Computer Networking: A Top Down
Approach

Seventh Edition

Chapter 3

A TOP-DOWN APPROACH Transport Layer

KUROSE * ROSS

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Transport Layer

our goals:

 understand principles behind transport layer services:
— multiplexing, demultiplexing
— reliable data transfer
— flow control
— congestion control

 learn about Internet transport layer protocols:
— UDP: connectionless transport
— TCP: connection-oriented reliable transport
— TCP congestion control

@ Pearson

Learning Objectives (1 of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@ Pearson

Transport Services and Protocols

« provide logical communication
between app processes running on
different hosts

 transport protocols run in end systems

— send side: breaks app messages
into segments, passes to network
layer

— rcv side: reassembles segments
into messages, passes to app

layer

* more than one transport protocol
available to apps

— Internet; TCP and UDP

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Transport vs. Network Layer

* network layer: logical communication between hosts
« transport layer: logical communication between processes
— relies on, enhances, network layer services
household analogy:
12 kids in Ann’s house sending letters to 12 kids in Bill’s house:
* hosts = houses
* processes = kids
* app messages = letters in envelopes
 transport protocol = Ann and Bill who demux to in-house siblings

* network-layer protocol = postal service

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Internet Transport-Layer Protocols

. . . application
- reliable, in-order delivery (TCP) =
— congestion control ny ==
netwc_>rk
— flow control T %, vren
. physical S
— connection setup e -
“w@ NI p % ‘
- unreliable, unordered delivery: UDP = &R ¢
S data_link O
— no-frills extension of “best- e Lo oA
effort” IP data fnk
network
. . datt:_"nk aPmjjcation
« services not available: Physical e crwork

data link n;etwor
” data link
— delay guarantees EXEN ey

— bandwidth guarantees

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Multiplexing/Demultiplexing

multiplexing at sender:

demultiplexing at receiver:

handle data from multiple

sockets, add transport header use hea dder info to deliver
(later used for demultiplexing) received segments to correct
socket
|
application application socket
Oprocess
transport - tra”%?)rt
network E netjyork
link 1t ik \
"’ ‘! physical phygical Q

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

How Demultiplexing Works

* host receives IP datagrams) 32 bits

— each datagram has source IP
address, destination IP
address

— each datagram carries one
transport-layer segment

source port #| dest port #

other header fields

— each segment has source, application
destination port number data
(payload)

* host uses IP addresses & port

numbers to direct segment to
appropriate socket TCP/UDP segment format

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connectionless Demultiplexing

 recall: created socket has host- recall: when creating datagram to
local port #: send into UDP socket, must
DatagramSocket mySocketl specify
= new DatagramSocket (12534) ; — destination IP address

— destination port #

* when host receives UDP IP datagrams with same dest.

segment:

port #, but different source IP

— checks destination port # in ‘ addresses and/or source port

segment

— directs UDP segment to

numbers will be directed to
same socket at dest

socket with that port #

@ Pearson

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connectionless Demux: Example

DatagramSocket
serverSocket = new

DatagramSocket DataaramSocket DatagramSocket

mySocket2 = new g mySocketl = new

DatagramSocket (6428) ; DatagramSocket

(9157) ; application (5775) ;
application application l
[| []
trangport
network
link

physical D

source port: 6428 source port: ?
dest port: 9157 dest port: ?
source port: 9157 source port: ?
dest port: 6428 dest port: ?

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection-Oriented Demux

TCP socket identified by 4-tuple:
— source IP address
— source port number
— dest IP address
— dest port number

demux: receiver uses all four values to direct segment to appropriate
socket

server host may support many simultaneous TCP sockets:
— each socket identified by its own 4-tuple

web servers have different sockets for each connecting client
— non-persistent HTTP will have different socket for each request

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection-Oriented Demux: Example i of2)

application
application application
v
ranspo
network
link
- ' \
server: |P physical 5 -
address B 2
host: IP source IP,port: B,80 . host: P
address A dest IPport: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 _
dest IP, port: B,80
- source IP,port: C,9157

dest IP,port: B,80_

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection-Oriented Demux: Example 2 of2)

threaded server

application
application application
ranspo
network
link
4 ‘(server: P physical '5 E‘
e address B >
host: IP source IP,port: B,80 < host: IP
address A dest IP,port: A 9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 _
dest IP, port: B,80

source 1P, port: C,9157
dest IP,port: B,80

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP: User Datagram Protocol [RFC 768]

* “no frills,” “bare bones” Internet « UDP use:
transport protocol — streaming multimedia apps
* “best effort” service, UDP (Ioss_tplerant, rate
segments may be: sensitive)
— lost - DNS
— delivered out-of-order to — SNMP
app - reliable transfer over UDP:
- connectionless: — add reliability at

— no handshaking between application layer

UDP sender, receiver — application-specific error

— each UDP segment recovery!
handled independently of
others

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP: Segment Header (102

32 bits length, in bytes of

UDP segment,
including header

source port #

length <~ | checksum

application
data
(payload)

UDP segment format

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP: Segment Header o2

why is there a UDP?

* no connection establishment (which can add delay)
» simple: no connection state at sender, receiver

- small header size

* no congestion control: UDP can blast away as fast as
desired

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP Checksum

Goal: detect “errors” (example, flipped bits) in transmitted segment

sender: receiver:
 treat segment contents, « compute checksum of received
including header fields, as segment

sequence of 16-bit int
qu 't integers - check if computed checksum

« checksum: addition (one’s equals checksum field value:

complement sum) of — NO - error detected

segment contents — YES - no error detected.

- sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later
field

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Internet Checksum: Example

example: add two 16-bit integers

1110011001 100110
110101010101 0101

wraparond(D'1 01 11 01110111011

sum

1011101110111 100
checksum 0100010001 0O0O0O0O011

Note. when adding numbers, a carryout from the most
significant bit needs to be added to the result

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Principles of Reliable Data Transfer

* important in application, transport, link layers
— top-10 list of important networking topics!

E Bt e E

Sending l@cenﬁ
Application process QOC/
layer I'y
| |
___ 4 e ——
1111111 () [r_dat [~]
Transport pe Reliable data Reliable data
layer transfer protocol transfer protocol
e (sending side) (receiving side)
Reliable channel 2
udt_send () [_- rdt_rcv () |_‘
____________________________________ - ————————f——————-
A
Network
layer —

I I
a. Provided service b. Service implementation
Key:
WData | Packet

 characteristics of unreliable channel will determine complexity of reliable

data transfer protocol (rdt)

@ Pearson

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reliable Data Transfer: Getting Started (1 or2)

rdt_send() : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver data () : called by
rdt to deliver data to upper

\ rdt send()

Tdel iver data()

send [reliable data relioble data receive
i fransfer protocol transfer protocol i
SIA€ sending side) (receiving side) side
udt_send()t packet packet Irdt_rcv ()

Junreliable channel)41

udt_send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv () : called when packet
arrives on rcv-side of channel

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reliable Data Transfer: Getting Started of2)

we’ll:

- incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

- consider only unidirectional data transfer
— but control info will flow on both directions!

* use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdtl.0: Reliable Transfer over a Reliable
Channel

 underlying channel perfectly reliable
— no bit errors
— no loss of packets

» separate FSMs for sender, receiver:
— sender sends data into underlying channel
— receiver reads data from underlying channel

sender receiver

~ ~
~ ~
~ ~

A Y
i . dt t
Wait for rdt_send (data) Wait for rdt_rcv (packet)
call from packet=make_pkt (data) call from extract (packet,data)
above udt_send (packet) below deliver data(data)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Channel with Bit Errors o2

* underlying channel may flip bits in packet
— checksum to detect bit errors

 the question: how to recover from errors:

How do humans recover from “errors”
during conversation?

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Channel with Bit Errors o2

 underlying channel may flip bits in packet
— checksum to detect bit errors

 the question: how to recover from errors:

— acknowledgements (ACKs): receiver explicitly tells sender that
pkt received OK

— negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

— sender retransmits pkt on receipt of NAK

* new mechanisms in rdt2.0 (beyond rdtl.0):
— error detection
— feedback: control msgs (ACK, NAK) from receiver to sender

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: FSM Specification

sender

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isSNAK(rcvpkt)

W ait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

W ait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver _data(data)
udt_send(ACK)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Operation with No Errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&

Wait for isSNAK(rcvpkt)

call from
above

-_ rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

W ait for
call from
below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Error Scenario

rdt_send(data)

snkpkt = make _pkt(data, checksum)
udt send(sndpkt

dt rcv(rcvpkt
iISNAF s

) &&

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

call from
below

rdt_rcv(rcvp ktl &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0 Has a Fatal Flaw!

what happens if ACK/ NAK handling duplicates:

corrupted? _
* sender retransmits current

* sender doesn’t know what pkt if ACK / NAK corrupted

h d at iver!
appened at recelver « sender adds sequence

e Can't just retransmit: number to each pkt

Ible duplicat
possible duplicate - receiver discards (doesn’t

deliver up) duplicate pkt
stop and wait

sender sends one packet, then waits for
receiver response

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.1: Sender, Handles Garbled ACK/NAKS

rdt_send(data)

sndpkt=make_pkt (0, data, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&
\\\ (corrupt (rcvpkt) | |
~

A isNAK (rcvpkt))
Wait for Wait for udt_send (sndpkt)
call 0 from ACK or
above NAK 0
rdt_rcv (rcvpkt) rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt) && notcorrupt (rcvpkt)
&& isACK (rcvpkt) && isACK (rcvpkt)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt_rcv(rcvpkt) &&
(corrupt (rcvpkt) | |
isNAK (rcvpkt))
udt_send (sndpkt) rdt_send(data)

sndpkt=make_pkt (1, data, checksum)
udt_send (sndpkt)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.1: Receiver, Handles Garbled ACK/NAKS

rdt_rcv(rcvpkt)

&& corrupt (rcvpkt) \\
\

sndpkt=make_pkt (NAK, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) && notcorrupt
(rcvpkt) &&has_seqgl (rcvpkt) (i:/’
sndpkt=make_pkt (ACK, checksum)

udt_send (sndpkt)

Wait for
0 from
below

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seqg0 (rcvpkt)

extract (rcvpkt, data)
deliver_data(data)
sndpkt=make_pkt (ACK, checksum)

udt_send (sndpkt) rdt_rcv(rcvpkt) && corrupt (rcvpkt)

sndpkt=make_pkt (NAK, checksum)
udt_send (sndpkt)

Wait for
1 from

below
rdt_rcv(rcvpkt) && notcorrupt
(rcvpkt) &&has_seq0 (rcvpkt)

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seqgl (rcvpkt)

sndpkt=make_pkt (ACK, checksum)
udt_send (sndpkt)

extract (rcvpkt, data)
deliver_data(data)
sndpkt=make_pkt (ACK, checksum)
udt_send (sndpkt)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.1: Discussion

sender: receiver:

* seq # added to pkt * must check if received

et i i
- two Sequence #s (0,1) will packet is duplicate

suffice. Why? — state indicates whether
0 or 1 is expected pkt
« must check if received ACK/ seq #
NAK corrupted _
* note: receiver can not
 twice as many states know if its last ACK/NAK
_ state must “remember” received OK at sender

whether “expected” pkt
should have seq # of O or
1

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.2: A NAK-free Protocol

same functionality as rdt2.1, using ACKs only

instead of NAK, receiver sends ACK for last pkt
received OK

— receiver must explicitly include seq # of pkt being
ACKed

duplicate ACK at sender results in same action as NAK:
retransmit current pkt

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.2: Sender, Receiver Fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt ﬁﬁ% rdt_rcv(rcvpkt) &&
, (corrupt(rcvpkt) ||
................ et isACK(rcvpkt,1))
............................... 0 udt_send(sndpkt)
.................................. sender FSM
.................................... fragment rdt_rcv(rcvpkt)
............................... && notcorrupt(rcvpkt)
drovonky & e && isACK(rcvpkt,0)
(corrupt(revpkt) ||~ e A
has_seq1(rcvpkt)) receiver FSM "
pra—— fragment e
‘\ — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0: Channels with Errors and Loss

new assumption: underlying channel can also lose packets (data,
ACKs)

— checksum, Sequence #, ACKs, retransmissions will be of
help ... but not enough

approach: sender waits “reasonable” amount of time for ACK
 retransmits if no ACK received in this time

« if pkt (or ACK) just delayed (not lost):

— retransmission will be duplicate, but Sequence #'s already
handles this

— receiver must specify seq # of pkt being ACKed

* requires countdown timer

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0 Sender

rdt_send (data)

sndpkt=make_pkt (0,data, checksum)

udt_send (sndpkt) rdt_rcv(rcvpkt) &&
start_timer (corrupt (rcvpkt) | |

Ny isACK (rcvpkt, 1))

N
N A
rdt_rcv (rcvpkt) b
A Wait for timeout
Wait for
call 0 from ACK 0 udt_send (sndpkt)
above start_timer

rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt)

&& isACK (rcvpkt, 1) rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt)
&& isACK (rcvpkt, 0)

stop_timer

stop_timer

Cimeout : Wait for
udt_send (sndpkt) “Laclf(f?r call 1 from
start_timer above
rdt_rcv (rcvpkt)

rdt_rcv(rcvpkt) && A
(corrupt (rcvpkt) | |
isACK (rcvpkt, 0)) rdt_send (data)

A

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)
start _timer

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rd¢3.0 in Action (or2)

(a) no loss (b) packet loss
Sender Receiver Sender Receiver
send pkt0 Pkto send pkt0 Pkto

f
/

rcv pkt0

rcv pkt0 p¥Sr © send ACKO

P~C‘0 send ACKO

\
\

rcv ACKO rcv ACKO Pkt7
send pktl Pkt 1 send pktl ~~~~~‘X(Ioss)
rcv pktl
PC(*\ send ACK1 timeout
ACK1 resend pktl pk"\‘
rcv
send pktO Pkto o rcv pktl
rcv pktO / send ACK1
o send ACKO rcv ACK1
> send pktO Pkto
rcv pkt0
send ACKO

\

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rd¢3.0 in Action 2 of2)

(c) ACK loss (d) premature timeout/ delayed ACK
Sender Receiver Sender Receiver
send pkt0 pktO\‘ send pkt0 Pkto
0 rcv pkt0 \ rcv pkt0
A/d* send ACKO pCS - send ACKO
rcv ACKO Pkt7 rcv ACKO /
4 oorer \ send pktl Pkt7
send p > rcv pktl \ rcv pktl
pC send ACKl timeout Pkt send ACK1
(loss)X/ resend pktl T et
timeout rcv pkt 1
resend pktl Pkt rcv ACKl1 P~d‘\ (detect duplicate)
rcv pktl send pkt0 % send ACK1
A
pC c(idetl:<.30t rcv ACK1 rcv pkt0
uplicate) do nothing p&)’*o send ACKO
rcv ACKl1 Pkto send ACKl1
send pkt0
rcv pktO
send ACKO

\

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Performance of rdt3.0 (.2

 rdt3.0 is correct, but performance stinks

- example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000 bits/ packet

d._ =
ans R 10° bits / sec

=8 microseconds

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Performance of rdt3.0 o2

— Ugenger: Utilization — fraction of time sender busy
sending

L

y __ R 008

ndor =759 005 = 000027
RTT+ - =%

— if RTT = 30 msec, 1KB pkt every 30 msec: 33kB/sec
thruput over 1 Gbps link

* network protocol limits use of physical resources!

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0: Stop-and-wait Operation

Sender Receiver

First bit of first packet
transmitted, t=0

Last bit of first packet
transmitted, t = L/R

— First bit of first packet arrives

RTT- — Last bit of first packet arrives, send ACK

ACK arrives, send next packet,—
t=RTT+ L/R

L

u.. =-—R 008 _).00027

sender =
RpTT+ L 30.008

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pipelined Protocols

- pipelining: sender allows multiple, “in-flight”, yet-to-be acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

Data packet Data packets
- 0 N— tm'm LK
- ACK packets =
[<- LA\ G N [
a. A stop-and-wait protocol in operation b. A pipelined protocol in operation

» two generic forms of pipelined protocols: go-Back-N, selective repeat

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pipelining: Increased Utilization

Sender Receiver

First bit of first packet ! @—:—"—l

transmitted, t=0—mmm—

Last bit of first packet
transmitted, t = L/R

— First bit of first packet arrives

— Last bit of first packet arrives, send ACK
— Last bit of 2nd packet arrives, send ACK
— Last bit of 3rd packet arrives, send ACK

RTT-

ACK arrives, send next packet,——

t=RTT+ LR .
3L
R .0024 3-packet pipelining
Usencer = — ~30008 =0.00081 increases utilization by
R a factor of 3!

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pipelined Protocols: Overview

Go-back-N:

« sender can have up to N
unacked packets in pipeline

* receiver only sends
cumulative ack

— doesn’t ack packet if
there's a gap

* sender has timer for oldest
unacked packet

— when timer expires,
retransmit all unacked
packets

Selective Repeat:

sender can have up to N
unack’ed packets in pipeline

rcvr sends individual ack for
each packet

sender maintains timer for each
unacked packet

— when timer expires,
retransmit only that unacked
packet

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Go-Back-N: Sender

k-bit seq # in pkt header

“‘window” of up to N, consecutive unack’ed pkts allowed

base nextsegnum

Key:

0 N e

Sent, not
yet ACK'd

Not usable
Window size
N

« ACK (n): ACKs all pkts up to, including seq # n — “cumulative ACK”
— may receive duplicate ACKs (see receiver)

timer for oldest in-flight pkt

timeout(n): retransmit packet n and all higher seq # pkts in window

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN: Sender Extended FSM

rdt_send(data)

if (nextsegnum<base+N) {
sndpkt [nextsegnum]=make_pkt (nextsegnum, data, checksum)

udt_send (sndpkt [nextsegnum])
if (base==nextsegnum)
start_timer

A TN nextsegnum++
~
base=1 AN }
~
nextsegnum=1 ~o else
\\\ refuse_data(data)
-~ ~
~
~
~
-~ -
S (> timeout
“A

start_timer
Wait udt_send (sndpkt[base])
udt_send (sndpkt[base+l])

rdt_rcv(rcvpkt) && corrupt (rcvpkt)

A U udt_send (sndpkt[nextsegnum-1])

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)

base=getacknum(rcvpkt) +1
If (base==nextsegnum)
stop_timer
else
start_timer

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN: Receiver Extended FSM @ or2)

rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt)
&& hassegnum (rcvpkt, expectedsegnum)

extract (rcvpkt, data)

deliver data(data)

sndpkt=make_pkt (expectedsegnum, ACK, checksum)
udt_send (sndpkt)

expectedsegnum++

default

A udt_send (sndpkt)

expectedsegnum=1
sndpkt=make_ pkt (0, ACK, checksum)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN: Receiver Extended FSM (2 o2

« ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

— may generate duplicate ACKs
— need only remember expectedseqnum

* out-of-order pkt:
— discard (don’t buffer): no receiver buffering!
— re-ACK pkt with highest in-order seq #

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN in Action

sender window (N=4) sender

R4 5678
D 5678
Y 5678

CEEE} 567 8

o] 1 2 3 4 FHE
W12 3 4 5 A

Nl2 345 Nas
E? 345 e

W12 34 5 &
B2 3 4 5 kK

send pkt0
send pktl
send pkt2q
send pkt3

(wait)

rcv ack0, send pkt4
rcv ackl, send pkt5

ignore duplicate ACK

receiver

pkt 2 timeout _

send pkt2
send pkt3
send pkt4
send pkt5

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

\
=

receive pkt0, send ack0
receive pktl, send ackl

receive pkt3, discard,
(re)send ack1l

receive pkt4, discard,
(re)send ack1l
receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack?2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Selective Repeat (103

* receiver individually acknowledges all correctly received
pkts

— buffers pkts, as needed, for eventual in-order delivery
to upper layer

 sender only resends pkts for which ACK not received
— sender timer for each unACKed pkt

» sender window
— N consecutive seq #'s
— limits seq #s of sent, unACKed pkts

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat: Sender, Receiver
Windows

send_base nextsegnum
Key:
Already Usable,
ACK'd not yet sent
| | |
I I Sent, not [} Not usable
' Window size |:| yet ACK'd
l N

|
a. Sender view of sequence numbers

rcv_base

Key:

OOCOCOOMMNRAONNAORNID M D

.) Expected, not | |
Window size |:| yet received Not usable

M

b. Receiver view of sequence numbers

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat 2 of3)

sender

data from above:

* if next available seq # in window, send pkt
timeout(n):

* resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

* mark pkt n as received

* if n smallest unACKed pkt, advance window base to next
unACKed seq #

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat of3)

receiver

pkt n in [rcvbase, rcvbase+N-1]
« send ACK(n)
« out-of-order: buffer

* in-order: deliver (also deliver buffered, in-order pkts), advance
window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

* ACK(n)
otherwise:

» ignore
@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat in Action

sender window (N=4)

sender

a4 5678
Ny 5678
R4 56738
)4 5678

OPAER- 678
2 345 e

0 TPEEXEI 7 8
0 TPEEEN 7 8

0 TEEEEN 7 8
0 TPEEEN 7 8

@ Pearson

send pkt0
send pktl
send pkt2-
send pkt3

(wait)

rcv ackO, send pkt4
rcv ackl, send pkt5

record ack3 arrived

P

pkt 2 timeout _
send pkt2

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?

receiver

receive pkt0, send ack0
receive pktl, send ackl

receive pkt3, buffer,
send ack3

receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat: Dilemma (1 or2)

* example:
- seq#s:0,1,2,3
* window size=3

* receiver sees no difference
in ftwo scenarios!

* duplicate data accepted as
new in (b)

Sender window
(after receipt)

0123012
0123012

0123012

timeout
retransmit pktO

0123012

(a) no problem

Receiver window
(after receipt)

pktO

ACKO 0123012
pktl

123012

ACK1 1
pkt2 ::

ACK2 0123012

NA NA A
VN N %

pktO ,° receive packet

with seq number 0

receiver can’t see sender side. receiver behavior identical in both cases!

something’s (very) wrong!

@ Pearson

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat: Dilemma 2or2)

Q: what relationship between seq # size and window size to avoid problem in
(b)?

(b) oops!

Sender window Receiver window
(after receipt) (after receipt)

0123012 pktO

\
NANI

ACKO 01 23012
0123012 pktl

ACK1 0123012
0123012 pkt2

ACK2 0123012

0123012 pkt3

X

/

0123012 pktO

receive packet
with seqg number 0

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (s of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Overview RFCs: 793, 1122, 1323, 2018,
2581

* point-to-point: — MSS: maximum segment
— one sender, one receiver size

- reliable, in-order byte steam: * connection-oriented.:
— no “message boundaries’ — handshaking (exchange
o of control msgs) inits

* pipelined: sender, receiver state
— TCP congestion and flow before data exchange

control set window size
* flow controlled:

full duplex data: — sender will not

— bi-directional data flow in overwhelm receiver
same connection

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Segment Structure

32 bits .

3

URG: urgent data
(generally not used)\ source port # | dest port #

ACK: ACK # . sequence number
valid \\a"'@owledgement number

PSH: push datanow | v um_AERS|F receive window
(generally not used) —] Urg data pointer

RST, SYN, FIN| op/o{ s (variable length)

connection estab
(setup, teardown
commands) Sy
application
Internet / data
checksum (variable length)
(as in UDP)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sequence Numbers, ACKS (1 o2

sequence numbers: outgoing segment from sender
source port # dest port #
— byte stream “number” of sequence number
. . y acknowledgement number
first byte in segment’s] rwnd
d ata checksum urg pointer
wmdow size

acknowledgements:
- seq #of next by \IIIIII\I\III\IIIIIIIIIIIII

sender sequence number space

expected from other side
_ i sent sent not- usable not
Cumulatlve ACK ACKed yet ACKed but not usable
("in-) yet sent
Q: how receiver handles out-of- flight™)
incoming segment to sender
Order SegmentS source port # | dest port #
sequence number

- A: TCP SpeC dOesn’t Say, Bl acknowledgement number
- up to implementor al | rnd

checksum urg pointer

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sequence Numbers, ACKS o2

Host A Host B

e e

. . " "

——

User types

T C T
Host ACKs
receipt of 'C’,
echoes back 'C!

Host ACKs

receipt of

echoed 'C'

Time Time

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Round Trip Time, Timeout (1 of3)

Q: how to set TCP timeout

value?

* longer than RTT

— but RTT varies

» too short: premature
timeout, unnecessary

retransmissions

« too long: slow reaction to

segment loss

@ Pearson

Copyright © 2017,

Q: how to estimate RTT?

« SampleRTT: measured time
from segment transmission
until ACK receipt

— ignore retransmissions

« SampleRTT will vary, want
estimated RTT “smoother”

— average several recent

measurements, not just
current SampleRTT

2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Round Trip Time, Timeout (2 of3)

EstimatedRTT = (l1l-o)*EstimatedRTT+a*SampleRTT

* exponential weighted moving average
* influence of past sample decreases exponentially fast

 typical value: a = 0.125

350

300 |

' \
250— l.ﬁn—SampIe RTT | ’ﬁ\ “1 || ‘ H (| i
I\ |

RTT (milliseconds)

200

150

100 | | | | T T T | T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

Time (seconds)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Round Trip Time, Timeout ¢ of3)

+ timeout interval: EstimatedRTT plus “safety margin”
— large variation inEstimatedRTT — larger safety margin.

« estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B* ‘SampleRTT - EstimatedRTTH

(typically, p= 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

—

estimated RTT “safety margin”

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Reliable Data Transfer

* TCP creates rdt service on top of IP’s unreliable service
— pipelined segments
— cumulative acks
— single retransmission timer

* retransmissions triggered by:
— timeout events
— duplicate acks

* let’s initially consider simplified TCP sender:
— ignore duplicate acks
— ignore flow control, congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sender Events:

data rcvd from app: timeout:
- create segment with seq # * retransmit segment that caused
timeout

* seq # is byte-stream number

of first data byte in segment ~ * restarttimer

- start timer if not already ack revd:
running - if ack acknowledges previously
— think of timer as for unacked segments
oldest unacked segment — update what is known to be
ACKed

— expiration interval:

TimeOutInterval — start timer if there are still

unacked segments

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sender (Simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)

if (timer currently not running)
A ™ start timer

NextSegNum = InitialSeqNum
SendBase = InitialSegNum

timeout
retransmit not-yet-acked segment
with smallest seq. #

start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
/* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Retransmission Scenarios (i of2)

——timeout —

Seq=92, 8 bytes of data

ACK=100

—

lost ACK scenario

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

v)

Hos

\
Seq=92, 8 bytes of data
-
ACK=100
X

Host A

g

SendBase=92

——timeout ——

SendBase=100
SendBase=120

SendBase=120

\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of dat

\

ACK=100
ACK=120

Seq=92, 8

bytes of data\

ACK=120

\

premature timeout

Host B

TCP: Retransmission Scenarios 2 of2)

Host A Host B
g e

Seq=92, 8 bytes of data

Seq=100, 20 bytes%fdg
ACK=100
X+ /

ACK=120

i

f———— timeout

Seq=120, 15 bytes of data

\L

cumulative ACK

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP ACK Generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect Sequence # . | indicating Sequence # of next

Gap detected expected byte

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Fast Retransmit (1 or2)

« time-out period often relatively long:
— long delay before resending lost packet

« detect lost segments via duplicate ACKs.
— sender often sends many segments back-to-back
— if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3 ACKs for same data (“triple duplicate
ACKs"), resend unacked segment with smallest seq #

— likely that unacked segment lost, so don’t wait for
timeout

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Fast Retransmit or2)

Host A Host B

— Seq=92, 8 bytes of data

Seq= 100,‘20‘Dﬁegfd'a\ta.
\X

L ~ACK=100

timeout

““ACK=100
|4

~Seq=100, 20 bytes of data

¥y

v v

fast retransmit after sender
receipt of triple duplicate ACK

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (70f10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Flow Control (1 of2)

flow control

N
application ‘
receiver controls Zpplication may | S .
sender. so sender TCP socket buffers ... ———\} application
y t , rﬂ T(;P socket 0S
won | overtiow ' lower than TCP recelve'r,{)uffers
rece|ver’s buffer by receiver is delivering —|— ‘
T (sender is sending) TP
transmitting too code
much, too fast "
IP
code \'-
L 1 v : \f ‘

1 I
from sender

receiver protocol stack

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Flow Control o2

* receiver “advertises” free buffer space
by including rwnd value in TCP

header of receiver-to-sender to application process
segments | | : y_I_\
— RcvBuffer size set via socket RevBuffer buffered data
options (typical default is 4096 !
bytes) r‘m‘f free buffer space
— many operating systems T I

autoadeSt RcvBuffer TCP segment payloads

 sender limits amount of unacked (“in-

flight”) data to receiver’s rwnd value receiver-side buffering

 guarantees receive buffer will not
overflow

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (s of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection Management

before exchanging data, sender/receiver “handshake”:

 agree to establish connection (each knowing the other willing to establish

connection)

* agree on connection parameters

application

1 1
(ol B |
connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

network

Socket clientSocket =
newSocket ("hostname"
number") ;

—V
application
11 1
[al_ln |
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept () ;

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Agreeing to Establish a Connection (1 or2)

2-way handshake:
Q: will 2-way handshake

i always work in network?

T Let’s talk - variable delays
ESTAB
esTaB o O retransmitted messages
(example. req_conn(x)) due
to message loss
2 B

choose x message reordering

Wq_conn(g})
ESTAB

acc_conn(x)
ESTAB &—

can’'t “see” other side

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Agreeing to Establish a Connection 2 or2)

2-way handshake failure scenarios:

3 B I B

e
choose x choose x
}q_conn(x }q_conn(x
ESTAB ESTAB
retransmit | acc_conn(x) retransmit | acc_conn(x)
reg_conn(x) ~ reg_conn(x)
ESTAB
ST req_conn(x) \data(x+1)\~ accept
9 retransmit data(x+1)
data(x+1) ™\
| _ connection | L. connection |
.client X completes server dlient x completes server
terminates forgets x terminates req__conn(x) forgets x
ESTAB data(xk‘ ECSCTQAE
half open connection! > P
: data(x+1)
(no client!)

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP3-Way Handshake

client state

LISTEN

choose init seq hum, x
send TCP SYN msg

SYNSENT

v received SYNACK(x)
indicates server is live;

ESTAB send ACK for SYNACK;
this segment may contain
client-to-server data

4 i

\

SYNbit=1, Seq=x

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

/
\
ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

ESTAB

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP3-Way Handshake: FSM

Socket connectionSocket =
welcomeSocket. accept() ;

A
Socket clientSocket =
SYN(X) newSocket ("hostname", "port

number") ;
SYNACK(segq=y,ACKnum=x+1)
create new socket for SYN(segq=x)

communication back to client
v

[SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)

ACK(ACKnum=y+1)
A

A\ 4

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Closing a Connection (1 of2)

 client, server each close their side of connection
— send TCP segment with FIN bit = 1

* respond to received FIN with ACK
— on receiving FIN, ACK can be combined with own FIN

» simultaneous FIN exchanges can be handled

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Closing a Connection (2 of2)

client state J E server state
ESTAB > ESTAB
clientSocket.close () \FIth 1
FIN_WAIT 1 can no longer It=1, seq=Xx
send but can q\» v
receive data _— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can stil
FIN_WAIT_2 waitfor server — send data
LAST_ACK
v FINbit=1, seq=
TIMED_WAIT — ‘)N =Y can no longer
B \ —~— send data
ACKbit=1; ACKnum=y+1
timed wait ~— v
for 2*max CLOSED
segment lifetime
CLOSED l

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (9 of10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Principles of Congestion Control

congestion:

- informally: “too many sources sending too much data too
fast for network to handle”

 different from flow control!

* manifestations:
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)

* a top-10 problem!

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 1 (10r2)

* two senders, two receivers
* one router, infinite buffers
« output link capacity: R

* no retransmission

\in: original data Aout
Host A / Host B Host C / Host D

B - -8 B F
2 r = 2
=<\ ==
| == T
)
—

Unlimited shared
output link buffers

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 1 2or2)

* maximum per-connection throughput: % RI2

)\out

 large delays as arrival rate,)\in,approaches capacity

Delay

2 _
S

)‘in

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (1 of6)

* one router, finite buffers

 sender retransmission of timed-out packet
— application-layer input = application-layer output: A_=A_,
— transport-layer input includes retransmissions : A > A

Ain : original data

p—tf— }\'out

A': original data, plus
retransmitted data

finite shared output
link buffers

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (2 ofo)

idealization: perfect knowledge A .
- sender sends only when router 3 |
buffers available |

Ain : original data

copy

A'iy: original data, plus
retransmitted data

free buffer space!

finite shared output
link buffers

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (3 of6)

 ldealization: known loss packets can be lost, dropped
at router due to full buffers

» sender only resends if packet known to be lost

B —)\, original data

Ccopy

A original data, plus
retransmitted data

no buffer space!
> .

S—TeEEIEEDR
IRRRRLN

?\;
Host B

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 4 ofo)

when gending at R/2,
some/packets are
retrapnsmissions but
asymptotic goodput
is still R/2 (why?)

;\'out

’ R/2
kin

Ain : original data

“_‘_xout

A'in: original data, plus
retransmitted data

free buffer space!

o
a i — H
By

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (5 of6)

Realistic: duplicates

» packets can be lost, dropped at router due to full buffers

» sender times out prematurely, sending two copies, both
of which are delivered

R/2

}‘out

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

; R/2
)”in

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (s of o)

“costs” of congestion:

« more work (retrans) for given “goodput”

* unneeded retransmissions: link carries multiple copies of pkt

— decreasing goodput

P

&4)
}“in

timeout = [| 7»'-
in

free buffer space!

pe—i— kout

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 3 (10r2)

- four senders Q: what happens as A_andA_' increase ?

- multihop paths A:asred A 'increases, all arriving blue pkts

. _ at upper queue are dropped, blue throughput — 0
* timeout/retransmit

Host A

Ain : original data 7‘*out\ Host B
’4“”7\,'",: original data, plus 3

retransmitted data
finite shared output

ﬁ o _7 link buffers = E

Host D
_I_A_ Host C
A9
H — 11 @ H
AN =

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 3 (2or2)

C/2

}‘out

, [
}"in C/2

another “cost” of congestion:

« when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (100 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
— segment structure
— reliable data transfer
— flow control
— connection management

3.6 principles of congestion control

3.7 TCP congestion control

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Congestion Control: Additive
Increase Multiplicative Decrease

- approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs

— additive increase: increase cwnd by 1 MSS every RTT until
loss detected

— multiplicative decrease: cut cwnd in half after loss
—— additively increase window size ...
J‘ ... until loss occurs (then cut window in half)

time

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Congestion Control: Details

sender sequence number space R . . .
e cwnd ——| cwnd is dynamic, function

of perceived network
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

TCP sending rate:

last byte Iast byte

ACKed f,g{‘i\cnfgd sent - roughly: send cwnd
1gl‘_‘ir;]-t”) bytes, wait RTT for ACKS,
9

then send more bytes

sender limits transmission: cwnd

rate = bytes/sec

LastByteSent- < cwnd
LastByteAcked

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Slow Start

* when connection begins,
Increase rate exponentially
until first loss event:

— initially ecwnd = 1 MSS

— double cwnd every RTT

— done by incrementing
cwnd for every ACK
received

* summary: initial rate is slow
but ramps up exponentially
fast

Ur segments

time

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Detecting, Reacting to Loss

* loss indicated by timeout:
— cwnd set to 1 MSS;

— window then grows exponentially (as in slow start) to
threshold, then grows linearly

* loss indicated by 3 duplicate ACKs: TCP RENO

— dup ACKs indicate network capable of delivering
some segments

— cwnd is cut in half window then grows linearly

« TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate
acks

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Switching from Slow Start to CA

I
|

TCPR
Q: when should the RS e
exponential increase g 10+
switch to linear? R
S o
1 £2 "]
A: when cwnd getsto — £ 4
2 v TCP Tahoe
of its value before timeout. o
01 2 3 4 5 6 7 8 9 10 1112 13 14 15

Transmission round

Implementation:
* variable ssthresh

: 1
* on loss event, ssthresh is set to 2 of cwnd just before loss event

* Check out the online interactive exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

http://gaia.cs.umass.edu/kurose_ross/interactive/

Summary: TCP Congestion Control

new ACk 5 S

duplicate ACK. Ao cwnd = cwnd + MSS » (MSS/cwnd)
dupACKcount++ new dupACKcount = 0

cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount =0
A transmit new segment(s), as allowed
cwnd = 1 MSS
ssthresh = 64 KB cwnd > ssthresh
_dupACKeount =0 A
h @ timeout
e
J'ssthresh = cwnd/2 .
=22a (/ cwnd = 1 MSS duplicate ACK
(e "<) timeout dupACKcount = 0 dupACKcount++
Cj ssthresh = cwnd/2 4 retransmit missing segment 4
cwnd = 1 MSS
dupACKcount =0 2o
retransmit missing segment (€ -*{ 1 <

timeout) >

ssthresh = cwnd/2 ot

cwnd = 1 New ACK

dupACKeount = 0 cwnd = ssthresh

dupACKcount == retransmit missing segment dupACKcount = 0 dupACKcount ==
ssthresh=cwnd/2 ssthresh=cwnd/2
cwnd = ssthresh+ 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

\ 4

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

-,

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Throughput

« average TCP thruput as function of window size, RTT?
— ignore slow start, assume always data to send

* W: window size (measured in bytes) where loss occurs
— average window size (# in-flight bytes) is

— average thruput is %W per RTT %W

avg TCP thruput = S W bytes/sec
4RTT
W -
s /l/l/l/l/l/

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Futures: TCP over “Long, Fat Pipes”

example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L [Mathis
19971

1.22.MSS
RTT L

TCP throughput =

— to achieve 10 Gbps throughput, need a loss rate of
L=2.-10"° —a very small loss rate!

new versions of TCP for high-speed

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Fairness

fairness goal: if K TCP sessions share same bottleneck

link of bandwidth R, each should have average rate of R
K

TCP connection 1

3
- ﬁottleneek
'J router

TCP connec?ign 2 capacity R

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Why is TCP Fair?

two competing sessions:
- additive increase gives slope of 1, as throughout increases

« multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput g

Connection 1 throughput R

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Fairness (More)

Fairness and UDP Fairness, parallel TCP connections

* multimedia apps often do « application can open multiple parallel
not use TCP connections between two hosts

— do not want rate
throttled by

congestion control « example, link of rate R with 9 existing

connections: =
— new app asks for 1 TCP, gets rate 0

 web browsers do this

* instead use UDP:

— send audio/video at
constant rate, — new app asks for 11 TCPs, gets R

tolerate packet loss 2

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Explicit Congestion Notification (ECN)

network-assisted congestion control:

* two bits in IP header (ToS field) marked by network router to indicate
congestion

» congestion indication carried to receiving host

* receiver (seeing congestion indication in IP datagram)) sets ECE bit on
receiver-to-sender ACK segment to notify sender of congestion

TCP ACK segment

source Y4 destination
application application
transport transport
network r)
' link Vj’
physical

IP datagram

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Summary

* principles behind transport next:
layer services:

— multiplexing,
demultiplexing

— reliable data transfer

— flow control
_ Congestion control * two network Iayer Chapters:

— data plane
— control plane

* leaving the network “edge”
(application, transport
layers)

* into the network “core”

* instantiation, implementation
In the Internet

~ UDP
- TCP

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their

classes. All recipients of this work are expected to abide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

@Pearson Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

