
Computer Networking: A Top Down
Approach
Seventh Edition

Chapter 3
Transport Layer

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Slides in this presentation contain
hyperlinks. JAWS users should be able to
get a list of links by using INSERT+F7

Transport Layer

our goals:

• understand principles behind transport layer services:
– multiplexing, demultiplexing
– reliable data transfer
– flow control
– congestion control

• learn about Internet transport layer protocols:
– UDP: connectionless transport
– TCP: connection-oriented reliable transport
– TCP congestion control

Learning Objectives (1 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Transport Services and Protocols

• provide logical communication
between app processes running on
different hosts

• transport protocols run in end systems
– send side: breaks app messages

into segments, passes to network
layer

– rcv side: reassembles segments
into messages, passes to app
layer

• more than one transport protocol
available to apps

– Internet: TCP and UDP

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Transport vs. Network Layer

• network layer: logical communication between hosts

• transport layer: logical communication between processes
– relies on, enhances, network layer services

household analogy:

12 kids in Ann’s house sending letters to 12 kids in Bill’s house:

• hosts = houses

• processes = kids

• app messages = letters in envelopes

• transport protocol = Ann and Bill who demux to in-house siblings

• network-layer protocol = postal service

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Internet Transport-Layer Protocols

• reliable, in-order delivery (TCP)
– congestion control
– flow control
– connection setup

• unreliable, unordered delivery: UDP
– no-frills extension of “best-

effort” IP

• services not available:
– delay guarantees
– bandwidth guarantees

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (2 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Multiplexing/Demultiplexing

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

How Demultiplexing Works

• host receives IP datagrams
– each datagram has source IP

address, destination IP
address

– each datagram carries one
transport-layer segment

– each segment has source,
destination port number

• host uses IP addresses & port
numbers to direct segment to
appropriate socket

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connectionless Demultiplexing

• recall: created socket has host-
local port #:

• recall: when creating datagram to
send into UDP socket, must
specify

– destination IP address
– destination port #

• when host receives UDP
segment:

– checks destination port # in
segment

– directs UDP segment to
socket with that port #

IP datagrams with same dest.
port #, but different source IP
addresses and/or source port
numbers will be directed to
same socket at dest

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connectionless Demux: Example

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection-Oriented Demux

• TCP socket identified by 4-tuple:
– source IP address
– source port number
– dest IP address
– dest port number

• demux: receiver uses all four values to direct segment to appropriate
socket

• server host may support many simultaneous TCP sockets:
– each socket identified by its own 4-tuple

• web servers have different sockets for each connecting client
– non-persistent HTTP will have different socket for each request

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection-Oriented Demux: Example (1 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection-Oriented Demux: Example (2 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (3 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones” Internet
transport protocol

• “best effort” service, UDP
segments may be:

– lost
– delivered out-of-order to

app

• connectionless:
– no handshaking between

UDP sender, receiver
– each UDP segment

handled independently of
others

• UDP use:
– streaming multimedia apps

(loss tolerant, rate
sensitive)

– DNS
– SNMP

• reliable transfer over UDP:
– add reliability at

application layer
– application-specific error

recovery!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP: Segment Header (1 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP: Segment Header (2 of 2)

why is there a UDP?

• no connection establishment (which can add delay)

• simple: no connection state at sender, receiver

• small header size

• no congestion control: UDP can blast away as fast as
desired

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UDP Checksum

Goal: detect “errors” (example, flipped bits) in transmitted segment

sender:

• treat segment contents,
including header fields, as
sequence of 16-bit integers

• checksum: addition (one’s
complement sum) of
segment contents

• sender puts checksum
value into UDP checksum
field

receiver:

• compute checksum of received
segment

• check if computed checksum
equals checksum field value:

– NO - error detected
– YES - no error detected.

But maybe errors
nonetheless? More later
….

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Internet Checksum: Example

example: add two 16-bit integers

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (4 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Principles of Reliable Data Transfer

• important in application, transport, link layers
– top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable
data transfer protocol (rdt)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reliable Data Transfer: Getting Started (1 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reliable Data Transfer: Getting Started (2 of 2)

we’ll:

• incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

• consider only unidirectional data transfer
– but control info will flow on both directions!

• use finite state machines (FSM) to specify sender, receiver

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt1.0: Reliable Transfer over a Reliable
Channel

• underlying channel perfectly reliable
– no bit errors
– no loss of packets

• separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver reads data from underlying channel

sender receiver

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Channel with Bit Errors (1 of 2)

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:

How do humans recover from “errors”
during conversation?

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Channel with Bit Errors (2 of 2)

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells sender that

pkt received OK
– negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
– sender retransmits pkt on receipt of NAK

• new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection
– feedback: control msgs (ACK, NAK) from receiver to sender

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: FSM Specification

sender receiver

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Operation with No Errors

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0: Error Scenario

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.0 Has a Fatal Flaw!

what happens if ACK / NAK
corrupted?

• sender doesn’t know what
happened at receiver!

• Can’t just retransmit:
possible duplicate

handling duplicates:

• sender retransmits current
pkt if ACK / NAK corrupted

• sender adds sequence
number to each pkt

• receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait

sender sends one packet, then waits for
receiver response

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.1: Sender, Handles Garbled ACK/NAKs

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.1: Receiver, Handles Garbled ACK/NAKs

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.1: Discussion

sender:

• seq # added to pkt

• two Sequence #’s (0,1) will

suffice. Why?

• must check if received ACK/

NAK corrupted

• twice as many states

– state must “remember”

whether “expected” pkt

should have seq # of 0 or

1

receiver:

• must check if received

packet is duplicate

– state indicates whether

0 or 1 is expected pkt

seq #

• note: receiver can not
know if its last ACK/NAK

received OK at sender

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.2: A NAK-free Protocol

• same functionality as rdt2.1, using ACKs only

• instead of NAK, receiver sends ACK for last pkt
received OK

– receiver must explicitly include seq # of pkt being
ACKed

• duplicate ACK at sender results in same action as NAK:
retransmit current pkt

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt2.2: Sender, Receiver Fragments

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0: Channels with Errors and Loss

new assumption: underlying channel can also lose packets (data,
ACKs)

– checksum, Sequence #, ACKs, retransmissions will be of
help … but not enough

approach: sender waits “reasonable” amount of time for ACK

• retransmits if no ACK received in this time

• if pkt (or ACK) just delayed (not lost):
– retransmission will be duplicate, but Sequence #’s already

handles this
– receiver must specify seq # of pkt being ACKed

• requires countdown timer

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0 Sender

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0 in Action (1 of 2)

(a) no loss (b) packet loss

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0 in Action (2 of 2)

(c) ACK loss (d) premature timeout/ delayed ACK

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Performance of rdt3.0 (1 of 2)

• rdt3.0 is correct, but performance stinks

• example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

= = =trans
Ld
R 9

8000 bits / packet 8 microseconds
10 bits / sec

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Performance of rdt3.0 (2 of 2)

– Usender: utilization – fraction of time sender busy
sending

= = =sender

L
RU LRTT +
R

.008 0.00027
30.008

– if RTT = 30 msec, 1KB pkt every 30 msec: 33kB/sec
thruput over 1 Gbps link

• network protocol limits use of physical resources!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

rdt3.0: Stop-and-wait Operation

= = =sender

L
RU LRTT +
R

.008 0.00027
30.008

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pipelined Protocols

• pipelining: sender allows multiple, “in-flight”, yet-to-be acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver

• two generic forms of pipelined protocols: go-Back-N, selective repeat

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pipelining: Increased Utilization

3-packet pipelining
increases utilization by
a factor of 3!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pipelined Protocols: Overview

Go-back-N:

• sender can have up to N
unacked packets in pipeline

• receiver only sends
cumulative ack

– doesn’t ack packet if
there’s a gap

• sender has timer for oldest
unacked packet

– when timer expires,
retransmit all unacked
packets

Selective Repeat:

• sender can have up to N
unack’ed packets in pipeline

• rcvr sends individual ack for
each packet

• sender maintains timer for each
unacked packet

– when timer expires,
retransmit only that unacked
packet

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Go-Back-N: Sender

• k-bit seq # in pkt header

• “window” of up to N, consecutive unack’ed pkts allowed

• ACK (n): ACKs all pkts up to, including seq # n – “cumulative ACK”
– may receive duplicate ACKs (see receiver)

• timer for oldest in-flight pkt

• timeout(n): retransmit packet n and all higher seq # pkts in window

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN: Sender Extended FSM

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN: Receiver Extended FSM (1 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN: Receiver Extended FSM (2 of 2)

• ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

– may generate duplicate ACKs
– need only remember expectedseqnum

• out-of-order pkt:
– discard (don’t buffer): no receiver buffering!
– re-ACK pkt with highest in-order seq #

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GBN in Action

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat (1 of 3)

• receiver individually acknowledges all correctly received
pkts

– buffers pkts, as needed, for eventual in-order delivery
to upper layer

• sender only resends pkts for which ACK not received
– sender timer for each unACKed pkt

• sender window
– N consecutive seq #’s
– limits seq #s of sent, unACKed pkts

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat: Sender, Receiver
Windows

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat (2 of 3)

sender

data from above:

• if next available seq # in window, send pkt

timeout(n):

• resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

• mark pkt n as received

• if n smallest unACKed pkt, advance window base to next
unACKed seq #

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat (3 of 3)

receiver
pkt n in [rcvbase, rcvbase+N-1]

• send ACK(n)

• out-of-order: buffer

• in-order: deliver (also deliver buffered, in-order pkts), advance
window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

• ACK(n)
otherwise:

• ignore

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat in Action

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat: Dilemma (1 of 2)

• example:

• seq #’s: 0, 1, 2, 3

• window size=3

• receiver sees no difference
in two scenarios!

• duplicate data accepted as
new in (b)

(a) no problem

receiver can’t see sender side. receiver behavior identical in both cases!
something’s (very) wrong!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selective Repeat: Dilemma (2 of 2)

Q: what relationship between seq # size and window size to avoid problem in
(b)?

(b) oops!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (5 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Overview RFCs: 793, 1122, 1323, 2018,
2581

• point-to-point:
– one sender, one receiver

• reliable, in-order byte steam:
– no “message boundaries”

• pipelined:
– TCP congestion and flow

control set window size

• full duplex data:
– bi-directional data flow in

same connection

– MSS: maximum segment
size

• connection-oriented:
– handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

• flow controlled:
– sender will not

overwhelm receiver

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Segment Structure

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sequence Numbers, ACKs (1 of 2)

sequence numbers:
– byte stream “number” of

first byte in segment’s
data

acknowledgements:
– seq # of next byte

expected from other side
– cumulative ACK

Q: how receiver handles out-of-
order segments

– A: TCP spec doesn’t say,
- up to implementor

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sequence Numbers, ACKs (2 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Round Trip Time, Timeout (1 of 3)

Q: how to set TCP timeout
value?

• longer than RTT
– but RTT varies

• too short: premature
timeout, unnecessary
retransmissions

• too long: slow reaction to
segment loss

Q: how to estimate RTT?

• SampleRTT: measured time
from segment transmission
until ACK receipt

– ignore retransmissions

• SampleRTT will vary, want
estimated RTT �smoother�

– average several recent
measurements, not just
current SampleRTT

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Round Trip Time, Timeout (2 of 3)

EstimatedRTT = (1-α)*EstimatedRTT+α*SampleRTT

• exponential weighted moving average

• influence of past sample decreases exponentially fast

• typical value: a = 0.125

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Round Trip Time, Timeout (3 of 3)

• timeout interval: EstimatedRTT plus “safety margin”
– ®EstimatedRTTlarge variation in larger safety margin.

• estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-β)*DevRTT +
 β* SampleRTT -EstimatedRTT

typically,β= 0(.25)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (6 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Reliable Data Transfer

• TCP creates rdt service on top of IP’s unreliable service
– pipelined segments
– cumulative acks
– single retransmission timer

• retransmissions triggered by:
– timeout events
– duplicate acks

• let’s initially consider simplified TCP sender:
– ignore duplicate acks
– ignore flow control, congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sender Events:

data rcvd from app:

• create segment with seq #

• seq # is byte-stream number
of first data byte in segment

• start timer if not already
running

– think of timer as for
oldest unacked segment

– expiration interval:
TimeOutInterval

timeout:

• retransmit segment that caused
timeout

• restart timer

ack rcvd:

• if ack acknowledges previously
unacked segments

– update what is known to be
ACKed

– start timer if there are still
unacked segments

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Sender (Simplified)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Retransmission Scenarios (1 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Retransmission Scenarios (2 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP ACK Generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

immediately send single cumulative
ACK, ACKing both in-order segments

arrival of out-of-order segment
higher-than-expect Sequence # .
Gap detected

immediately send duplicate ACK,
indicating Sequence # of next
expected byte

arrival of segment that
partially or completely fills gap

immediate send ACK, provided that
segment starts at lower end of gap

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Fast Retransmit (1 of 2)

• time-out period often relatively long:
– long delay before resending lost packet

• detect lost segments via duplicate ACKs.
– sender often sends many segments back-to-back
– if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3 ACKs for same data (“triple duplicate
ACKs”), resend unacked segment with smallest seq #

– likely that unacked segment lost, so don’t wait for
timeout

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Fast Retransmit (2 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (7 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Flow Control (1 of 2)

flow control

receiver controls
sender, so sender
won’t overflow
receiver’s buffer by
transmitting too
much, too fast

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Flow Control (2 of 2)

• receiver “advertises” free buffer space
by including rwnd value in TCP
header of receiver-to-sender
segments

– RcvBuffer size set via socket
options (typical default is 4096
bytes)

– many operating systems
autoadjust RcvBuffer

• sender limits amount of unacked (“in-
flight”) data to receiver’s rwnd value

• guarantees receive buffer will not
overflow

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (8 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Connection Management

before exchanging data, sender/receiver “handshake”:

• agree to establish connection (each knowing the other willing to establish
connection)

• agree on connection parameters

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Agreeing to Establish a Connection (1 of 2)

2-way handshake:
Q: will 2-way handshake
always work in network?

• variable delays

• retransmitted messages
(example. req_conn(x)) due
to message loss

• message reordering

• can’t “see” other side

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Agreeing to Establish a Connection (2 of 2)

2-way handshake failure scenarios:

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP3-Way Handshake

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP3-Way Handshake: FSM

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Closing a Connection (1 of 2)

• client, server each close their side of connection
– send TCP segment with FIN bit = 1

• respond to received FIN with ACK
– on receiving FIN, ACK can be combined with own FIN

• simultaneous FIN exchanges can be handled

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Closing a Connection (2 of 2)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (9 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Principles of Congestion Control

congestion:

• informally: �too many sources sending too much data too
fast for network to handle�

• different from flow control!

• manifestations:
– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

• a top-10 problem!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 1 (1 of 2)

• two senders, two receivers

• one router, infinite buffers

• output link capacity: R

• no retransmission

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 1 (2 of 2)

• maximum per-connection throughput: R
2

• large delays as arrival rate, ,inλ approaches capacity

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (1 of 6)

• one router, finite buffers

• sender retransmission of timed-out packet
– application-layer input = application-layer output: =in outλ λ
– transport-layer input includes retransmissions : ³in inλ' λ

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (2 of 6)

idealization: perfect knowledge

• sender sends only when router
buffers available

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (3 of 6)

• Idealization: known loss packets can be lost, dropped
at router due to full buffers

• sender only resends if packet known to be lost

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (4 of 6)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (5 of 6)

Realistic: duplicates

• packets can be lost, dropped at router due to full buffers

• sender times out prematurely, sending two copies, both
of which are delivered

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 2 (6 of 6)

“costs” of congestion:

• more work (retrans) for given “goodput”

• unneeded retransmissions: link carries multiple copies of pkt
– decreasing goodput

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 3 (1 of 2)

• four senders

• multihop paths

• timeout/retransmit

Q: what happens as 'in inλ and λ increase ?
A: as red inλ ' increases, all arriving blue pkts
at upper queue are dropped, blue throughput → 0

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Causes/Costs of Congestion: Scenario 3 (2 of 2)

another “cost” of congestion:

• when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Learning Objectives (10 of 10)

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
– segment structure
– reliable data transfer
– flow control
– connection management

3.6 principles of congestion control

3.7 TCP congestion control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Congestion Control: Additive
Increase Multiplicative Decrease

• approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs

– additive increase: increase cwnd by 1 MSS every RTT until
loss detected

– multiplicative decrease: cut cwnd in half after loss

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Congestion Control: Details

• cwnd is dynamic, function
of perceived network
congestion

• sender limits transmission:

TCP sending rate:

• roughly: send cwnd
bytes, wait RTT for ACKS,
then send more bytes

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Slow Start

• when connection begins,
increase rate exponentially
until first loss event:

– initially cwnd = 1 MSS
– double cwnd every RTT
– done by incrementing
cwnd for every ACK
received

• summary: initial rate is slow
but ramps up exponentially
fast

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Detecting, Reacting to Loss

• loss indicated by timeout:
– cwnd set to 1 MSS;
– window then grows exponentially (as in slow start) to

threshold, then grows linearly

• loss indicated by 3 duplicate ACKs: TCP RENO
– dup ACKs indicate network capable of delivering

some segments
– cwnd is cut in half window then grows linearly

• TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate
acks

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP: Switching from Slow Start to CA

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to 1
2

of its value before timeout.

Implementation:

• variable ssthresh

• on loss event, ssthresh is set to 1
2

of cwnd just before loss event

* Check out the online interactive exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/

http://gaia.cs.umass.edu/kurose_ross/interactive/

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Summary: TCP Congestion Control

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Throughput

• average TCP thruput as function of window size, RTT?
– ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
– average window size (# in-flight bytes) is

– average thruput is 3 W
4

per RTT 3 W
4

3 Wavg TCP thruput = bytes / sec
4 RTT

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Futures: TCP over “Long, Fat Pipes”

• example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

• requires W = 83,333 in-flight segments

• throughput in terms of segment loss probability, L [Mathis
1997]:

×
=

1.22 MSSTCP throughput
RTT L

→ to achieve 10 Gbps throughput, need a loss rate of
-= × 10L 2 10 – a very small loss rate!

• new versions of TCP for high-speed

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

TCP Fairness

fairness goal: if K TCP sessions share same bottleneck
link of bandwidth R, each should have average rate of R

K

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Why is TCP Fair?

two competing sessions:

• additive increase gives slope of 1, as throughout increases

• multiplicative decrease decreases throughput proportionally

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Fairness (More)

Fairness and UDP

• multimedia apps often do
not use TCP

– do not want rate
throttled by
congestion control

• instead use UDP:
– send audio/video at

constant rate,
tolerate packet loss

Fairness, parallel TCP connections

• application can open multiple parallel
connections between two hosts

• web browsers do this

• example, link of rate R with 9 existing
connections:

– new app asks for 1 TCP, gets rate R
10

– new app asks for 11 TCPs, gets R
2

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Explicit Congestion Notification (ECN)

network-assisted congestion control:

• two bits in IP header (ToS field) marked by network router to indicate
congestion

• congestion indication carried to receiving host

• receiver (seeing congestion indication in IP datagram)) sets ECE bit on
receiver-to-sender ACK segment to notify sender of congestion

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Summary

• principles behind transport
layer services:

– multiplexing,
demultiplexing

– reliable data transfer
– flow control
– congestion control

• instantiation, implementation
in the Internet

– UDP
– TCP

next:

• leaving the network “edge”
(application, transport
layers)

• into the network “core”

• two network layer chapters:
– data plane
– control plane

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright

