
Chapter 3
Transport Layer
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

§ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

§ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2025
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A
Top-Down Approach
9th edition
Jim Kurose, Keith Ross
Pearson, 2025

Transport Layer: 3-1

Transport layer: overview
Our goal:
§ understand principles

behind transport layer
services:
• multiplexing,

demultiplexing
• reliable data transfer
• flow control
• congestion control

§ learn about Internet transport
layer protocols:
• UDP: connectionless transport
• TCP: connection-oriented reliable

transport
• TCP congestion control

Transport Layer: 3-2

Transport layer: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-3

Transport services and protocols

§ provide logical communication
between application processes
running on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

§ transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer
• receiver: reassembles segments into

messages, passes to application layer

§ two transport protocols available to
Internet applications
• TCP, UDP

Transport Layer: 3-4

Transport vs. network layer services and protocols

household analogy:
12 kids in Ann’s house sending

letters to 12 kids in Bill’s
house:

§ hosts = houses
§ processes = kids
§ app messages = letters in

envelopes
§ transport protocol = Ann and Bill

who demux to in-house siblings
§ network-layer protocol = postal

service

Transport Layer: 3-5

Transport vs. network layer services and protocols

§network layer:
communication between
hosts

household analogy:
12 kids in Ann’s house sending

letters to 12 kids in Bill’s
house:

§ hosts = houses
§ processes = kids
§ app messages = letters in

envelopes
§ transport protocol = Ann and Bill

who demux to in-house siblings
§ network-layer protocol = postal

service

Transport Layer: 3-6

§transport layer:
communication between
processes
• relies on, enhances, network

layer services

physical
link

network (IP)

application

physical
link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg§ is passed an application-

layer message
§ determines segment

header fields values
§ creates segment
§ passes segment to IP

transport ThTh app. msg

Transport Layer: 3-7

physical
link

network (IP)

application

physical
link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg § extracts application-layer
message

§ checks header values
§ receives segment from IP

Th app. msg

§ demultiplexes message up
to application via socket

Transport Layer: 3-8

Two principal Internet transport protocols

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport
§TCP: Transmission Control Protocol
• reliable, in-order delivery
• congestion control
• flow control
• connection setup

§UDP: User Datagram Protocol
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

§ services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-9

Chapter 3: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-10

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing as receiver:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing as sender:

Transport Layer: 3-11

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msg

Transport Layer: 3-12

HTTP msgHt

HTTP msgHtHn

HTTP msgHtHn

HTTP msgHtHn

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

client

HTTP msgHt

HTTP msg

Transport Layer: 3-13

HTTP msg

Q: how did transport layer know to deliver message to Firefox
browser process rather then Netflix process or Skype process?

?

de-multiplexing

?

de-multiplexing

transport

application

Demultiplexing

multiplexing

multiplexing

transport

application

Multiplexing

How demultiplexing works

§ host receives IP datagrams
• each datagram has source IP

address, destination IP address
• each datagram carries one

transport-layer segment
• each segment has source,

destination port number
§ host uses IP addresses & port

numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-20

Connectionless demultiplexing

Recall:
§ when creating socket, must

specify host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

when receiving host receives
UDP segment:
• checks destination port # in

segment
• directs UDP segment to

socket with that port #
§ when creating datagram to

send into UDP socket, must
specify
• destination IP address
• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

Transport Layer: 3-21

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

mySocket =
socket(AF_INET,SOCK_DGRAM)
mySocket.bind(myaddr,9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

A

B

C

D

mySocket =
socket(AF_INET,SOCK_DGRAM)
mySocket.bind(myaddr,5775);

mySocket =
socket(AF_INET,SOCK_DGRAM)
mySocket.bind(myaddr,6428);

Connectionless demultiplexing: an example

Connection-oriented demultiplexing

§ TCP socket identified by
4-tuple:
• source IP address
• source port number
• dest IP address
• dest port number

§ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple
• each socket associated with

a different connecting client

§ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-23

Connection-oriented demultiplexing: example

transport

application

physical
link

network

P1
transport

application

physical
link

P4

transport

application

physical
link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-24

Summary
§ Multiplexing, demultiplexing: based on segment, datagram

header field values
§ UDP: demultiplexing using destination port number (only)
§ TCP: demultiplexing using 4-tuple: source and destination IP

addresses, and port numbers
§ Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-25

Chapter 3: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-26

UDP: User Datagram Protocol

§ “no frills,” “bare bones”
Internet transport protocol

§ “best effort” service, UDP
segments may be:
• lost
• delivered out-of-order to app

§ no connection
establishment (which can
add RTT delay)

§ simple: no connection state
at sender, receiver

§ small header size
§ no congestion control

§ UDP can blast away as fast as
desired!

§ can function in the face of
congestion

Why is there a UDP?

§ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-27

UDP: User Datagram Protocol

§ UDP use:
§ streaming multimedia apps (loss tolerant, rate sensitive)
§ DNS
§ SNMP
§ HTTP/3

§ if reliable transfer needed over UDP (e.g., HTTP/3):
§ add needed reliability at application layer
§ add congestion control at application layer

Transport Layer: 3-28

UDP: User Datagram Protocol [RFC 768]

Transport Layer: 3-29

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

transport
(UDP)

physical
link

network (IP)

application

Transport Layer: 3-30

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg§ is passed an application-

layer message
§ determines UDP segment

header fields values
§ creates UDP segment
§ passes segment to IP

UDPhUDPh SNMP msg

Transport Layer: 3-31

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
§ extracts application-layer

message

§ checks UDP checksum
header value

§ receives segment from IP

UDPh SNMP msg
§ demultiplexes message up

to application via socket

Transport Layer: 3-32

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

Transport Layer: 3-33

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)=

Transport Layer: 3-34

Internet checksum

sender:
§ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

§ checksum: addition (one’s
complement sum) of segment
content

§ checksum value put into
UDP checksum field

receiver:
§ compute checksum of received

segment
§ check if computed checksum equals

checksum field value:
• not equal - error detected
• equal - no error detected. But maybe

errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-35

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-36

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1
1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-37

Summary: UDP
§ “no frills” protocol:
• segments may be lost, delivered out of order
• best effort service: “send and hope for the best”

§ UDP has its plusses:
• no setup/handshaking needed (no RTT incurred)
• can function when network service is compromised
• helps with reliability (checksum)

§ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Chapter 3: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-39

Principles of reliable data transfer

sending
process

data

receiving
process

data

reliable channel

application
transport

reliable service abstraction

Transport Layer: 3-40

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application
transport

reliable service abstraction

Transport Layer: 3-41

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

Transport Layer: 3-42

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocolSender, receiver do not know
the “state” of each other, e.g.,
was a message received?
§ unless communicated via a

message

Transport Layer: 3-43

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

Transport Layer: 3-44

Reliable data transfer: getting started
We will:
§ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)
§ consider only unidirectional data transfer

• but control info will flow in both directions!

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event
actions

§ use finite state machines (FSM) to specify sender, receiver

Transport Layer: 3-45

rdt1.0: reliable transfer over a reliable channel

§ underlying channel perfectly reliable
• no bit errors
• no loss of packets

packet = make_pkt(data)
udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

rdt_rcv(packet)Wait for
call from

below
receiver

§ separate FSMs for sender, receiver:
• sender sends data into underlying channel
• receiver reads data from underlying channel

sender
Wait for
call from
above

Transport Layer: 3-46

rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

§ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-47

rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet
• checksum to detect bit errors

§ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender

that pkt had errors
• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-48

rdt2.0: FSM specifications

Wait for
call from
above

udt_send(sndpkt)
Wait for
ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for
call from

below

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

Transport Layer: 3-49

rdt2.0: FSM specification

Wait for
call from
above

udt_send(sndpkt)
Wait for
ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for
call from

below

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

Note: “state” of receiver (did the receiver get my
message correctly?) isn’t known to sender unless
somehow communicated from receiver to sender
§ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)

Transport Layer: 3-50

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

Transport Layer: 3-51

rdt2.0: corrupted packet scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)Wait for

ACK or
NAK

Wait for
call from

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

Transport Layer: 3-52

rdt2.0 has a fatal flaw!
what happens if ACK/NAK

corrupted?
§ sender doesn’t know what

happened at receiver!
§ can’t just retransmit: possible

duplicate

handling duplicates:
§ sender retransmits current pkt

if ACK/NAK corrupted
§ sender adds sequence number

to each pkt
§ receiver discards (doesn’t

deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

Transport Layer: 3-53

rdt2.1: sender, handling garbled ACK/NAKs

Wait for
call 0 from

above

Wait for
ACK or
NAK 0

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& (corrupt(rcvpkt) ||

isNAK(rcvpkt))

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

L

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) &&

isACK(rcvpkt)

L

Transport Layer: 3-54

rdt2.1: receiver, handling garbled ACK/NAKs

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer: 3-55

rdt2.1: discussion
sender:
§ seq # added to pkt
§ two seq. #s (0,1) will suffice.

Why?
§must check if received ACK/NAK

corrupted
§ twice as many states

• state must “remember” whether
“expected” pkt should have seq #
of 0 or 1

receiver:
§must check if received packet

is duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

§ note: receiver can not know if
its last ACK/NAK received OK
at sender

Transport Layer: 3-56

rdt2.2: a NAK-free protocol

§ same functionality as rdt2.1, using ACKs only
§ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

§ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-57

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

L

Transport Layer: 3-58

rdt3.0: channels with errors and loss
New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-59

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK
§ retransmits if no ACK received in this time
§ if pkt (or ACK) just delayed (not lost):
• retransmission will be duplicate, but seq #s already handles this!
• receiver must specify seq # of packet being ACKed

timeout

§ use countdown timer to interrupt after “reasonable” amount
of time

Transport Layer: 3-60

rdt3.0 sender

Wait
for

ACK0

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)
stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)
stop_timer

Wait for
call 0 from

above

Wait
for

ACK1

Transport Layer: 3-61

rdt3.0 sender

Wait
for

ACK0

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)
stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)
stop_timer

udt_send(sndpkt)
start_timer

timeoutWait for
call 0 from

above

Wait
for

ACK1

L
rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Lrdt_rcv(rcvpkt)
L

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

L

Transport Layer: 3-62

rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Transport Layer: 3-63

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0
rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Transport Layer: 3-64

Performance of rdt3.0 (stop-and-wait)

§ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

§U sender: utilization – fraction of time sender busy sending

Dtrans = L
R

8000 bits
109 bits/sec= = 8 microsecs

• time to transmit packet into channel:

Transport Layer: 3-65

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT
first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

Transport Layer: 3-66

rdt3.0: stop-and-wait operation
sender receiver

Usender=
L / R

RTT
RTT

L/R

+ L / R

= 0.00027

= .008
30.008

§ rdt 3.0 protocol performance stinks!
§ Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-67

rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets
• range of sequence numbers must be increased
• buffering at sender and/or receiver

Transport Layer: 3-68

Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

Transport Layer: 3-69

Go-Back-N: sender
§ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

§ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
• on receiving ACK(n): move window forward to begin at n+1

§ timer for oldest in-flight packet
§ timeout(n): retransmit packet n and all higher seq # packets in window

Transport Layer: 3-70

Go-Back-N: receiver
§ ACK-only: always send ACK for correctly-received packet so far, with

highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

§ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Transport Layer: 3-71

Go-Back-N in action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Transport Layer: 3-72

Selective repeat: the approach

§pipelining: multiple packets in flight
§receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

§sender:
• maintains (conceptually) a timer for each unACKed pkt
• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s
• limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-73

Selective repeat: sender, receiver windows

Transport Layer: 3-74

Selective repeat: sender and receiver

data from above:
§ if next available seq # in

window, send packet

timeout(n):
§ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

§ mark packet n as received
§ if n smallest unACKed packet,

advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]
§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also deliver

buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]
§ ACK(n)

otherwise:
§ ignore

receiver

Transport Layer: 3-75

Selective Repeat in action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3

record ack3 arrived
receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Transport Layer: 3-76

Selective repeat:
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2
X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

Transport Layer: 3-77

Selective repeat:
a dilemma!

Q: what relationship is needed
between sequence # size and
window size to avoid problem
in scenario (b)?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2
X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

§ receiver can’t
see sender side

§ receiver
behavior
identical in both
cases!

§ something’s
(very) wrong!

Transport Layer: 3-78

Chapter 3: roadmap
§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

§ Principles of congestion control
§ TCP congestion control

Transport Layer: 3-79

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

§ cumulative ACKs
§ pipelining:
• TCP congestion and flow control

set window size
§ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

§ flow controlled:
• sender will not overwhelm receiver

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte
steam:
• no “message boundaries"

§ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-80

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number
segment seq #: counting
bytes of data into bytestream
(not segments!)

application
data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-81

TCP sequence numbers, ACKs
Sequence numbers:
• byte stream “number” of

first byte in segment’s data

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender

Acknowledgements:
• seq # of next byte expected

from other side
• cumulative ACK

Q: how receiver handles out-of-
order segments
• A: TCP spec doesn’t say, - up

to implementor
Transport Layer: 3-82

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-83

TCP round trip time, timeout
Q: how to set TCP timeout

value?
§ longer than RTT, but RTT varies!
§ too short: premature timeout,

unnecessary retransmissions
§ too long: slow reaction to

segment loss

Q: how to estimate RTT?
§SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

§SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just current
SampleRTT

Transport Layer: 3-84

TCP round trip time, timeout
EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

§ exponential weighted moving average (EWMA)
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)
Transport Layer: 3-85

TCP round trip time, timeout

§ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

§DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-86

TCP Sender (simplified)

event: data received from
application
§ create segment with seq #
§ seq # is byte-stream number

of first data byte in segment
§ start timer if not already

running
• think of timer as for oldest

unACKed segment
• expiration interval:
TimeOutInterval

event: timeout
§ retransmit segment that

caused timeout
§ restart timer

event: ACK received
§ if ACK acknowledges

previously unACKed segments
• update what is known to be

ACKed
• start timer if there are still

unACKed segments

Transport Layer: 3-87

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK (acking
last correctly received in order byte),
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-88

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100
X

ACK=100

tim
eo

ut

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

tim
eo

ut

ACK=100
ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-89

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-90

TCP fast retransmit
Host BHost A

tim
eo

ut

ACK=100

ACK=100

ACK=100

ACK=100

X

Seq=92, 8 bytes of dataSeq=100, 20 bytes of data

Seq=100, 20 bytes of data
Receipt of three duplicate ACKs

indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
§ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-91

Chapter 3: roadmap
§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

§ Principles of congestion control
§ TCP congestion control

Transport Layer: 3-92

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-93

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-94

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-95

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-96

TCP flow control

§ TCP receiver “advertises” free buffer
space in rwnd field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)
• many operating systems auto-adjust
RcvBuffer

§ sender limits amount of unACKed
(“in-flight”) data to received rwnd

§ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-97

TCP flow control

§ TCP receiver “advertises” free buffer
space in rwnd field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)
• many operating systems auto-adjust
RcvBuffer

§ sender limits amount of unACKed
(“in-flight”) data to received rwnd

§ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-98

TCP connection management
before exchanging data, sender/receiver “handshake”:
§ agree to establish connection (each knowing the other willing to establish connection)
§ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer: 3-99

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

§ variable delays
§ retransmitted messages (e.g.

req_conn(x)) due to message loss
§ message reordering
§ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-100

2-way handshake scenarios

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)ACK(x+1)

No problem!

Transport Layer: 3-101

2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)Problem: half open
connection! (no client)

Transport Layer: 3-102

2-way handshake scenarios

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-104

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

Transport Layer: 3-105

Closing a TCP connection
§ client, server each close their side of connection

• send TCP segment with FIN bit = 1

§ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

§ simultaneous FIN exchanges can be handled

Transport Layer: 3-106

Chapter 3: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-107

Congestion:
§ informally: “too many sources sending too much data too fast for

network to handle”
§manifestations:
• long delays (queueing in router buffers)
• packet loss (buffer overflow at routers)

§ different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender
too fast for one receiver

§ a top-10 problem!

Transport Layer: 3-108

Causes/costs of congestion: scenario 1

Simplest scenario:

maximum per-connection
throughput: R/2

Host A

Host B

throughput: lout

large delays as arrival rate
line approaches capacity

Q: What happens as
arrival rate lin
approaches R/2?

original data: lin

R§ two flows

§ one router, infinite buffers
§ input, output link capacity: R infinite shared

output link buffers

R
§ no retransmissions needed

R/2

de
la

y

lin

R/2

R/2

l o
ut

lin

th
ro

ug
hp

ut
:

Transport Layer: 3-109

Causes/costs of congestion: scenario 2
§ one router, finite buffers

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output
link buffers

§ sender retransmits lost, timed-out packet
• application-layer input = application-layer output: lin = lout
• transport-layer input includes retransmissions : l’in lin

lout

RR

Transport Layer: 3-110

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output
link buffers

Causes/costs of congestion: scenario 2

copy

free buffer space!

Idealization: perfect knowledge
§ sender sends only when router buffers available

lout

RR

R/2lin

R/2

l o
ut

th
ro

ug
hp

ut
:

Transport Layer: 3-111

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output
link buffers

RR

Causes/costs of congestion: scenario 2

copy

no buffer space!

Idealization: some perfect knowledge
§ packets can be lost (dropped at router) due to

full buffers
§ sender knows when packet has been dropped:

only resends if packet known to be lost

Transport Layer: 3-112

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output
link buffers

RR

Causes/costs of congestion: scenario 2

free buffer space!

Idealization: some perfect knowledge
§ packets can be lost (dropped at router) due to

full buffers
§ sender knows when packet has been dropped:

only resends if packet known to be lost

when sending at
R/2, some packets
are needed
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
:

R/2

“wasted” capacity due
to retransmissions

Transport Layer: 3-113

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output
link buffers

RR

Causes/costs of congestion: scenario 2

copytimeout

Realistic scenario: un-needed duplicates
§ packets can be lost, dropped at router due to

full buffers – requiring retransmissions
§ but sender times can time out prematurely,

sending two copies, both of which are delivered

free buffer space!

when sending at
R/2, some packets
are retransmissions,
including needed
and un-needed
duplicates, that are
delivered!

“wasted” capacity due
to un-needed
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
:

R/2

Transport Layer: 3-114

Causes/costs of congestion: scenario 2

“costs” of congestion:
§ more work (retransmission) for given receiver throughput
§ unneeded retransmissions: link carries multiple copies of a packet

• decreasing maximum achievable throughput

Realistic scenario: un-needed duplicates
§ packets can be lost, dropped at router due to

full buffers – requiring retransmissions
§ but sender times can time out prematurely,

sending two copies, both of which are delivered when sending at
R/2, some packets
are retransmissions,
including needed
and un-needed
duplicates, that are
delivered!

“wasted” capacity due
to un-needed
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
:

R/2

Transport Layer: 3-115

Causes/costs of congestion: scenario 3
§ four senders
§ multi-hop paths
§ timeout/retransmit

Q: what happens as lin and lin’ increase ?

A: as red lin’ increases, all arriving blue pkts at upper
queue are dropped, blue throughput g 0

finite shared
output link buffers

Host A

lout

Host B

Host C
Host D

lin : original data
l'in: original data, plus

retransmitted data

Transport Layer: 3-116

Causes/costs of congestion: scenario 3

another “cost” of congestion:
§ when packet dropped, any upstream transmission capacity and

buffering used for that packet was wasted!

R/2

R/2

l o
ut

lin
’

Transport Layer: 3-117

Causes/costs of congestion: insights

§ upstream transmission capacity / buffering
wasted for packets lost downstream

R/2

R/2

l o
ut

lin’

§ delay increases as capacity approached

R/2

de
la
y

lin

§ un-needed duplicates further decreases
effective throughput

lin

R/2

l o
ut

th
ro

ug
hp

ut
:

R/2

§ loss/retransmission decreases effective
throughput

lin

R/2

l o
ut

th
ro

ug
hp

ut
:

R/2

§ throughput can never exceed capacity

R/2lin

R/2

l o
ut

th
ro

ug
hp

ut
:

Transport Layer: 3-118

End-end congestion control:
§ no explicit feedback from

network
§ congestion inferred from

observed loss, delay

Approaches towards congestion control

datadataACKs ACKs

§ approach taken by TCP

Transport Layer: 3-119

§ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadataACKs ACKs

explicit congestion info

Network-assisted congestion
control:

§ routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

§ may indicate congestion level or
explicitly set sending rate

Transport Layer: 3-120

Chapter 3: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-121

TCP congestion control: AIMD
§ approach: senders can increase sending rate until packet loss

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth
behavior: probing

for bandwidth

TC
P

se
nd

er
 S

en
di

ng
 ra

te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase
cut sending rate in half at
each loss event

Multiplicative Decrease

Transport Layer: 3-122

TCP AIMD: more
Multiplicative decrease detail: sending rate is
§ Cut in half on loss detected by triple duplicate ACK (TCP Reno)
§ Cut to 1 MSS (maximum segment size) when loss detected by

timeout (TCP Tahoe)

Why AIMD?
§ AIMD – a distributed, asynchronous algorithm – has been

shown to:
• optimize congested flow rates network wide [Kelly]!
• have desirable stability properties

Transport Layer: 3-123

TCP congestion control: details

§ TCP sender limits transmission:
§ cwnd is dynamically adjusted in response to observed

network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:
§ roughly: send cwnd bytes,

wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd
RTT bytes/secsent, but not-

yet ACKed
(“in-flight”)

Transport Layer: 3-124

TCP slow start
§ when connection begins,

increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd

for every ACK received

Host A

one segment

Host B

R
TT

time

two segments

four segments

§ summary: initial rate is
slow, but ramps up
exponentially fast

Transport Layer: 3-125

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
§ variable ssthresh
§ on loss event, ssthresh is set to

1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Transport Layer: 3-126

Summary: TCP congestion control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer: 3-127

TCP CUBIC
§ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher
throughput in this
example

§ Insight/intuition:
• Wmax: sending rate at which congestion loss was detected
• congestion state of bottleneck link probably (?) hasn’t changed much
• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then

approach Wmax more slowly

Transport Layer: 3-128

TCP CUBIC
§ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K
• smaller increases (cautious) when nearer K

TCP
sending

rate

time

TCP Reno
TCP CUBIC

Wmax

t0 t1 t2 t3 t4

§ TCP CUBIC default in
Linux, most popular TCP
for popular Web servers
(until ~2024)

§ increase W as a function of the cube of the distance between current
time and K

Transport Layer: 3-129

TCP and the congested “bottleneck link”
§ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs

at some router’s output: the bottleneck link

source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

bottleneck link (almost always busy)

packet queue almost
never empty, sometimes

overflows packet (loss)

Transport Layer: 3-130

TCP and the congested “bottleneck link”
§ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs

at some router’s output: the bottleneck link

source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

§understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
not increase end-end throughout at
congested bottleneck, which is
already transmitting at full rate, R

insight: increasing TCP sending
rate will increase measured

RTT (increased queueing
delay at bottleneck link)

RTT

Goal: “keep the end-end pipe just full, but not fuller” Transport Layer: 3-131

R

TCP and the congested “bottleneck link”
§multiple flows collectively congest bottleneck link:
• each their executing own TCP congestion control
• each of N flows should ideally receive throughput of R/N

Transport Layer: 3-132

1

2

N

...

...

Keeping pipe “just full enough, but no fuller”: keep bottleneck link busy
transmitting, but avoid high delays/buffering

RTT
measured

throughput =

bytes sent (inflight)
in RTT interval

Transport Layer: 3-133

Keeping the pipe just full enough

RTTmeasured

Intuition:

connection’s share of bottleneck_bandwidth • min_RTT
ideal amount of

inflight data for a
connection

=

connection’s “bandwidth-delay product”ninflight

Keeping the pipe just full, but no fuller

Transport Layer: 3-134

bandwith•delay
product

bottle
neck link congestio

n

ninflight: amount of in-flight data

bandwith•delay
product + queueing delay in

full bottleneck buffer

increasing ninflight in this
region will not increase
RTT, since arrival rate of
packet data to queue is

less that transmission rate

Increasing ninflight in this
region increases RTT since
arrival rate of packet data
to bottleneck link exceeds
link transmission rate

Here, arrival rate
of packet data to
bottleneck link is

equals link
transmission rate

RT
T

Keeping the pipe just full, but no fuller

Transport Layer: 3-135

bandwith•delay
product

bottle
neck link congestio

n

bandwith•delay
product + queueing delay in

full bottleneck buffer

th
ro

ug
hp

ut

ninflight: amount of in-flight data

RT
T

Here, arrival rate of packet
data to bottleneck link is

equals link transmission rate

loss-based TCP seeks to operate here

BBR TCP seeks to operate here - the
pipe is kept just full, but no fuller

§ regulates ninflight

§ at longer time intervals:
• reduces ninflight to drain pipe, measure new min_RTT

§ at shorter time intervals:

BBR (Bottleneck Bandwidth and RTT)

Transport Layer: 3-136

• acceleration: increases sending rate, ninflight, until reaches throughput
plateau, (saturating available per-flow link capacity)
• cruising: sends at the rate that network is delivering data, as

evidenced through received ACKs.
• deceleration: purposefully reduces ninflight, decreasing queue pressure,

looking for lower min_RTT

source
application
TCP

network
link

physical

destination
application
TCP

network
link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
§ two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator
§ congestion indication carried to destination
§ destination sets ECE bit on ACK segment to notify sender of congestion
§ involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer: 3-137

TCP fairness
Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2

Transport Layer: 3-138

Q: is TCP Fair?
Example: two competing TCP sessions:
§ additive increase gives slope of 1, as throughout increases
§multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized
assumptions:
§ same RTT
§ fixed number of sessions

only in congestion
avoidance

Is TCP fair?

Transport Layer: 3-139

Fairness: must all network apps be “fair”?
Fairness and UDP
§multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control
§ instead use UDP:

• send audio/video at constant rate,
tolerate packet loss

§ there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections
§ application can open multiple

parallel connections between two
hosts

§web browsers do this , e.g., link of
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10
• new app asks for 11 TCPs, gets R/2

Transport Layer: 3-140

Transport layer: roadmap

§ Transport-layer services
§ Multiplexing and demultiplexing
§ Connectionless transport: UDP
§ Principles of reliable data transfer
§ Connection-oriented transport: TCP
§ Principles of congestion control
§ TCP congestion control
§ Evolution of transport-layer

functionality

Transport Layer: 3-141

§ TCP, UDP: principal transport protocols for 40 years
§ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

§moving transport–layer functions to application layer, on top of UDP
• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data
transfers)

Many packets “in flight”; loss shuts down
pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows

Transport Layer: 3-142

§ application-layer protocol, on top of UDP
• increase performance of HTTP
• deployed on many Google servers, apps (Chrome, mobile YouTube app)

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

Network

Transport

Application

HTTP/2 over TCP

IP

UDP

QUIC

HTTP/2 (slimmed)
HTTP/3

HTTP/3 over UDP

Transport Layer: 3-143

QUIC: Quick UDP Internet Connections
adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

§ multiple application-level “streams” multiplexed over single QUIC
connection
• separate reliable data transfer, security
• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control,
authentication, encryption, state established in one (or even zero) RTT
(recall HTTP3 discussion in Chapter 2)

Transport Layer: 3-144

QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
an

sp
or

t
ap

pl
ic

at
io

n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

error!

HTTP
GET HTTP

GET HTTP
GET

Transport Layer: 3-145

Chapter 3: summary

Transport Layer: 3-146

§ principles behind transport
layer services:
• multiplexing, demultiplexing
• reliable data transfer
• flow control
• congestion control

§ instantiation, implementation
in the Internet
• UDP
• TCP

Up next:
§ leaving the network

“edge” (application,
transport layers)

§ into the network “core”
§ two network-layer

chapters:
• data plane
• control plane

Additional Chapter 3 slides

Transport Layer: 3-147

Go-Back-N: sender extended FSM

Transport Layer: 3-148

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L

Go-Back-N: receiver extended FSM

Transport Layer: 3-149

Wait

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

udt_send(sndpkt)
any other event

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

L

ACK-only: always send ACK for correctly-received packet with highest
in-order seq #
• may generate duplicate ACKs
• need only remember expectedseqnum

§ out-of-order packet:
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

TCP sender (simplified)

Transport Layer: 3-150

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

TCP 3-way handshake FSM

Transport Layer: 3-151

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
newSocket("hostname","port number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for communication
back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

Transport Layer: 3-152

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

TCP throughput
§ avg. TCP thruput as function of window size, RTT?

• ignore slow start, assume there is always data to send

§W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

TCP over “long, fat pipes”

Transport Layer: 3-154

§ example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput
§ requires W = 83,333 in-flight segments
§ throughput in terms of segment loss probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10 – a
very small loss rate!

§ versions of TCP for long, high-speed scenarios

TCP throughput = 1.22 .MSS
RTT L

