
Transport Layer 3-1

Chapter 3
Transport Layer

Computer Networking:
A Top Down Approach
Featuring the Internet,
2nd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2002.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:
? If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)
? If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2002
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3: Transport Layer
Our goals:
? understand principles

behind transport
layer services:
? multiplexing/demultipl

exing
? reliable data transfer
? flow control
? congestion control

? learn about transport
layer protocols in the
Internet:
? UDP: connectionless

transport
? TCP: connection-oriented

transport
? TCP congestion control

Transport Layer 3-3

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-4

Transport services and protocols
? provide logical communication

between app processes
running on different hosts

? transport protocols run in
end systems
? send side: breaks app

messages into segments,
passes to network layer

? rcv side: reassembles
segments into messages,
passes to app layer

? more than one transport
protocol available to apps
? Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end
-end transport

Transport Layer 3-5

Transport vs. network layer

? network layer: logical
communication
between hosts

? transport layer: logical
communication
between processes
? relies on, enhances,

network layer services

Household analogy:
12 kids sending letters

to 12 kids
? processes = kids
? app messages = letters

in envelopes
? hosts = houses
? transport protocol =

Ann and Bill
? network-layer protocol

= postal service

Transport Layer 3-6

Internet transport-layer protocols

? reliable, in-order
delivery (TCP)
? congestion control
? flow control
? connection setup

? unreliable, unordered
delivery: UDP
? no-frills extension of

“best-effort” IP
? services not available:

? delay guarantees
? bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end
-end transport

Transport Layer 3-7

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-8

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-9

How demultiplexing works
? host receives IP datagrams

? each datagram has source
IP address, destination IP
address

? each datagram carries 1
transport-layer segment

? each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

? host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

? Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

? UDP socket identified by
two-tuple:

(dest IP address, dest port number)

? When host receives UDP
segment:
? checks destination port

number in segment
? directs UDP segment to

socket with that port
number

? IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-11

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 3-12

Connection-oriented demux

? TCP socket identified
by 4-tuple:
? source IP address
? source port number
? dest IP address
? dest port number

? recv host uses all four
values to direct
segment to appropriate
socket

? Server host may support
many simultaneous TCP
sockets:
? each socket identified by

its own 4-tuple
? Web servers have

different sockets for
each connecting client
? non-persistent HTTP will

have different socket for
each request

Transport Layer 3-13

Connection-oriented demux
(cont)

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 80
DP: 9157

SP: 9157
DP: 80

SP: 80
DP: 5775

SP: 5775
DP: 80

P4

Transport Layer 3-14

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

? “no frills,” “bare bones”
Internet transport
protocol

? “best effort” service, UDP
segments may be:
? lost
? delivered out of order

to app
? connectionless:

? no handshaking between
UDP sender, receiver

? each UDP segment
handled independently
of others

Why is there a UDP?
? no connection

establishment (which can
add delay)

? simple: no connection state
at sender, receiver

? small segment header
? no congestion control: UDP

can blast away as fast as
desired

Transport Layer 3-16

UDP: more
? often used for streaming

multimedia apps
? loss tolerant
? rate sensitive

? other UDP uses
? DNS
? SNMP

? reliable transfer over UDP:
add reliability at
application layer
? application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-17

UDP checksum

Sender:
? treat segment contents

as sequence of 16-bit
integers

? checksum: addition (1’s
complement sum) of
segment contents

? sender puts checksum
value into UDP checksum
field

Receiver:
? compute checksum of

received segment
? check if computed checksum

equals checksum field value:
? NO - error detected
? YES - no error detected.

But maybe errors
nonetheless? More later
…

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-18

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-19

Principles of reliable data transfer
? important in app., transport, link layers
? top-10 list of important networking topics!

? characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-20

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Transport Layer 3-21

Reliable data transfer: getting started
We’ll:
? incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
? consider only unidirectional data transfer

? but control info will flow on both directions!
? use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Transport Layer 3-22

Rdt1.0: reliable transfer over a reliable channel

? underlying channel perfectly reliable
? no bit errors
? no loss of packets

? separate FSMs for sender, receiver:
? sender sends data into underlying channel
? receiver reads data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-23

Rdt2.0: channel with bit errors

? underlying channel may flip bits in packet
? recall: UDP checksum to detect bit errors

? the question: how to recover from errors:
? acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
? negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
? sender retransmits pkt on receipt of NAK
? human scenarios using ACKs, NAKs?

? new mechanisms in rdt2.0 (beyond rdt1.0):
? error detection
? receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-24

rdt2.0: FSM specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

belowsender

receiver
rdt_send(data)

?

Transport Layer 3-25

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

?

Transport Layer 3-26

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

?

Transport Layer 3-27

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

? sender doesn’t know what
happened at receiver!

? can’t just retransmit:
possible duplicate

What to do?
? sender ACKs/NAKs

receiver’s ACK/NAK? What
if sender ACK/NAK lost?

? retransmit, but this might
cause retransmission of
correctly received pkt!

Handling duplicates:
? sender adds sequence

number to each pkt
? sender retransmits current

pkt if ACK/NAK garbled
? receiver discards (doesn’t

deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

Transport Layer 3-28

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

?
?

Transport Layer 3-29

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-30

rdt2.1: discussion

Sender:
? seq # added to pkt
? two seq. #’s (0,1) will

suffice. Why?
? must check if received

ACK/NAK corrupted
? twice as many states

? state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
? must check if received

packet is duplicate
? state indicates whether

0 or 1 is expected pkt
seq #

? note: receiver can not
know if its last
ACK/NAK received OK
at sender

Transport Layer 3-31

rdt2.2: a NAK-free protocol

? same functionality as rdt2.1, using ACKs only
? instead of NAK, receiver sends ACK for last pkt

received OK
? receiver must explicitly include seq # of pkt being ACKed

? duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-32

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

?

Transport Layer 3-33

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
? checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Q: how to deal with loss?
? sender waits until

certain data or ACK
lost, then retransmits

? yuck: drawbacks?

Approach: sender waits
“reasonable” amount of
time for ACK

? retransmits if no ACK
received in this time

? if pkt (or ACK) just delayed
(not lost):
? retransmission will be

duplicate, but use of seq.
#’s already handles this

? receiver must specify seq
of pkt being ACKed

? requires countdown timer

Transport Layer 3-34

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

?
rdt_rcv(rcvpkt)

?
?

?

Transport Layer 3-35

rdt3.0 in action

Transport Layer 3-36

rdt3.0 in action

Transport Layer 3-37

Performance of rdt3.0

? rdt3.0 works, but performance stinks
? example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit= 8kb/pkt
10**9 b/sec = 8 microsec

? U sender: utilization – fraction of time sender busy sending
? 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
? network protocol limits use of physical resources!

U
sender =

.008
30.008

= 0.00027
microsec

L / R
RTT + L / R

=

L (packet length in bits)
R (transmission rate, bps) =

Transport Layer 3-38

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027
microsec

L / R
RTT + L / R

=

Transport Layer 3-39

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
? range of sequence numbers must be increased
? buffering at sender and/or receiver

? Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-40

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008
microsecon

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

Transport Layer 3-41

Go-Back-N
Sender:
? k-bit seq # in pkt header
? “window” of up to N, consecutive unack’ed pkts allowed

? ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
? may receive duplicate ACKs (see receiver)

? timer for each in-flight pkt
? timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-42

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

?

Transport Layer 3-43

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
? may generate duplicate ACKs
? need only remember expectedseqnum

? out-of-order pkt:
? discard (don’t buffer) -> no receiver buffering!
? Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

?

Transport Layer 3-44

GBN in
action

Transport Layer 3-45

Selective Repeat

? receiver individually acknowledges all correctly
received pkts
? buffers pkts, as needed, for eventual in-order delivery

to upper layer
? sender only resends pkts for which ACK not

received
? sender timer for each unACKed pkt

? sender window
? N consecutive seq #’s
? again limits seq #s of sent, unACKed pkts

Transport Layer 3-46

Selective repeat: sender, receiver windows

Transport Layer 3-47

Selective repeat

data from above :
? if next available seq # in

window, send pkt
timeout(n):
? resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

? mark pkt n as received
? if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

? send ACK(n)
? out-of-order: buffer
? in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

? ACK(n)
otherwise:
? ignore

receiver

Transport Layer 3-48

Selective repeat in action

Transport Layer 3-49

Selective repeat:
dilemma

Example:
? seq #’s: 0, 1, 2, 3
? window size=3

? receiver sees no
difference in two
scenarios!

? incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Transport Layer 3-50

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-51

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

? full duplex data:
? bi-directional data flow

in same connection
? MSS: maximum segment

size
? connection-oriented:

? handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

? flow controlled:
? sender will not

overwhelm receiver

? point-to-point:
? one sender, one receiver

? reliable, in-order byte
steam:
? no “message boundaries”

? pipelined:
? TCP congestion and flow

control set window size
? send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer 3-52

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnterchecksum
FSRPAUhead

len
not

used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-53

TCP seq. #’s and ACKs
Seq. #’s:

? byte stream
“number” of first
byte in segment’s
data

ACKs:
? seq # of next byte

expected from
other side

? cumulative ACK
Q: how receiver handles

out-of-order segments
? A: TCP spec doesn’t

say, - up to
implementer

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-54

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

? longer than RTT
? but RTT varies

? too short: premature
timeout
? unnecessary

retransmissions
? too long: slow reaction

to segment loss

Q: how to estimate RTT?
? SampleRTT: measured time from

segment transmission until ACK
receipt
? ignore retransmissions

? SampleRTT will vary, want
estimated RTT “smoother”
? average several recent

measurements, not just
current SampleRTT

Transport Layer 3-55

TCP Round Trip Time and Timeout

EstimatedRTT = (1- ?)*EstimatedRTT + ? *SampleRTT

? Exponential weighted moving average
? influence of past sample decreases exponentially fast
? typical value: ? = 0.125

Transport Layer 3-56

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

Transport Layer 3-57

TCP Round Trip Time and Timeout

Setting the timeout
? EstimtedRTT plus “safety margin”

? large variation in EstimatedRTT -> larger safety margin
? first estimate of how much SampleRTT deviates from

EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-?)*DevRTT +
?*|SampleRTT-EstimatedRTT|

(typically, ? = 0.25)

Then set timeout interval:

Transport Layer 3-58

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-59

TCP reliable data transfer

? TCP creates rdt
service on top of IP’s
unreliable service

? Pipelined segments
? Cumulative acks
? TCP uses single

retransmission timer

? Retransmissions are
triggered by:
? timeout events
? duplicate acks

? Initially consider
simplified TCP sender:
? ignore duplicate acks
? ignore flow control,

congestion control

Transport Layer 3-60

TCP sender events:
data rcvd from app:
? Create segment with

seq #
? seq # is byte-stream

number of first data
byte in segment

? start timer if not
already running (think
of timer as for oldest
unacked segment)

? expiration interval:
TimeOutInterval

timeout:
? retransmit segment

that caused timeout
? restart timer
Ack rcvd:
? If acknowledges

previously unacked
segments
? update what is known to

be acked
? start timer if there are

outstanding segments

Transport Layer 3-61

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-62

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer 3-63

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-64

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap

Transport Layer 3-65

Fast Retransmit

? Time-out period often
relatively long:
? long delay before

resending lost packet
? Detect lost segments

via duplicate ACKs.
? Sender often sends

many segments back-to-
back

? If segment is lost,
there will likely be many
duplicate ACKs.

? If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
? fast retransmit: resend

segment before timer
expires

Transport Layer 3-66

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-67

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-68

TCP Flow Control

? receive side of TCP
connection has a
receive buffer:

? speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

? app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 3-69

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

? spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

? Rcvr advertises spare
room by including value
of RcvWindow in
segments

? Sender limits unACKed
data to RcvWindow
? guarantees receive

buffer doesn’t overflow

Transport Layer 3-70

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-71

TCP Connection Management
Recall: TCP sender, receiver

establish “connection”
before exchanging data
segments

? initialize TCP variables:
? seq. #s
? buffers, flow control

info (e.g. RcvWindow)
? client: connection initiator

Socket clientSocket = new
Socket("hostname","port

number");

? server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
? specifies initial seq #
? no data

Step 2: server host receives
SYN, replies with SYNACK
segment
? server allocates buffers
? specifies server initial

seq. #
Step 3: client receives SYNACK,

replies with ACK segment,
which may contain data

Transport Layer 3-72

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

Transport Layer 3-73

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

? Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

Transport Layer 3-74

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer 3-75

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-76

Principles of Congestion Control

Congestion:
? informally: “too many sources sending too much

data too fast for network to handle”
? different from flow control!
? manifestations:

? lost packets (buffer overflow at routers)
? long delays (queueing in router buffers)

? a top-10 problem!

Transport Layer 3-77

Causes/costs of congestion: scenario 1

? two senders, two
receivers

? one router,
infinite buffers

? no retransmission

? large delays
when congested

? maximum
achievable
throughput

unlimited shared
output link buffers

Host A
? in : original data

Host B

? out

Transport Layer 3-78

Causes/costs of congestion: scenario 2

? one router, finite buffers
? sender retransmission of lost packet

finite shared output
link buffers

Host A ? in : original data

Host B

? out

? 'in : original data, plus
retransmitted data

Transport Layer 3-79

Causes/costs of congestion: scenario 2
? always: (goodput)
? “perfect” retransmission only when loss:

? retransmission of delayed (not lost) packet makes larger
(than perfect case) for same

?
in

?
out

=

?
in

?out
>

?
in?out

“costs” of congestion:
? more work (retrans) for given “goodput”
? unneeded retransmissions: link carries multiple copies of pkt

Transport Layer 3-80

Causes/costs of congestion: scenario 3
? four senders
? multihop paths
? timeout/retransmit

?
in

Q: what happens as
and increase ??

in

finite shared output
link buffers

Host A
? in : original data

Host B

? out

? 'in : original data, plus
retransmitted data

Transport Layer 3-81

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
? when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

?
o
u

t

Transport Layer 3-82

Approaches towards congestion control

End-end congestion
control:

? no explicit feedback from
network

? congestion inferred from
end-system observed loss,
delay

? approach taken by TCP

Network-assisted
congestion control:

? routers provide feedback
to end systems
? single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

? explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 3-83

Case study: ATM ABR congestion control

ABR: available bit rate:
? “elastic service”
? if sender’s path

“underloaded”:
? sender should use

available bandwidth
? if sender’s path

congested:
? sender throttled to

minimum guaranteed
rate

RM (resource management)
cells:

? sent by sender, interspersed
with data cells

? bits in RM cell set by switches
(“network-assisted”)
? NI bit: no increase in rate

(mild congestion)
? CI bit: congestion

indication
? RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-84

Case study: ATM ABR congestion control

? two-byte ER (explicit rate) field in RM cell
? congested switch may lower ER value in cell
? sender’ send rate thus minimum supportable rate on path

? EFCI bit in data cells: set to 1 in congested switch
? if data cell preceding RM cell has EFCI set, sender sets CI

bit in returned RM cell

Transport Layer 3-85

Chapter 3 outline

? 3.1 Transport-layer
services

? 3.2 Multiplexing and
demultiplexing

? 3.3 Connectionless
transport: UDP

? 3.4 Principles of
reliable data transfer

? 3.5 Connection-oriented
transport: TCP
? segment structure
? reliable data transfer
? flow control
? connection management

? 3.6 Principles of
congestion control

? 3.7 TCP congestion
control

Transport Layer 3-86

TCP Congestion Control

? end-end control (no network
assistance)

? sender limits transmission:
LastByteSent-LastByteAcked

? CongWin

? Roughly,

? CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

? loss event = timeout or
3 duplicate acks

? TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
? AIMD
? slow start
? conservative after

timeout events

rate = CongWin
RTT Bytes/sec

Transport Layer 3-87

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease:
cut CongWin in half
after loss event

additive increase:
increase CongWin by
1 MSS every RTT in
the absence of loss
events: probing

Long-lived TCP connection

Transport Layer 3-88

TCP Slow Start

? When connection begins,
CongWin = 1 MSS
? Example: MSS = 500

bytes & RTT = 200 msec
? initial rate = 20 kbps

? available bandwidth may
be >> MSS/RTT
? desirable to quickly ramp

up to respectable rate

? When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-89

TCP Slow Start (more)

? When connection
begins, increase rate
exponentially until
first loss event:
? double CongWin every

RTT
? done by incrementing
CongWin for every ACK
received

? Summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

Transport Layer 3-90

Refinement
? After 3 dup ACKs:

? CongWin is cut in half
? window then grows

linearly
? But after timeout event:

? CongWin instead set to
1 MSS;

? window then grows
exponentially

? to a threshold, then
grows linearly

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

Transport Layer 3-91

Refinement (more)
Q: When should the

exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
? Variable Threshold
? At loss event, Threshold is

set to 1/2 of CongWin just
before loss event

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
n

g
es

ti
o

n
 w

in
d

o
w

 s
iz

e
(s

eg
m

en
ts

)

threshold

TCP
Tahoe

TCP
Reno

Transport Layer 3-92

Summary: TCP Congestion Control

? When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

? When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

? When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

? When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-93

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Transport Layer 3-94

Why is TCP fair?
Two competing sessions:
? Additive increase gives slope of 1, as throughout increases
? multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-95

Fairness (more)
Fairness and UDP
? Multimedia apps often

do not use TCP
? do not want rate

throttled by congestion
control

? Instead use UDP:
? pump audio/video at

constant rate, tolerate
packet loss

? Research area: TCP
friendly

Fairness and parallel TCP
connections

? nothing prevents app from
opening parallel cnctions
between 2 hosts.

? Web browsers do this
? Example: link of rate R

supporting 9 cnctions;
? new app asks for 1 TCP, gets

rate R/10
? new app asks for 11 TCPs,

gets R/2 !

Transport Layer 3-96

Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

? TCP connection establishment
? data transmission delay
? slow start

Notation, assumptions:
? Assume one link between

client and server of rate R
? S: MSS (bits)
? O: object size (bits)
? no retransmissions (no loss,

no corruption)
Window size:
? First assume: fixed

congestion window, W
segments

? Then dynamic window,
modeling slow start

Transport Layer 3-97

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window’s
worth of data sent

delay = 2RTT + O/R

Transport Layer 3-98

Fixed congestion window (2)

Second case:
? WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

Transport Layer 3-99

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

R
S

R
S

RTTP
R
O

RTTLatency P)12(2 ????
?

??
? ????

where P is the number of times TCP idles at server:

}1,{min ?? KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and K is the number of windows that cover the object.

Transport Layer 3-100

TCP Delay Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit
object
• time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

Transport Layer 3-101

TCP Delay Modeling (3)

R
S

R
S

RTTPRTT
R
O

R
S

RTT
R
S

RTT
R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

??????

?????

???

?

?

?

?

?

th window after the timeidle 2 1 k
R
S

RTT
R
S k ???

?
??
? ??

?
?

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time?? RTT
R
S

 window kth the transmit totime2 1 ??

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Transport Layer 3-102

TCP Delay Modeling (4)

??
?

??
? ??

???

???

?????

?????
?

?

)1(log

)}1(log:{min

}12:{min

}/222:{min

}222:{min

2

2

110

110

S
O

S
O

kk

S
O

k

SOk

OSSSkK

k

k

k

?

?

Calculation of Q, number of idles for infinite-size object,
is similar (see HW).

Recall K = number of windows that cover object

How do we calculate K ?

Transport Layer 3-103

HTTP Modeling
? Assume Web page consists of:

? 1 base HTML page (of size O bits)
? M images (each of size O bits)

? Non-persistent HTTP:
? M+1 TCP connections in series
? Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

? Persistent HTTP:
? 2 RTT to request and receive base HTML file
? 1 RTT to request and receive M images
? Response time = (M+1)O/R + 3RTT + sum of idle times

? Non-persistent HTTP with X parallel connections
? Suppose M/X integer.
? 1 TCP connection for base file
? M/X sets of parallel connections for images.
? Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

Transport Layer 3-104

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1
Mbps

10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time dominated by
transmission time.
Persistent connections only give minor improvement over parallel
connections.

Transport Layer 3-105

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1
Mbps

10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay?bandwidth networks.

Transport Layer 3-106

Chapter 3: Summary
? principles behind transport

layer services:
? multiplexing,

demultiplexing
? reliable data transfer
? flow control
? congestion control

? instantiation and
implementation in the
Internet
? UDP
? TCP

Next:
? leaving the network

“edge” (application,
transport layers)

? into the network
“core”

