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Transport Layer

our goals:

• understand principles behind transport layer services:
– multiplexing, demultiplexing
– reliable data transfer
– flow control
– congestion control

• learn about Internet transport layer protocols:
– UDP: connectionless transport
– TCP: connection-oriented reliable transport
– TCP congestion control



Learning Objectives (1 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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Transport Services and Protocols

• provide logical communication
between app processes running on 
different hosts

• transport protocols run in end systems
– send side: breaks app messages 

into segments, passes to network 
layer

– rcv side: reassembles segments 
into messages, passes to app 
layer

• more than one transport protocol 
available to apps

– Internet: TCP and UDP
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Transport vs. Network Layer

• network layer: logical communication between hosts

• transport layer: logical communication between processes
– relies on, enhances, network layer services

household analogy:

12 kids in Ann’s house sending letters to 12 kids in Bill’s house:

• hosts = houses

• processes = kids

• app messages = letters in envelopes

• transport protocol = Ann and Bill who demux to in-house siblings

• network-layer protocol = postal service
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Internet Transport-Layer Protocols

• reliable, in-order delivery (TCP)
– congestion control
– flow control
– connection setup

• unreliable, unordered delivery: UDP
– no-frills extension of “best-

effort” IP

• services not available:
– delay guarantees
– bandwidth guarantees
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Learning Objectives (2 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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Multiplexing/Demultiplexing
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How Demultiplexing Works

• host receives IP datagrams
– each datagram has source IP 

address, destination IP 
address

– each datagram carries one 
transport-layer segment

– each segment has source, 
destination port number

• host uses IP addresses & port 
numbers to direct segment to 
appropriate socket
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Connectionless Demultiplexing

• recall: created socket has host-
local port #:

• recall: when creating datagram to 
send into UDP socket, must 
specify

– destination IP address
– destination port #

• when host receives UDP 
segment:

– checks destination port # in 
segment

– directs UDP segment to 
socket with that port #

IP datagrams with same dest. 
port #, but different source IP 
addresses and/or source port 
numbers will be directed to 
same socket at dest



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connectionless Demux: Example
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Connection-Oriented Demux

• TCP socket identified by 4-tuple:
– source IP address
– source port number
– dest IP address
– dest port number

• demux: receiver uses all four values to direct segment to appropriate 
socket

• server host may support many simultaneous TCP sockets:
– each socket identified by its own 4-tuple

• web servers have different sockets for each connecting client
– non-persistent HTTP will have different socket for each request
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Connection-Oriented Demux: Example (1 of 2)
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Connection-Oriented Demux: Example (2 of 2)
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Learning Objectives (3 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones” Internet 
transport protocol

• “best effort” service, UDP 
segments may be:

– lost
– delivered out-of-order to 

app

• connectionless:
– no handshaking between 

UDP sender, receiver
– each UDP segment 

handled independently of 
others

• UDP use:
– streaming multimedia apps 

(loss tolerant, rate 
sensitive)

– DNS
– SNMP

• reliable transfer over UDP:
– add reliability at 

application layer
– application-specific error 

recovery!
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UDP: Segment Header (1 of 2)
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UDP: Segment Header (2 of 2)

why is there a UDP?

• no connection establishment (which can add delay)

• simple: no connection state at sender, receiver

• small header size

• no congestion control: UDP can blast away as fast as 
desired
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UDP Checksum

Goal: detect “errors” (example, flipped bits) in transmitted segment

sender:

• treat segment contents, 
including header fields, as 
sequence of 16-bit integers

• checksum: addition (one’s 
complement sum) of 
segment contents

• sender puts checksum 
value into UDP checksum 
field

receiver:

• compute checksum of received 
segment

• check if computed checksum 
equals checksum field value:

– NO - error detected
– YES - no error detected. 

But maybe errors 
nonetheless? More later 
….
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Internet Checksum: Example

example: add two 16-bit integers

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result
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Learning Objectives (4 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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Principles of Reliable Data Transfer

• important in application, transport, link layers
– top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable 
data transfer protocol (rdt)
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Reliable Data Transfer: Getting Started (1 of 2)
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Reliable Data Transfer: Getting Started (2 of 2)

we’ll:

• incrementally develop sender, receiver sides of reliable data transfer 
protocol (rdt)

• consider only unidirectional data transfer
– but control info will flow on both directions!

• use finite state machines (FSM) to specify sender, receiver
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rdt1.0: Reliable Transfer over a Reliable 
Channel

• underlying channel perfectly reliable
– no bit errors
– no loss of packets

• separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver reads data from underlying channel

sender receiver
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rdt2.0: Channel with Bit Errors (1 of 2)

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:

How do humans recover from “errors” 
during conversation?
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rdt2.0: Channel with Bit Errors (2 of 2)

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells sender that 

pkt received OK
– negative acknowledgements (NAKs): receiver explicitly tells 

sender that pkt had errors
– sender retransmits pkt on receipt of NAK

• new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection
– feedback: control msgs (ACK, NAK) from receiver to sender
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rdt2.0: FSM Specification

sender receiver
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rdt2.0: Operation with No Errors



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Error Scenario
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rdt2.0 Has a Fatal Flaw!

what happens if ACK / NAK 
corrupted?

• sender doesn’t know what 
happened at receiver!

• Can’t just retransmit: 
possible duplicate

handling duplicates:

• sender retransmits current 
pkt if ACK / NAK corrupted

• sender adds sequence 
number to each pkt

• receiver discards (doesn’t 
deliver up) duplicate pkt

stop and wait

sender sends one packet, then waits for 
receiver response
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rdt2.1: Sender, Handles Garbled ACK/NAKs
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rdt2.1: Receiver, Handles Garbled ACK/NAKs
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rdt2.1: Discussion

sender:

• seq # added to pkt

• two Sequence #’s (0,1) will 

suffice. Why?

• must check if received ACK/

NAK corrupted

• twice as many states

– state must “remember” 

whether “expected” pkt 

should have seq # of 0 or 

1

receiver:

• must check if received 

packet is duplicate

– state indicates whether 

0 or 1 is expected pkt 

seq #

• note: receiver can not
know if its last ACK/NAK 

received OK at sender
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rdt2.2: A NAK-free Protocol

• same functionality as rdt2.1, using ACKs only

• instead of NAK, receiver sends ACK for last pkt 
received OK

– receiver must explicitly include seq # of pkt being 
ACKed

• duplicate ACK at sender results in same action as NAK: 
retransmit current pkt
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rdt2.2: Sender, Receiver Fragments
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rdt3.0: Channels with Errors and Loss

new assumption: underlying channel can also lose packets (data, 
ACKs)

– checksum, Sequence #, ACKs, retransmissions will be of 
help … but not enough

approach: sender waits “reasonable” amount of time for ACK

• retransmits if no ACK received in this time

• if pkt (or ACK) just delayed (not lost):
– retransmission will be duplicate, but Sequence #’s already 

handles this
– receiver must specify seq # of pkt being ACKed

• requires countdown timer
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rdt3.0 Sender
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rdt3.0 in Action (1 of 2)

(a) no loss (b) packet loss
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rdt3.0 in Action (2 of 2)

(c) ACK loss (d) premature timeout/ delayed ACK
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Performance of rdt3.0 (1 of 2)

• rdt3.0 is correct, but performance stinks

• example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

= = =trans
Ld
R 9

8000 bits / packet 8 microseconds
10 bits / sec
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Performance of rdt3.0 (2 of 2)

– Usender: utilization – fraction of time sender busy 
sending

= = =sender

L
RU LRTT +
R

.008 0.00027
30.008

– if RTT = 30 msec, 1KB pkt every 30 msec: 33kB/sec 
thruput over 1 Gbps link

• network protocol limits use of physical resources!
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rdt3.0: Stop-and-wait Operation

= = =sender

L
RU LRTT +
R

.008 0.00027
30.008
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Pipelined Protocols

• pipelining: sender allows multiple, “in-flight”, yet-to-be acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver

• two generic forms of pipelined protocols: go-Back-N, selective repeat
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Pipelining: Increased Utilization

3-packet pipelining 
increases utilization by 
a factor of 3!
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Pipelined Protocols: Overview

Go-back-N:

• sender can have up to N 
unacked packets in pipeline

• receiver only sends 
cumulative ack

– doesn’t ack packet if 
there’s a gap

• sender has timer for oldest 
unacked packet

– when timer expires, 
retransmit all unacked 
packets

Selective Repeat:

• sender can have up to N 
unack’ed packets in pipeline

• rcvr sends individual ack for 
each packet

• sender maintains timer for each 
unacked packet

– when timer expires, 
retransmit only that unacked 
packet



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Go-Back-N: Sender

• k-bit seq # in pkt header

• “window” of up to N, consecutive unack’ed pkts allowed

• ACK (n): ACKs all pkts up to, including seq # n – “cumulative ACK”
– may receive duplicate ACKs (see receiver)

• timer for oldest in-flight pkt

• timeout(n): retransmit packet n and all higher seq # pkts in window
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GBN: Sender Extended FSM
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GBN: Receiver Extended FSM (1 of 2)
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GBN: Receiver Extended FSM (2 of 2)

• ACK-only: always send ACK for correctly-received pkt 
with highest in-order seq #

– may generate duplicate ACKs
– need only remember expectedseqnum

• out-of-order pkt:
– discard (don’t buffer): no receiver buffering!
– re-ACK pkt with highest in-order seq #
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GBN in Action
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Selective Repeat (1 of 3)

• receiver individually acknowledges all correctly received 
pkts

– buffers pkts, as needed, for eventual in-order delivery 
to upper layer

• sender only resends pkts for which ACK not received
– sender timer for each unACKed pkt

• sender window
– N consecutive seq #’s
– limits seq #s of sent, unACKed pkts
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Selective Repeat: Sender, Receiver 
Windows
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Selective Repeat (2 of 3)

sender

data from above:

• if next available seq # in window, send pkt

timeout(n):

• resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

• mark pkt n as received

• if n smallest unACKed pkt, advance window base to next 
unACKed seq #
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Selective Repeat (3 of 3)

receiver
pkt n in [rcvbase, rcvbase+N-1]

• send ACK(n)

• out-of-order: buffer

• in-order: deliver (also deliver buffered, in-order pkts), advance 
window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

• ACK(n)
otherwise:

• ignore
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Selective Repeat in Action
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Selective Repeat: Dilemma (1 of 2)

• example:

• seq #’s: 0, 1, 2, 3

• window size=3

• receiver sees no difference 
in two scenarios!

• duplicate data accepted as 
new in (b)

(a) no problem

receiver can’t see sender side. receiver behavior identical in both cases!
something’s (very) wrong!
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Selective Repeat: Dilemma (2 of 2)

Q: what relationship between seq # size and window size to avoid problem in 
(b)?

(b) oops!
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Learning Objectives (5 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 
2581

• point-to-point:
– one sender, one receiver

• reliable, in-order byte steam:
– no “message boundaries”

• pipelined:
– TCP congestion and flow 

control set window size

• full duplex data:
– bi-directional data flow in 

same connection

– MSS: maximum segment 
size

• connection-oriented:
– handshaking (exchange 

of control msgs) inits 
sender, receiver state 
before data exchange

• flow controlled:
– sender will not 

overwhelm receiver
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TCP Segment Structure
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TCP Sequence Numbers, ACKs (1 of 2)

sequence numbers:
– byte stream “number” of 

first byte in segment’s 
data

acknowledgements:
– seq # of next byte 

expected from other side
– cumulative ACK

Q: how receiver handles out-of-
order segments

– A: TCP spec doesn’t say, 
- up to implementor
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TCP Sequence Numbers, ACKs (2 of 2)
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TCP Round Trip Time, Timeout (1 of 3)

Q: how to set TCP timeout 
value?

• longer than RTT
– but RTT varies

• too short: premature 
timeout, unnecessary 
retransmissions

• too long: slow reaction to 
segment loss

Q: how to estimate RTT?

• SampleRTT: measured time 
from segment transmission 
until ACK receipt

– ignore retransmissions

• SampleRTT will vary, want 
estimated RTT �smoother�

– average several recent
measurements, not just 
current SampleRTT
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TCP Round Trip Time, Timeout (2 of 3)

EstimatedRTT = (1-α)*EstimatedRTT+α*SampleRTT

• exponential weighted moving average

• influence of past sample decreases exponentially fast

• typical value: a = 0.125
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TCP Round Trip Time, Timeout (3 of 3)

• timeout interval: EstimatedRTT plus “safety margin”
– ®EstimatedRTTlarge variation in larger safety margin.

• estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-β)*DevRTT +
           β* SampleRTT -EstimatedRTT

typically,β= 0( .25)
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Learning Objectives (6 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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TCP Reliable Data Transfer

• TCP creates rdt service on top of IP’s unreliable service
– pipelined segments
– cumulative acks
– single retransmission timer

• retransmissions triggered by:
– timeout events
– duplicate acks

• let’s initially consider simplified TCP sender:
– ignore duplicate acks
– ignore flow control, congestion control
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TCP Sender Events:

data rcvd from app:

• create segment with seq #

• seq # is byte-stream number 
of first data byte in segment

• start timer if not already 
running

– think of timer as for 
oldest unacked segment

– expiration interval: 
TimeOutInterval

timeout:

• retransmit segment that caused 
timeout

• restart timer

ack rcvd:

• if ack acknowledges previously 
unacked segments

– update what is known to be 
ACKed

– start timer if there are still 
unacked segments
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TCP Sender (Simplified)
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TCP: Retransmission Scenarios (1 of 2)



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Retransmission Scenarios (2 of 2)
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TCP ACK Generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

immediately send single cumulative 
ACK, ACKing both in-order segments

arrival of out-of-order segment
higher-than-expect Sequence # .
Gap detected

immediately send duplicate ACK,
indicating Sequence # of next 
expected byte

arrival of segment that 
partially or completely fills gap

immediate send ACK, provided that
segment starts at lower end of gap
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TCP Fast Retransmit (1 of 2)

• time-out period often relatively long:
– long delay before resending lost packet

• detect lost segments via duplicate ACKs.
– sender often sends many segments back-to-back
– if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3 ACKs for same data (“triple duplicate 
ACKs”), resend unacked segment with smallest seq #

– likely that unacked segment lost, so don’t wait for 
timeout
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TCP Fast Retransmit (2 of 2)
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Learning Objectives (7 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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TCP Flow Control (1 of 2)

flow control

receiver controls 
sender, so sender 
won’t overflow 
receiver’s buffer by 
transmitting too 
much, too fast
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TCP Flow Control (2 of 2)

• receiver “advertises” free buffer space 
by including rwnd value in TCP 
header of receiver-to-sender 
segments

– RcvBuffer size set via socket 
options (typical default is 4096 
bytes)

– many operating systems 
autoadjust RcvBuffer

• sender limits amount of unacked (“in-
flight”) data to receiver’s rwnd value

• guarantees receive buffer will not 
overflow
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Learning Objectives (8 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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Connection Management

before exchanging data, sender/receiver “handshake”:

• agree to establish connection (each knowing the other willing to establish 
connection)

• agree on connection parameters
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Agreeing to Establish a Connection (1 of 2)

2-way handshake:
Q: will 2-way handshake 
always work in network?

• variable delays

• retransmitted messages 
(example. req_conn(x)) due 
to message loss

• message reordering

• can’t “see” other side
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Agreeing to Establish a Connection (2 of 2)

2-way handshake failure scenarios:
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TCP3-Way Handshake
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TCP3-Way Handshake: FSM
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TCP: Closing a Connection (1 of 2)

• client, server each close their side of connection
– send TCP segment with FIN bit = 1

• respond to received FIN with ACK
– on receiving FIN, ACK can be combined with own FIN

• simultaneous FIN exchanges can be handled
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TCP: Closing a Connection (2 of 2)
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Learning Objectives (9 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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Principles of Congestion Control

congestion:

• informally: �too many sources sending too much data too 
fast for network to handle�

• different from flow control!

• manifestations:
– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

• a top-10 problem!
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Causes/Costs of Congestion: Scenario 1 (1 of 2)

• two senders, two receivers

• one router, infinite buffers

• output link capacity: R

• no retransmission
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Causes/Costs of Congestion: Scenario 1 (2 of 2)

• maximum per-connection throughput: R
2

• large delays as arrival rate, ,inλ approaches capacity
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Causes/Costs of Congestion: Scenario 2 (1 of 6)

• one router, finite buffers

• sender retransmission of timed-out packet
– application-layer input = application-layer output: =in outλ λ
– transport-layer input includes retransmissions : ³in inλ' λ



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (2 of 6)

idealization: perfect knowledge

• sender sends only when router 
buffers available
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Causes/Costs of Congestion: Scenario 2 (3 of 6)

• Idealization: known loss packets can be lost, dropped 
at router due to full buffers

• sender only resends if packet known to be lost
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Causes/Costs of Congestion: Scenario 2 (4 of 6)
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Causes/Costs of Congestion: Scenario 2 (5 of 6)

Realistic: duplicates

• packets can be lost, dropped at router due to full buffers

• sender times out prematurely, sending two copies, both 
of which are delivered
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Causes/Costs of Congestion: Scenario 2 (6 of 6)

“costs” of congestion:

• more work (retrans) for given “goodput”

• unneeded retransmissions: link carries multiple copies of pkt
– decreasing goodput
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Causes/Costs of Congestion: Scenario 3 (1 of 2)

• four senders

• multihop paths

• timeout/retransmit

Q: what happens as 'in inλ  and λ increase ?
A: as red inλ ' increases, all arriving blue pkts
at upper queue are dropped, blue throughput → 0
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Causes/Costs of Congestion: Scenario 3 (2 of 2)

another “cost” of congestion:

• when packet dropped, any “upstream transmission 
capacity used for that packet was wasted!
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Learning Objectives (10 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control
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TCP Congestion Control: Additive 
Increase Multiplicative Decrease

• approach: sender increases transmission rate (window size), 
probing for usable bandwidth, until loss occurs

– additive increase: increase cwnd by 1 MSS every RTT until 
loss detected

– multiplicative decrease: cut cwnd in half after loss
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TCP Congestion Control: Details

• cwnd is dynamic, function 
of perceived network 
congestion

• sender limits transmission:

TCP sending rate:

• roughly: send cwnd 
bytes, wait RTT for ACKS, 
then send more bytes
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TCP Slow Start

• when connection begins, 
increase rate exponentially 
until first loss event:

– initially cwnd = 1 MSS
– double cwnd every RTT
– done by incrementing 
cwnd for every ACK 
received

• summary: initial rate is slow 
but ramps up exponentially 
fast
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TCP: Detecting, Reacting to Loss

• loss indicated by timeout:
– cwnd set to 1 MSS;
– window then grows exponentially (as in slow start) to 

threshold, then grows linearly

• loss indicated by 3 duplicate ACKs: TCP RENO
– dup ACKs indicate network capable of delivering 

some segments
– cwnd is cut in half window then grows linearly

• TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate 
acks



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Switching from Slow Start to CA

Q: when should the 
exponential increase 
switch to linear?

A: when cwnd gets to 1
2

of its value before timeout.

Implementation:

• variable ssthresh

• on loss event, ssthresh is set to 1
2

of cwnd just before loss event

* Check out the online interactive exercises for more examples: 
http://gaia.cs.umass.edu/kurose_ross/interactive/

http://gaia.cs.umass.edu/kurose_ross/interactive/
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Summary: TCP Congestion Control
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TCP Throughput

• average TCP thruput as function of window size, RTT?
– ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
– average window size (# in-flight bytes) is

– average thruput is 3 W
4

per RTT 3 W
4

3 Wavg TCP thruput =  bytes / sec
4 RTT
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TCP Futures: TCP over “Long, Fat Pipes”

• example: 1500 byte segments, 100ms RTT, want 10 Gbps 
throughput

• requires W = 83,333 in-flight segments

• throughput in terms of segment loss probability, L [Mathis 
1997]:

×
=

1.22  MSSTCP throughput 
RTT L

→ to achieve 10 Gbps throughput, need a loss rate of
-= × 10L  2 10 – a very small loss rate!

• new versions of TCP for high-speed
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TCP Fairness

fairness goal: if K TCP sessions share same bottleneck 
link of bandwidth R, each should have average rate of R

K
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Why is TCP Fair?

two competing sessions:

• additive increase gives slope of 1, as throughout increases

• multiplicative decrease decreases throughput proportionally
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Fairness (More)

Fairness and UDP

• multimedia apps often do 
not use TCP

– do not want rate 
throttled by 
congestion control

• instead use UDP:
– send audio/video at 

constant rate, 
tolerate packet loss

Fairness, parallel TCP connections

• application can open multiple parallel 
connections between two hosts

• web browsers do this

• example, link of rate R with 9 existing 
connections:

– new app asks for 1 TCP, gets rate R
10

– new app asks for 11 TCPs, gets R
2
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Explicit Congestion Notification (ECN)

network-assisted congestion control:

• two bits in IP header (ToS field) marked by network router to indicate 
congestion

• congestion indication carried to receiving host

• receiver (seeing congestion indication in IP datagram) ) sets ECE bit on 
receiver-to-sender ACK segment to notify sender of congestion
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Chapter Summary

• principles behind transport 
layer services:

– multiplexing, 
demultiplexing

– reliable data transfer
– flow control
– congestion control

• instantiation, implementation 
in the Internet

– UDP
– TCP

next:

• leaving the network “edge” 
(application, transport 
layers)

• into the network “core”

• two network layer chapters:
– data plane
– control plane



Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright


