QUIC

connection

start of second

QUIC connection

connection
=" 0 RTT handshake delay

[j — data

Application Layer: 2-57

Application layer: overview

" E-mail, SMTP, IMAP

Application Layer: 2-58

E-mail

agent

Three major components: R

" yser agents ~

" mail servers ooooo] SMTPES —

" simple mail transfer protocol: SMTP SI\/TITP SEIVED

User Agent L__ >

" a.k.a. “mail reader” Elq

= composing, editing, reading mail messages 100000 ageq

me.g., Outlook, iPhone mail client @

" outgoing, incoming messages stored on e Z:tgfj"etge
>erver [user mailbox

Application Layer: 2-59

E-mail: mail servers

mail servers:

" mailbox contains incoming
messages for user

" message queue of outgoing (to be
sent) mail messages

SMTP protocol between mail
servers to send email messages

= client: sending mail server
= “server”: receiving mail server

gSsage queue
r mailbox

Application Layer: 2-60

SMTP RFC (5321) SMTP server SMITP server

= yses TCP to reliably transfer email message o 5
from client (mail server initiating e T
connection) to server, port 25 RTT{ >

= direct transfer: sending server (acting like client) iTnCiE;toeré”eCtion L
to receiving server \
= three phases of transfer // 220 —
 SMTP handshaking (greeting) handshzl\lfizg T HELO .
e SMTP transfer of messages 550 Hello -
* SMTP closure b
= command/response interaction (like HTTP) SMTP
e commands: ASCII text transfers)
* response: status code and phrase __time !

Application Layer: 2-61

Scenario: Alice sends e-mail to Bob

1) Alice uses UA to compose e-mail 4) SMTP client sends Alice’s message
message “to” bob@someschool.edu over the TCP connection
2) Alice’s UA sends message to her 5) Bob’s mail server places
mail server using SMTP; message the message in Bob’s
placed in message queue mailbox
3) client side of SMTP at mail server 6) Bob invokes his user
opens TCP connection with Bob’s mail agent to read message
server
! mail
server
men
00000 @ /@/

Alice’s mail server Bob’s mail server
Application Layer: 2-62

Sample SMTP interaction

S: 220 hamburger.edu

Application Layer: 2-63

SMTP: observations

comparison with HTTP:

HTTP: client pull
SMTP: client push

both have ASCIl command/response
interaction, status codes

HTTP: each object encapsulated in its
OWh response message

SMTP: multiple objects sent in
multipart message

= SMTP uses persistent
connections

= SMTP requires message
(header & body) to be in
7-bit ASCI|

" SMTP server uses
CRLF.CRLF to determine
end of message

Application Layer: 2-64

Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321
(like RFC 7231 defines HTTP)

RFC 2822 defines syntax for e-mail message itself (like HTML defines
syntax for web documents)

e To: blank
0.) line

* From:

e Subject:

these lines, within the body of the email

message area different fro ROM;,
RCPT TO: S!

= Body: the “message” , ASCII characters only

Application Layer: 2-65

Retrieving email: mail access protocols

SMTP

user
agent

SMTP

00000

e-mail access

protocol

00000

(e.g., IMAP,
HTTP)

sender’ s e-mail receiver’ s e-mail

server

server

user!
» |agent
g, > (%)

= SMTP: delivery/storage of e-mail messages to receiver’s server

" mail access protocol: retrieval from server

* IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP
provides retrieval, deletion, folders of stored messages on server

= HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: 2-66

Application Layer: Overview

" The Domain Name System
DNS

Application Layer: 2-67

DNS: Domain Name System

people: many identifiers: Domain Name System (DNS):
* SSN, name, passport # = distributed database implemented in
Internet hosts, routers: hierarchy of many name servers
* IP address (32 bit) - used for = gpplication-layer protocol: hosts, DNS
addressing datagrams servers communicate to resolve
* “name”, e.g., cs.umass.edu - names (address/name translation)

used by humans _
e note: core Internet function,

implemented as application-layer
protocol

Q: how to map between IP
address and name, and vice

versa ? . o, ;
* complexity at network’s “edge

Application Layer: 2-68

DNS: services, structure

DNS services: Q: Why not centralize DNS?
=" hostname-to-IP-address translation " single point of failure

= traffic volume

= distant centralized database
" maintenance

= host aliasing
e canonical, alias names

" mail server aliasing

= |oad distribution A: doesn‘t scale!
* replicated Web servers: many IP = Comcast DNS servers alone:
addresses correspond to one 600B DNS queries/day
name = Akamai DNS servers alone:

2.2T DNS queries/day

Application Layer: 2-69

Thinking about the DNS

humongous distributed database:
= ~ billion records, each simple

handles many trillions of queries/day:
" many more reads than writes

" performance matters: almost every
Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:

" millions of different organizations
responsible for their records

“bulletproof”: reliability, security

Application Layer: 2-70

DNS: a distributed, hierarchical database

Root DNS Servers Root
.com DNS servers .org DNS servers .eyNS s&rs Top Level Domain
yahoo.com amazon.com pbs.org nyu.edu umass.edu Authoritati
DNS servers DNS servers DNS servers DNS servers DNS servers uthoritative

Client wants IP address for www.amazon.com; 15t approximation:
= client queries root server to find .com DNS server
= client queries .com DNS server to get amazon.com DNS server

= client queries amazon.com DNS server to get IP address for www.amazon.com

Application Layer: 2-71

DNS: root name servers

= official, contact-of-last-resort by Root DNS Servers
name servers that can not / \
resolve name .com DNS servers .org DNS servers .eyNS s&rs
yahoo.com amazon.com pbs.org nyu.edu umass.edu

DNS servers DNS servers DNS servers DNS servers DNS servers

Application Layer: 2-72

DNS: root name servers

= official, contact-of-last-resort by name
servers that can not resolve name

" jncredibly important Internet function
* |nternet couldn’t function without it!

 DNSSEC — provides security
(authentication, message integrity)

306
39

376 204 65

90
125

31

= [CANN (Internet Corporation for
Assigned Names and Numbers)
manages root DNS domain

= |[CANN (Internet Corporation for
Assigned Names and Numbers)

manages root DNS domain

13 logical root name “servers”
worldwide; each “server,” replicated

many times
Application Layer: 2-73

Top-Level Domain, and authoritative servers

Top-Level Domain (TLD) servers:

= responsible for .com, .org,\net, .edu, .aero, .jobs, .museums, and all top-level
country domains, e.g.: .cn, .uk, .fr, .ca, .jp

= Network Solutions: authoritative registry for .com, .net TLD

= Educause: .edu TLD

Root DNS Servers

P

.com DNS servers .org DNS servers .edu DNS servers
yahoo.com amazon.com pbs.org nyu.edu umass.edu
DNS servers DNS servers DNS servers DNS servers DNS servers

authoritative DNS servers:

= organization’s own DNS server(s), providing authoritative hostname to IP
mappings for organization’s named hosts

= can be maintained by organization or service provider

Application Layer: 2-74

Local DNS name servers

= when host makes DNS query, it is sent to its local DNS server

* Local DNS server returns reply, answering:

* from its local cache of recent name-to-address translation pairs (possibly out
of date!)

e forwarding request into DNS hierarchy for resolution

e each ISP has local DNS name server; to find yours:
* MacOS: % scutil --dns
* Windows: >ipconfig /all

= |ocal DNS server doesn’t strictly belong to hierarchy

Application Layer: 2-75

DNS name resolution: iterated query

root DNS server
Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu , |
A
Iterated query: - i - P
= contacted server replies g\,/ T g

Wlth name Of server to requesting host at local DNS server
contact engineering.nyu.edu dns.nyu.edu

= ‘I don’t know this name, AT -
but ask this server” 1

authoritative DNS server
dns.cs.umass.edu

Application Layer: 2-76

DNS name resolution: recursive query

root DNS server
Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu /l \

Recursive query: g

= puts burden of name

i TLD DNS server

N S 8

resolution on requesting host at local DNS server 5 ‘ l4
con taC te d name engineering.nyu.edu dns.nyu.edu gaia.cs.umass.edu
server = \

. heavy load at upper authoritative DNS server
levels of hierarchy? dns.cs.umass.edu

Application Layer: 2-77

Caching DNS Information

" once (any) name server learns mapping, it caches mapping,
and immediately returns a cached mapping in response to a
query

e caching improves response time
 cache entries timeout (disappear) after some time (TTL)
* TLD servers typically cached in local name servers

" cached entries may be out-of-date

* if named host changes IP address, may not be known Internet-
wide until all TTLs expire!

e best-effort name-to-address translation!

Application Layer: 2-78

DNS records

DNS: distributed database storing resource records (RR)
RR format: (name, value, type, ttl)

type=A type=CNAME
" name is hostname = name is alias name for some “canonical”
* valueis IP address (the real) name
= www.ibm.com is really servereast.backup2.ibm.com
type=NS " value iscanonical name

" name is domain (e.g., foo.com)

= yvalue is hostname of
authoritative name server for
this domain

type=MX
= value is name of SMTP mail
server associated with name

Application Layer: 2-79

DNS protocol messages

DNS query and reply messages, both have same format:

«—— 2Dbytes ——><+—— 2bytes ——>

- —identification | __—flags

message header:

= identification: 16 bit # for quer —# questions # answer RRs
reply to query us e# # authority RRs | # additional RRs
= flags:

questions (variable # of questions)

e query or reply

e recursion desired

* recursion available

* reply is authoritative

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

Application Layer: 2-80

DNS protocol messages

DNS query and reply messages, both have same format:

+«—— 2bytes ——><4+—— 2 bytes —

identification flags

questions # answer RRs

authority RRs | # additional RRs

name, type fields for a query questions (variable # of questions)
RRs in response to query answers (variable # of RRs)
records for authoritative servers authority (variable # of RRs)

additional “ helpful” info that may
be used

additional info (variable # of RRs)

Application Layer: 2-81

Getting your info into the DNS

example: new startup “Network Utopia”

" register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)

e provide names, IP addresses of authoritative name server (primary and
secondary)

* registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

" create authoritative server locally with IP address 212.212.212.1
* type A record for www.networkuptopia.com
* type MX record for networkutopia.com

Application Layer: 2-82

DNS security

DDoS attacks Spoofing attacks

= bombard root servers with " intercept DNS queries,
traffic returning bogus replies
* not successful to date " DNS cache poisoning
e traffic filtering " RFC 4033: DNSSEC

authentication services
* local DNS servers cache IPs of TLD

servers, allowing root server
bypass

" bombard TLD servers
e potentially more dangerous

Application Layer: 2-83

Application layer: overview

" video streaming and content
distribution networks

Application Layer: 2-84

Video Streaming and CDNs: context

" stream video traffic: major

consumer of Internet bandwidth

* Netflix, YouTube, Amazon Prime: 80% of
residential ISP traffic (2020)

® challenge: scale - how to reach

~1B users?
= challenge: heterogeneity NETFLIY EORar

— R EENER—

= different users have different capabilities (e.g., wired
versus mobile; bandwidth rich versus bandwidth poor) \. A/
= solution: distributed, application-level infrastructure Ygu

Application Layer: 2-85

Multimedia: video

" video: sequence of images
displayed at constant rate

* e.g., 24 images/sec
= digital image: array of pixels
* each pixel represented by bits

= coding: use redundancy within and
between images to decrease # bits

used to encode image

e spatial (within image)

e temporal (from one image to
next)

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

frame i

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

frame j+1

Application Layer: 2-86

Multimedia: video

= CBR: (constant bit rate): video
encoding rate fixed

= VBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

= examples:
e MPEG 1 (CD-ROM) 1.5 Mbps
e MPEG2 (DVD) 3-6 Mbps

 MPEG4 (often used in
Internet, 64Kbps— 12 Mbps)

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

frame i

temporal coding example:
instead of sending
complete frame at i+1,

send only differences from .
frame i frame I+1

Application Layer: 2-87

Streaming stored video

simple scenario:

Internet

client

video server
(stored video)

Main challenges:

= server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, access network, network core, video
server)

= packet loss, delay due to congestion will delay playout, or result in
poor video quality

Application Layer: 2-88

Streaming stored video

Cumulative data

2. video :
, sent . . .
1. v@\ / — 3. video received, played out at client
recorded 7/ (30 frames/sec)

»

(e-g, 30 o e) network delay o time
frames/sec) @ w0 in this ’
example)

. streaming: at this time, client playing out
. early part of video, while server still sending
: later part of video

Application Layer: 2-89

Streaming stored video: challenges

® continuous playout constraint: during client
video playout, playout timing must match
original timing

e ... but network delays are variable (jitter), so will
need client-side buffer to match continuous playout
constraint

= other challenges:

e client interactivity: pause, fast-forward, rewind,
jump through video

* video packets may be lost, retransmitted

Application Layer: 2-90

Streaming stored video: playout buffering

— constant bit — —

4 : .

s ratevideo [clientvideo [[~ constantbit
S transmission | rate video

S) 1 playout at client
m .

s < Jvariable T
S s e ——network —— @l
& ‘f o delay Pl T
> < 1 === 4 34
S e T KOS /2 K
>

1 T [P o

. tO
:Cllent pIayou;c at ty, 6 chunks have arrived, 2 chunks have
delay been played out, so the buffer has 4 chunks

m client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Application Layer: 2-91

. . . Dynamic, Adaptive
Streaming multimedia: DASH ¢eomine over HTTp

server.
= divides video file into multiple chunks o
. . === 0':)’5:‘3:-!/4/
= each chunk encoded at multiple different rates =~ ®==- E"—w

,.:.):?'17?-./4}
= different rate encodings stored in different files ’fﬁw i? E Q

= files replicated in various CDN nodes |
= manifest file: provides URLs for different chunks »)fi'g

client:
= periodically estimates server-to-client bandwidth
= consulting manifest, requests one chunk at a time
* chooses maximum coding rate sustainable given current bandwidth

* can choose different coding rates at different points in time (depending
on available bandwidth at time), and from different servers

Application Layer: 2-92

Streaming multimedia: DASH

" “intelligence” at client: client

determines O==.
0= eE. 2R
* when to request chunk (so that buffer — = N
|

* what encoding rate to request (higher
guality when more bandwidth
available)

* where to request chunk (can request

from URL server that is “close” to

client or has high available
bandwidth)

) == ,
starvation, or overflow does not occur) E —0B [

client

Streaming video = encoding + DASH + playout buffering

Application Layer: 2-93

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

" option 1: single, large “mega-
server”
* single point of failure
* point of network congestion

* long (and possibly congested)
path to distant clients

....quite simply: this solution doesn’t scale

Application Layer: 2-94

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

= option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

* enter deep: push CDN servers deep into many access networks
* close to users

e Akamai: 240,000 servers deployed (,;
in > 120 countries (2015)

e bring home: smaller number (10’s) of
larger clusters in POPs near access nets L] leellght

* used by Limelight NETWORKS

Application Layer: 2-95

Akamai today:

The Akamai Edge Today

aza. . trillion terabits per
servers million hits s s s
per second (250+ peak)
per day

locations | | networks cities countries

Source: https://networkingchannel.eu/living-on-the-edge-for-a-quarter-century-an-akamai-retrospective-downloads/

Transport Layer: 3-96

How does Netflix work?

= Netflix: stores copies of content (e.g., MADMEN) at its
(worldwide) OpenConnect CDN nodes

" subscriber requests content, service provider returns manifest
* using manifest, client retrieves content at highest supportable rate

* may choose different rate or copy if network path congested

ME
=\
)

|

e
i
where’s Maumen’

-9

=N\
—

Application Layer: 2-97

Content distribution networks (CDNs)

P rg

| OTT: “overithe top!’ W

g F pF , F

Internet host-host communication as a service

OTT challenges: coping with a congested Internet from the “edge”
= what content to place in which CDN node?
= from which CDN node to retrieve content? At which rate?

Application Layer: 2-98

Application Layer: Overview

" socket programming with
UDP and TCP

Application Layer: 2-99

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

application

application

controlled by
app developer

socket
\

controlled

Internet

v

Application Layer: 2-100

Socket programming

Two socket types for two transport services:
"= UDP: unreliable datagram
" TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends
data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
a. client receives modified data and displays line on its screen

Application Layer: 2-101

Socket programming with UDP

UDP: no “connection” between
client and server:
" no handshaking before sending data

= sender explicitly attaches IP destination
address and port # to each packet

= recejver extracts sender IP address and
port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
= UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server processes

Application Layer: 2-102

Client/server socket interaction: UDP

] w
Server (running on serverlP) client *’fg,/

()

create socket:
clientSocket =

serverSocket = socket(AF_INET,SOCK_DGRAM)
socket(AF_INET,SOCK_DGRAM)

create socket, port= x:

Create datagram with serverlP address

l / And port=x; send datagram via
read datagram from clientSocket

serverSocket
write reply to —
serverSocket — read datagram from
specifying clientSocket
client address, 1
port number close

clientSocket

Application Layer: 2-103

Example app: UDP client

Python UDPClient

include Python’s socket library —> from socket import *

serverName = 'hostname'

serverPort = 12000

create UDP socket — clientSocket = socket(AF _INET,
SOCK_DGRAM)

get user keyboard input —> message = input('Input lowercase sentence:')
attach server name, port to message; send into socket — clientSocket.sendto(message.encode(),
(serverName, serverPort))
read reply data (bytes) from socket — modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)
print out received string and close socket — print(modifiedMessage.decode())
clientSocket.close()

Note: this code update (2023) to Python 3 Application Layer: 2-104

Example app: UDP server

Python UDPServer

from socket import *
serverPort = 12000
create UDP socket —» serverSocket = socket(AF _INET, SOCK DGRAM)
bind socket to local port number 12000 —> serverSocket.bind((", serverPort))
print('The server is ready to receive')

loop forever — While True:
Read from UDP socket into message, getting —> message, clientAddress = serverSocket.recvfrom(2048)
client's address (client IP and port) modifiedMessage = message.decode().upper()
send upper case string back to this client —> serverSocket.sendto(modifiedMessage.encode(),
clientAddress)

Note: this code update (2023) to Python 3 Application Layer: 2-105

Socket programming with TCP

Client must contact server

= server process must first be
running

= server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:

= Creating TCP socket, specifying IP
address, port number of server
process

= when client creates socket: client
TCP establishes connection to
server TCP

= when contacted by client, server
TCP creates new socket for server
process to communicate with that

particular client

 allows server to talk with multiple
clients

* client source port # and IP address used
to distinguish clients (more in Chap 3)

— Application viewpoint
TCP provides reliable, in-order
byte-stream transfer (“pipe”)

between client and server
processes

Application Layer: 2-106

Client/server socket interaction: TCP

) w
SErVer (running on hostid) client .
D

create socket,
port=x, for incoming
request:
serverSocket = socket()
wait for incoming TCP create socket,

connection request €= == = T o _t_ =p connect to hostid, port=x
connectionSocket = CONNEClioON Setup clientSocket = socket()

serverSocket.accept()

— l send request using
read request from / clientSocket
connectionSocket

write reply to —_— !

connectionSocket _ read reply from
1 clientSocket

close

connectionSocket close v

clientSocket
Application Layer: 2-107

Example app: TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

create TCP socket for server, —— clientSocket = SOCket(AF_INET
remote port 12000 clientSocket.connect((serverName,serverPort))

sentence = input('Input lowercase sentence:')
clientSocket.send(sentence.encode())

No need to attach server name, port — ModifiedSentence = clientSocket.recv(1024)
print (‘"From Server:', modifiedSentence.decode())
clientSocket.close()

Note: this code update (2023) to Python 3 Application Layer: 2-108

Example app: TCP server

create TCP welcoming socket ——

server begins listening for
incoming TCP requests

loop forever ——

server waits on accept() for incoming ——
requests, new socket created on return

read bytes from socket (but —
not address as in UDP)

close connection to this client (but not —
welcoming socket)

Note: this code update (2023) to Python 3

Python TCPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((",serverPort))
serverSocket.listen(1)
print('The server is ready to receive')
while True:
connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.
encode())
connectionSocket.close()

Application Layer: 2-109

Chapter 2: Summary

our study of network application layer is now complete!

= application architectures = specific protocols:
e client-server * HTTP
e P2P * SMTP, IMAP
* DNS

= application service requirements:

o . * P2P: BitTorrent
* reliability, bandwidth, delay

= video streaming, CDNs
" |[nternet transport service model = socket programming:

e connection-oriented, reliable: TCP TCP, UDP sockets
* unreliable, datagrams: UDP

Application Layer: 2-110

Chapter 2: Summary

Most importantly: learned about protocols!

Important themes:
= typical client/server request/reply message exchange
= centralized vs. decentralized
= stateless vs. stateful

= scalability
= reliable vs. unreliable message transfer
= “complexity at network edge”

Application Layer: 2-111

Additional Chapter 2 slides

JFK note: the timeout slides are important IMHO if one is doing a programming assignment (especially
an RDT programming assignment in Chapter 3), since students will need to use timers in their code,
and the TRY/EXCEPT is really the easiest way to do this. | introduce this here in Chapter 2 with the
socket programming assignment since it teaches something (how to handle exceptions/timeouts), and
lets students learn/practice that before doing the RDT programming assignment, which is harder

Application Layer: 2-112

Socket programming: waiting for multiple events

" sometimes a program must wait for one of several events to happen, e.g.,:
= wait for either (i) a reply from another end of the socket, or (ii) timeout: timer
= wait for replies from several different open sockets: select(), multithreading

= timeouts are used extensively in networking
= using timeouts with Python socket:

receive a message
[socket()]—P[connect() H send() Hsettlmeout)H recv()
‘ Ot/meout

handle
timeout

!

Application Layer: 2-113

How Python socket.settimeout() works?

timer starts! no packet arrives in 30 secs @ timeout

s.settimeout(30) s.recv() interrupt s.recv() & |
raise timeout exceptlon

receive a message
_ _ no packet arrives in 10 secs
timer starts! & timer stop! timer starts! P . ‘ timeout

OIS S _

s.settimeout(10) s.recv() s.recv() interrupt s.recv() &

N raise timeout exception

[Set a timeout on all future socket operations of that specific socket!}

Application Layer: 2-114

Python try-except block

Execute a block of code, and handle “exceptions” that may occur when
executing that block of code

try:
{Executing this try code block may cause exception(s) to catch. If an exception

<do something> is raised, execution jumps from jumps directly into except code block

except <exception>:
this except code block is only executed if an <exception> occurred in the try

<handle the exception> {

code block (note: except block is required with a try block)

Socket programming: socket timeouts

&

Toy Example:

- A shepherd boy tends his master’s sheep.

- If he sees a wolf, he can send a message to
villagers for help using a TCP socket.

- The boy found it fun to connect to the server
without sending any messages. But the villagers
don’t think so.

- And they decided that if the boy connects to
the server and doesn’t send the wolf location
within 10 seconds for three times, they will stop
listening to him forever and ever.

set a 10-seconds timeout on
all future socket operations

Python TCPServer (Villagers)

from socket import *
serverPort = 12000
serverSocket = socket(AF _INET,SOCK_STREAM)
serverSocket.bind((",serverPort))
serverSocket.listen(1)
counter=0
while counter < 3:
connectionSocket, addr = serverSocket.accept()

— connectionSocket.settimeout(10)

try:

timer starts when recv() is called and will ——— wolf location = connectionSocket.recv(1024).decode()

raise timeout exception if there is no
message within 10 seconds.

send_hunter(wolf _location) # a villager function
connectionSocket.send(‘hunter sent')
except timeout:

catch socket timeout exception — counter += 1

connectionSocket.close()

Application Layer: 2-116

Sample SMTP interaction

S: 220 hamburger.edu

HELO crepes.fr

250 Hello crepes.fr, pleased to meet you

MAIL FROM: <alice@crepes.fr>

250 alice@crepes.fr... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

Do you like ketchup?
How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

nOQOnhOOooooonoonnQ n Q

Application Layer: 2-117

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V
» video stored in CDN at http://KingCDN.com/NetC6y&B23V
1. Bob gets URL for video

http://netcinema.com/6Y7B23V q !

from netcinema.com web page - Ny 2. resolve http:/netcinema.com/6Y7B23V

%
‘I \@>\wa Bob's local DNS
6. request video from Bob’s

KINGCDN server, local DNS

streamed via HTTP / server

3. netcinema’s DN BBturns CNAME for
http://KingCDN.corp/MetC6y&B23V

Application Layer: 2-118

Case study: Netflix

Netflix registration,
accounting servers

Bob browses

Eﬁ Netflix video
@

Bob manages
Netflix account

Amazon cloud

|

©),

upload copies of
multiple versions of
video to CDN servers

| CDN
server
N] CDN

Manifest file, AN Eﬂ server
requested AN
returned for R
specific video \

= CDN

-i server

—

DASH server
selected, contacted,
streaming begins

Application Layer: 2-119

