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Chapter 3: Transport Layer

Our goals:

& understand principles
behind transport
layer services:

= multiplexing/demultipl
exing

= reliable data transfer

« Flow control

&« congestion control

& learn about transport
layer protocols in the
Internet:

= UDP: connectionless
transport

« TCP: connection-oriented
transport

=« TCP congestion control
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented

transport: TCP
= segment structure
« reliable data transfer

« Flow control

=« connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion

control
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Transport services and protocols

& provide logical communication

between app processes
running on different hosts

& transport protocols run in
end systems

=« send side: breaks app
messages into segments,
passes to network layer

= Icv side: reassembles
segments into messages,
passes to app layer

& more than one transport
protocol available to apps

« Internet: TCP and UDP

network

data link

network /

physical

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical
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Transport vs. network layer

= network layer: logical
communication
between hosts

& transport layer: logical
communication
between processes

=« relies on, enhances,
network layer services

Household analogy:

12 kids sending letters
to 12 kids

& processes = Kkids

& app messages = letters
In envelopes

& hosts = houses

& transport protocol =
Ann and Bill

= network-layer protocol
= postal service

Transport Layer
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Internet transport-layer protocols

& reliable, in-order application

delivery (TCP) oo ok T P
. sica ata lin
«~ congestion control 3 b pnysical
=« Flow control | .
: networ
= connection setup dera nk

network
data link
physical

physical

& unreliable, unordered
delivery: UDP

= no-Trills extension of
“best-effort” IP

network

& services not available: C@ ¢ |dataink

Q physical

« delay guarantees
= bandwidth guarantees
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented

transport: TCP
= segment structure
« reliable data transfer

« Flow control

=« connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion

control
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Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

[ ] =socket O = process

_| Multiplexing at send host: | _

gathering data from multiple
sockets, enveloping data with
header (later used for

demultiplexing)

application @ application @ application
L T I ¥ ——
transport transport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3
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How demultiplexing works

« host receives IP datagrams

=« each datagram has source
IP address, destination IP
address

« each datagram carries 1
transport-layer segment

= each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

# host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits -

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9



Connectionless demultiplexing

« Create sockets with port

numbers:

Dat agr anSocket nmySocket 1
Dat agr antSocket (99111) ;

Dat agr anSocket nmySocket 2
Dat agr antSocket (99222) ;

« UDP socket identified by
two-tuple:

(dest IP address, dest port number)

new

new

=« When host receives UDP
segment:

= Checks destination port
number in segment

=« directs UDP segment to
socket with that port
number

« |P datagrams with

different source IP

addresses and/or source

port numbers directed

to same socket
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Connectionless demux (cont)

Dat agr anocket server Socket = new Dat agr antSocket (6428) ;

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

SP provides “return address”
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Connection-oriented demux

= TCP socket identified
by 4-tuple:
« source IP address
= source port number
« dest IP address
=« dest port number

& recv host uses all four
values to direct
segment to appropriate
socket

& Server host may support
many simultaneous TCP
sockets:

= each socket identified by
Its own 4-tuple

=« Web servers have
different sockets for
each connecting client

& non-persistent HTTP will
have different socket for
each request
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Connection-oriented demux
(cont)

SP: 80 SP: 80
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 80 server DP: 80 Client
IP: A IP: C IP:B
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-14



UDP: User Datagram Protocol [RFC 768]

& “no frills,” “bare bones”
Internet transport Why is there a UDP?
!?rotocol . _ £ NO connection
= “best effort” service, UDP establishment (which can
segments may be: add delay)
= lost & simple: no connection state
=« delivered out of order at sender, receiver
to app « small segment header
= connectionless: & no congestion control: UDP
« No handshaking between can blast away as fast as
UDP sender, receiver desired
= each UDP segment

handled independently
of others
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UDP: more

e often used for streaming

< 32 bits

multimedia apps

v

=« loss tolerant Length, in |Source port # dest port #
= rate sensitive bytes of UDP | length checksum
segment,
« other UDP uses including
= DNS header
= SNMP
« reliable transfer over UDP: Application
add reliability at data
application layer (message)

= application-specific

error recovery!

UDP segment format
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UDP checksum

Goal: detect “errors” (e.g., Tlipped bits) in transmitted
segment

Sender: Receiver:
&« treat segment contents & compute checksum of
as sequence of 16-bit received segment
Integers & check if computed checksum
& checksum: addition (1's equals checksum field value:
complement sum) of = NO - error detected
segment contents « YES - no error detected.
& sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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Principles of reliable data transfer

& Important in app., transport, link layers
& top-10 list of important networking topics!

-
O
O O
O = receiver
% ~ orocess process
O 1
dt d .
= Ib()relic:lble chc:mnel)j rdt_send () deliver data()
8_ o) reliable data reliable data
D > transfer protocol transfer protocol
% O (sending side) (receiving side)

udt_send( )1 Irdt_rcv ()

Junreliable c:hcmnel);'A

(a) provided service (b) service implementation

& characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

rdt _send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer profocol
(sending side)

send
side

del i ver _dat a(): called by
rdt to deliver data to upper

/

dafa]fdeliver data()

recejve
side

reliapble data
fransfer protocol
(receiving side)

udt_send ()} [pactel

packet Irdt_rcv ()

T—hOunreIiobIe channel )41lA

udt send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt _rcv(): called when packet
arrives on rcv-side of channel
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Reliable data transfer: getting started

we'll:
& Incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

& consider only unidirectional data transfer
& but control info will flow on both directions!

& use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition
\‘

Transport Layer 3-21
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RAt1.0: reliable transfer over a reliable channel

& underlying channel perfectly reliable

&« NO bit errors
= No loss of packets

= separate FSMs for sender, receiver:
=« sender sends data into underlying channel
=« recelver reads data from underlying channel

. Wait for rdt_send(data)

call from
above packet = make_ pkt(data)

udt_send(packet)

sender

“S\Wait for

rdt_rcv(packet)

call from
below

extract (packet,data)
deliver_data(data)

receiver
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Rdt2.0: channel with bit errors

& underlying channel may flip bits in packet
« recall: UDP checksum to detect bit errors

& the question: how to recover from errors:

= acknowledgements (ACKSs): receiver explicitly tells sender
that pkt received OK

=« negative acknowledgements (NAKS): receiver explicitly
tells sender that pkt had errors

=« sender retransmits pkt on receipt of NAK
=« human scenarios using ACKs, NAKs?
& new mechanisms in rdt 2. 0 (beyond r dt 1. 0):

=« error detection
=« receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum) rece ive r
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && iSACK(rcvpkt) S .

~ Wait for
' call from
below

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)
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rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

o

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<

?

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rcv(rcvpkt) &&
ISNA s

1£

-

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

end(NAK

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<

call from

?
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

& sender doesn't know what
happened at receiver!

& can't just retransmit:
possible duplicate

What to do?

&« sender ACKs/NAKSs
receiver's ACK/NAK? What
IT sender ACK/NAK lost?

& retransmit, but this might
cause retransmission of
correctly received pkt!

Handling duplicates:

« sender adds sequence
number to each pkt

& Sender retransmits current
pkt if ACK/NAK garbled

& receiver discards (doesn't
deliver up) duplicate pkt

—stop and wait
Sender sends one packet,
then waits for receiver
response
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rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISNAK(rcvpkt) )

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iSACK(rcvpkt)

?
| ?
Wait for
rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
iSNAK(rcvpkt) ) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
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rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)

\ udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && ( ,
has_seql(rcvpkt) has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt
- (sndpka) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

&& has_seqgl(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion

Sender: Recelver:
& Seq # added to pkt & must check If received
= two seq. #'s (0,1) will packet is duplicate
suffice. Why? « state indicates whether
O or 1 is expected pkt

= must check If received seq #
ACK/NAK corrupted _ :
& note: receiver can not

« twice as many states know if its last

= State must “remember” ACK/NAK received OK
whether “current” pkt at sender

has O or 1 seq. #
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rdt2.2: a NAK-free protocol

&« same functionality as rdt2.1, using ACKs only

& Instead of NAK, receiver sends ACK for last pkt
received OK
=« receiver must explicitly include seq # of pkt being ACKed

& duplicate ACK at sender results in same action as
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

\Wai Cfor ( corrupt(rcvpkt) ||
ACK ISACK(rcvpkt,1))
0 udt_send(sndpkt)
sender FSM
fragment rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

?

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seql(rcvpkt))

receiver FSM

fragment
—— L

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-32
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rdt3.0: channels with errors and loss

New assumption: Approach: sender waits
underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) & retransmits if no ACK
= checksum, seq. #, ACKs, received in this time

retransmissions will be &« IF pkt (or ACK) just delayed
of help, but not enough (not lost):

Q: how to deal with loss? P retrgnsmission will be
« sender waits until dt{phcate, but use of ><0.

certain data or ACK #'s already handles this
lost, then retransmits = recelver must specify seq
& yuck: drawbacks? # of pkt being ACKed

& requires countdown timer
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rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

v sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
2

Wait for

above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

e

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISACK(rcvpkt,0) )

?

timeout
udt_send(sndpkt)
start_timer

call Ofrom

( corrupt(rcvpkt) ||
ISACK(rcvpkt,1) )
?

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
?

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer
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rdt3.0 Iin action

sender receiver

okt
sendpk0 =——0__ rcvpkio
send ACKO
]

ov ACKO /

ACK
send pkt1 \m\‘
rcv pkil
ACK send ACK]1
rcvACK]
K q
CK

send pkt0
A rcv pktO
send ACKO

(a) operation with no loss

sender receiver
okt
send pki0 0 v pki0
ACK send ACKO
rcv ACKO
send pkil 7 \%ﬂ(
(loss)
fimeout  _|
resend Pkt %
rCV Pkt
ACK send ACK]
rCVvACK] o
send pkio

rcv pktO
y send ACKQO

(b) lost packet
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rdt3.0 Iin action

sender receiver sender receiver
send pki0 % rcv pkio send pki0 \%’ rcv pktO
ACK send ACKO ACK send ACKO

rcv ACKO rcv ACKO
send pki1 KT send pkil 7]
rcv kil rcv pktl
ACK send ACKI1 send ACKI
(loss) X/
timeout
timeout = okt resend pkil =
oo kT \rcv Pk | rcv pktl |
ACK (detect duplicate) rcvACK1 (detect duplicate)
send ACK send pktO send ACK1
[CvACK " rcv pkio
send pki0 send ACKO
ACK rcv pkio ACK g
send ACKO
(c) lost ACK (d) premature timeout
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Performance of rdt3.0

& rdt3.0 works, but performance stinks
= example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T ~ L (packet length in bits) _ 8kb/pkt _ami
transmit™ R (transmission rate, bps)  10**9 b/sec o THeFOSEC
U = L/R = 008 = 0.00027
sender RTT+L/R 30.008
= U . utilization - fraction of time sender busy sending

sender-

= 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
= network protocol limits use of physical resources!
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rdt3.0: stop-and-walit operation

sender receiver
first packet bit transmitted, t = 0
last packet bit transmitted, t =L/ R

—first packet bit arrives

RTT —last packet bit arrives, send
ACK
ACK arrives, send next|
packet,t =RTT+L/R
.008
U = L/R — = 0.00027

sender RTT+L/R = 30.008
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Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
=« range of sequence numbers must be increased
« buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocoel in operation (b) a pipelined protocol in operation

« Two generic forms of pipelined protocols: go-Back-N,
selective repeat
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Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = O-

last bit transmitted, t =L/ R

— first packet bit arrives

- Jast packet bit arrives, send ACK

—last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next
packet, t =RTT+L/R |

Increase utilization
/ by a factor of 3!

u =-—3TL/R _ 922 _ 0008

sender RTT+L /R "~ 30.008
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Go-Back-N

Sender:

& K-bit seq # in pkt header
& “window” of up to N, consecutive unack'ed pkts allowed

send_base  hexftsegnum dlready sable. hot
iv i ack’ed yet sent
TR D EETATROO000NT | oot roroscee
t __ window size—%
N

& ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
= may receive duplicate ACKs (see receiver)

« timer for each in-flight pkt

& timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextsegnum)
start_timer
nextsegnum-++
}
2 else
— refuse_data(data)

»
>
&

base=1
nextseqnum=1 ™

""u.‘ : : timeout
start_timer
3 udt_send(sndpkt[base])
O U udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqgnum-1])

.
‘b

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer Transport Layer 3-42



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(rcvpkt)
TS~a < > && notcurrupt(rcvpkt)
? Il - && hassegnum(rcvpkt,expectedsegnum)
= -
expectedseqnum=1 Oextract(rcvpkt,data)
sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedsegnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum-++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
= may generate duplicate ACKs
= need only remember expect edseqnum

& out-of-order pkt:
= discard (don’'t buffer) -> no receiver buffering!

= Re-ACK pkt with highest in-order seq #
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GBN In

action

sender

send pkt0
send pktl

¥ send pki2

send pkt3
(wait)

rcv ACKO
send pkt4

rcv ACKT

—pkf2 fimeout
send pkt2
send pkt3
send pkt4
send pktd

receiver

\
\(l&ss)

N

send pkts \

—
~

rcv pkto
send ACKO

rcv pkrl
send ACKI

rcv pktd, discard
send ACKI

rcv pkitd, discard
send ACK]

rcv pkitd, discard
seng ACK

rev pkit2, deliver

send ACKZ2
rcv pkt3, deliver

send ACK3
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Selective Repeat

& receiver individually acknowledges all correctly
received pkts

=« buffers pkts, as needed, for eventual in-order delivery
to upper layer

& sender only resends pkts for which ACK not
received
=« sender timer for each unACKed pkt

& sender window

= N consecutive seq #'s
= again limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver windows

send_base  hextseghum dlready sable. not
i' i ack’ed yet sent
R TLTTITTI] Sy e
t __ window size —4
N

(a) sender view of sequence numlbers

acceptable
(buffered) but  § (\yithin window)
adlready ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂllﬂlllllIIIIIIIIIII el R

t _ indow size—24
N

out of order I

rcv_base

(b) receiver view of sequence numbers
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Selective repeat

sender

recelver

data from above :

& 1T next available seq # in
window, send pkt

timeout(n):

e« resend pkt n, restart timer

ACK(Nn) in [sendbase,sendbase+N]:

& mark pkt n as received

« 1F n smallest unACKed pkt,
advance window base to
next unACKed seq #

pkt nin [rcvbase, rcvbase+N-1]
& send ACK(n)
e out-of-order: buffer

& In-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

PKTt N IN [revbase-N, revbase-1]
& ACK(n)

otherwise:
& ignhore

Transport Layer 3-47




Selective repeat in action

pktl =ent
D1c3f456 7879 ﬁ—_hﬂq__hﬁﬁ__h““__““i'pktD rovd, delivered, ACKD =ent
pktl =ent nf1 2 3 4(5 6 7 8 9

012 3456 78279

pktl rocwd, delivered. ACEl =ent
pkt2 =ent n 1|2 24 &5fe 7 89

— |01 2 3[/456 789 WX

(losz)

pkt3 =ent. window full
n1z2 3456 7 829

pktd rovd, buffered. ACKI sent
0 1{2z 3 4 5|6 7 8 9

ACKD rovd, pktd ==nt
oL 2 3 4|56 7 89

pktd rcvd, buffered. ACE4 =ent

ACKEl rowd, pktS ==nt

01

2 345

£ 7 &8 9

o1

2 345

B 7 893

pktt rovd, buffersd. ACEKS =ent
012 2 4 5|6 7 8 9

—— pkt2 TIMEOUT, pktZ re=szent
o1z 2 4 5le 7 89

pkt? rovd, pkt?, pkt3d, pltd plth
delivered, ACK?Z =e=nt

012345k 7819

ACK3 rowd, nothing =sent
o1z 3456 7 829
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Selective repeat:

sender window
(after receipt )

receiver window
(after receipt)

dilemma

Example:
&« seq#'s:0,1,2,3
& window size=3

& receiver sees no
difference in two
scenarios!

& Incorrectly passes
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

ktO
01230149

Ofl 2 3jJ0 1 2

012|301 01123 0/1 2

0123012

0123012

ACK2
timeout
retransmit pktOQ
012|301 fkto —Jp receive packet

with seq number O

(a)

sender window
(after receipt )

ktO
01230149

receiver window
(after receipt)

Ofl 2 3J0 1 2

0121301 012 30]1 2

012|301 2 01230 12
ACK2

ol1 2301

o123 01

receive packet
with seq number O

(0)
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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TCP: Overview recs: 793, 1122, 1323, 2018, 2581

& point-to-point: & Tull duplex data:

=« 0One sender, one receiver = bi-directional data flow
= reliable, in-order byte In same connection

steam: = MSS: maximum segment

' . size

= NO “message boundaries _ _

e & connection-oriented:
& pipelined:

=« handshaking (exchange
of control msgs) init's
sender, receiver state

=« TCP congestion and flow
control set window size

& send & receive buffers before data exchange
= Flow controlled:
application application .
socker_ ||| WHeS g e G sender will not
oot TP o door overwhelm receiver
send buffer receive buffer
) [Seament] —» (
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TCP segment structure

A

32 bits

URG: urgent data
(generally not used)\

source port # | dest port #

v

ACK: ACK #

seguence number

valid

-y
@
QD
o

ckowledgement number

PSH: push data now
(generally not used)— |

not
Sed

’I'lR S|F| Receive window

/heek/ Urg data pnter

RST. SYN, FIN:—
connection estab

\

Op)@( s (variable length)

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

\

application
data
(variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept
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TCP seq. #'s and ACKs

Seq. #'s:
=« byte stream
“number” of first
byte in segment’s
data
ACKs:

= seq # of next byte
expected from
other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn't
say, - up to
Implementer

host ACKs
receipt

of echoed
LC!

receipt of
‘C’, echoes
back ‘C’

time

simple telnet scenario

v
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TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? = Sanpl eRTT: measured time from
& longer than RTT segment transmission until ACK
« but RTT varies rec_elpt
« 100 short: premature = Ignore retransmissions
timeout = Sanpl eRTT will vary, want
~ unnecessary estimated RTT “smoother”
retransmissions =« average several recent
& too long: slow reaction measurements, not just
to segment loss current Sanpl eRTT
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TCP Round Trip Time and Timeout

Estimat edRTT = (1- ?)*EstinmatedRTT + ?*Sanpl eRTT

& EXponential weighted moving average
« Influence of past sample decreases exponentially fast
& typical value: ? = 0.125
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Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 1

\ . N
A m.ﬁ..‘ J.‘.mu_!mltll‘ﬁ\‘h 'M!‘ﬁ'i‘g.lﬂ‘

N

a1

o
—®
—

RTT (milliseconds)

N
o
o

v,‘ [

150

100 T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—— SampleRTT —®—Estimated RTT
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TCP Round Trip Time and Timeout

Setting the timeout

& Esti nm edRTT plus “safety margin”
& large variation in Est i mat edRTT - > larger safety margin

« Tirst estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-7?)*DevRIT +
?*| Sanpl eRTT- Est i mat edRTT]|

(typically, ? = 0.25)

Then set timeout interval:

Ti neoutl nterval = EstinatedRTT + 4*DevRTT
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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TCP reliable data transfer

= TCP creates rdt = Retransmissions are
service on top of IP’s triggered by:
unreliable service = timeout events

& Pipelined segments = duplicate acks

=~ Cumulative acks « Initially consider

simplified TCP sender:
& Ignore duplicate acks

« Ignore flow control,
congestion control

& TCP uses single
retransmission timer
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TCP sender events:

data rcvd from app:

« Create segment with
seq #
& Seq # Is byte-stream

number of first data
byte In segment

& start timer if not
already running (think
of timer as for oldest
unacked segment)

& expiration interval:
Ti meQut | nt er val

timeout:

& retransmit segment
that caused timeout

& restart timer
Ack rcvd:

« T acknowledges
previously unacked
segments

=« Update what is known to
be acked

=« Sstart timer if there are
outstanding segments
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NextSegNum = InitialSegNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

» SendBase-1: last
cumulatively
ack'ed byte
Example:
 SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked
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TCP: retransmission scenarios

I

«—timeout ———

loss
Seq:
2, 8bytes data
_100
pC A0
SendBase
=100
time

lost ACK scenario

Sendbase
=100
SendBase
=120

SendBase
=120

02 timeouq—>|

92 timeout}—y«— [Seq

Seq

4

time

premature timeout
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TCP retransmission scenarios (more)

timeout ———

loss
SendBase P\c\iﬂzo

=120

time
Cumulative ACK scenario
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Recelver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment startsat lower end of gap
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Fast Retransmit

& Time-out period often
relatively long:
« long delay before
resending lost packet
« Detect lost segments
via duplicate ACKs.

= Sender often sends
many segments back-to-
back

« I segment is lost,
there will likely be many
duplicate ACKs.

« |f sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

=« Tast retransmit: resend
segment before timer
expires
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Fast retransmit algorithm:

event: ACK received, with ACK field value of y
If (y > SendBase) {
SendBase =y
If (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

already ACKed segment
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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TCP Flow Control

& receijve side of TCP
connection has a
receive buffer:

k— RevWindow —f

7
// =3 / application

/_" process
////
'|l— RevBuffer —l*

data from
IP

& app process may be
slow at reading from
buffer

-flow control

sender won't overflow
receiver’'s buffer by
transmitting too much,
too fast

& Speed-matching
service: matching the
send rate to the
receiving app’s drain
rate
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TCP Flow control: how 1t works

k— RevWindow —f

7077 &« Rcvr advertises spare
/ // applicaion - FOOM DYy Including value

data from

¥ e of RevW ndowin
7 / _ / segments
pere & Sender limits unACKed
(Suppose TCP receiver data to RcvW ndow
discards out-of-order ~ guarantees receive
segments) buffer doesn't overflow
& spare room in buffer

= RcvW ndow

= RcvBuffer-[ LastByteRcvd -
Last Byt eRead]
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

& Initialize TCP variables:
& Se(q. #S

« buffers, flow control
Info (e.g. RevW ndow)

& client: connection initiator

Socket clientSocket = new
Socket (" host nane", " port

nunber") ;

& Sserver: contacted by client

Socket connecti onSocket =
wel coneSocket . accept () ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

=« specifies initial seq #
& NO data
Step 2: server host receives
SYN, replies with SYNACK
segment
= server allocates buffers

=« specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
client Socket. cl ose();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

d wait

Qo time

close

cK

» close
‘fﬂ/’/////ﬁﬁi//”//////
k

(l
server | &8
<5

=

FIN
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TCP Connection Management (cont.)

server (f(

S

=

Step 3: client receives FIN,
replies with ACK.

closing

. . F
=« Enters “timed wait” - N

will respond with ACK
to received FINs

Y
/ closing
: N
Step 4: server, receives /
ACK. Connection closed. -
k

Note: with small
modification, can handle
simultaneous FINSs.

d wait

closed

Qo time

close
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TCP Connection Management (cont)

wait 30 secands

CLOSED

TIME_WAIT

F Y

recere FIM
send ACK

FIN_WAIT_2

receie ACHK
=end nothing

TCP client
lifecycle

client application
initiates a TCP connection

send SV

SYN_SENT

receie 3T & ACK
send ACK

¥

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIM CLOSED

receive ACK
send nothing

LAST_ACK

TCP server

lifecycle

server application
creates a listen socket

LISTEN

[

h

send FIM

CLOSE_WAIT

receive FIM
send ACK

receive SN
send SYMN & ACK

h

r

SYN_RCVD

ESTABLISHED

Trans

receive ACK
send nothing

port Layer
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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Principles of Congestion Control

Congestion:

« Informally: “too many sources sending too much
data too fast for network to handle”

« different from flow control!
= manifestations:
=« lost packets (buffer overflow at routers)
& long delays (queueing in router buffers)
&« a top-10 problem!
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Causes/costs of congestion: scenario 1

Host A ?out
& tWO Sender—s’ tWO — ?., original data
receivers t
Host B unlimited shared
25 One router, ° ) - output link buffers
Infinite buffers ==

& NO retransmission

& large delays
when congested

& maximum
i achievable
2 C/2 throughput
in

C/2+4

Kou’r
delay
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Causes/costs of congestion: scenario 2

& one router, finite buffers
& sender retransmission of lost packet

HOosStA 5 original data ? out
el ..
&—t 7 original data, plus /'Y
retransmitted drata
Host B finite shared output
Py s link buffers
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Causes/costs of congestion: scenario 2

. =7
& always: 7. 2 out (goodput)

in ,
& “perfect” retransmission only when loss: ?in> ?out
- - /
& retransmission of delayed (not lost) packet makes ?in larger
(than perfect case) for same ?out
Cr24 Cr4 C/2-
5 C/3T
@] " T
~ 3 3
. o g S /
C/2 5C 6C 5C
I I I
kin: 7\’in 7\‘in 7\'in

“costs” of congestion:

& more work (retrans) for given “goodput”

&« unneeded retransmissions: link carries multiple copies of pkt
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Causes/costs of congestion: scenario 3

= Tour senders Q: what happens as ?.
= multihop paths and ?’ increase ?
= timeout/retransmit In

Host A ..
?., - original data

f t /L ?'. . original data, plus
|
|
|

retransmitted ddtd "

finite shared output
lipk buffers

Host B

—

?

*out

Ses

A

]
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Causes/costs of congestion: scenario 3

C/2

7\’ou’r
gk

k!
Ig
Another “cost” of congestion:

= when packet dropped, any “upstream transmission
—_capacity used for that packet was wasted!
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Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

« no explicit feedback from
network

& congestion inferred from
end-system observed loss,
delay

& approach taken by TCP

Network-assisted
congestion control:

& routers provide feedback
to end systems
& single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

=« explicit rate sender
should send at
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Case study: ATM ABR congestion control

ABR: available bit rate:

& “elastic service”

« 1f sender’s path
“underloaded’:

= sender should use
available bandwidth

« If sender’s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

& sent by sender, interspersed
with data cells

« bits in RM cell set by switches
(“network-assisted”)

« NI bit: no increase In rate
(mild congestion)

=« CI bit: congestion
indication
= RM cells returned to sender by
receiver, with bits intact
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Case study: ATM ABR congestion control

I RM cells
source I:I data cells destination

Switch Switch

= 1 Syl Wipqlt S2

= two-byte ER (explicit rate) field in RM cell
=« congested switch may lower ER value in cell
= sender’ send rate thus minimum supportable rate on path

« EFCI bit in data cells: set to 1 in congested switch

=« 1T data cell preceding RM cell has EFCI set, sender sets Cl
bit in returned RM cell
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Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control
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TCP Congestion Control

« end-end control (no network
assistance)

& sender limits transmission:
Last Byt eSent - Last Byt eAcked

? CongWn
& Roughly,

How does sender

CongWin
RTT

rate = Bytes/sec

perceive congestion?

& loss event = timeout or
3 duplicate acks

&« TCP sender reduces
rate (CongW n) after
loss event

three mechanisms:

& CongW n Is dynamic, function
of perceived network
congestion

= AIMD
« Slow start

« conservative after
timeout events
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TCP AIMD

multiplicative decrease:

additive increase:

cut CongW n iIn half
after loss event

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes —

Increase CongW n by
1 MSS every RTT in
the absence of loss
events: probing

p time

Long-lived TCP connection
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TCP Slow Start

= When connection begins, « \WWhen connection begins,

CongW n =1 MSS InCreaset!‘aITef -~
= Example: MSS = 500 exponentially Tast unti

bytes & RTT = 200 msec first loss event
« Initial rate = 20 kbps

« avalilable bandwidth may
be > MSS/RTT

=« desirable to quickly ramp
up to respectable rate
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TCP Slow Start (more)

« \WWhen connection
begins, increase rate
exponentially until
first loss event:

=« double CongW n every
RTT

=« done by incrementing
CongW n for every ACK
received
& Summary: initial rate
IS slow but ramps up

exponentially fast

time

,, ]
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Refinement

Philosophy:

= After 3 dup ACKs:

* 3 dup ACKs indicates
= CongW n is cut in half P

network capable of

= window then grows delivering some segments
linearly « timeout before 3 dup
« But after timeout event: ACKs Is “more alarming”
= CongW n instead set to
1 MSS;

= window then grows
exponentially

& to a threshold, then
grows linearly
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Refinement (more)

Q: When should the
exponential
Increase switch to
linear?

A: When CongW n
gets to 1/2 of its

value before
timeout.

congestion window size

Implementation:
# Variable Threshold

& At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

(segments)

10 1

O N b~ O 0
I I I

threshold
1 _ TCP TCP
|*" Tahoe _ Reno

1 2 3 45 6 7 8 9101112 13 14 15

Transmission round
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Summary: TCP Congestion Control

= When CongW n is below Thr eshol d, sender iIn
slow-start phase, window grows exponentially.

=« When CongW n is above Thr eshol d, sender is in
congestion-avoidance phase, window grows linearly.

= When a triple duplicate ACK occurs, Thr eshol d
set to CongW n/ 2 and CongW n set to
Thr eshol d.

= When timeout occurs, Thr eshol d set to
CongW n/ 2 and CongW n is set to 1 MSS.
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TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

@Eﬂ—l-xi

TCP@ bottleneck

connection 2 rou’ger
capacity R
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Why is TCP fair?

Two competing sessions:
= Additive increase gives slope of 1, as throughout increases
& multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R
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Fairness (more)

Fairness and UDP Fairness and para”el TCP
connections

= Multimedia apps often

do not use TCP & nothing prevents app from
. do not want rate opening parallel cnctions
throttled by congestion between 2 hosts.
control « Web browsers do this
= Instead use UDP: = Example: link of rate R
= pump audio/video at supporting 9 cnctions;
constant rate, tolerate
packet loss = new app asks for 1 TCP, gets
_ rate R/10
5 Re_searCh area: TCP = new app asks for 11 TCPs,
friendly gets R/2 !
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Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
Influenced by:

« TCP connection establishment

« data transmission delay
« slow start

Notation, assumptions:

= Assume one link between
client and server of rate R

& S: MSS (bits)

= O: object size (bits)

& No retransmissions (no loss,
no corruption)

Window size:

& First assume: fixed
congestion window, W
segments

& Then dynamic window,
modeling slow start
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Fixed congestion window (1)

First case:

WS/R>RTT + S/R: ACK fc
first segment in window
returns before window's

worth of data sent

delay = 2RTT + O/R

irtiate TCF
cormecton B
recue st et

ohject pafl RS

fime ¥

at cliert

ey,
—irirrie

i,
=y

¥ tithe
at aerrer
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Fixed congestion window (2)

commetion A
Second case: - }n
& WS/R<RTT +S/R: wait =% Lo
for ACK after sending | 7T — .
window's worth of data / stm
sent / .

delay = 2RTT + O/R %‘\mad{

+ (K-D[S/R + RTT - WS/R]

e
at client
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TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

o S
R R

Latency ? 2RTT ?

? 2 p oS
?PRTT? 252(2° 21 2

where P is the number of times TCP idles at server:
P?minfQ,K?%

- where Q is the number of times the server idles
IT the object were of infinite size.

-and K is the number of windows that cover the object.
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TCP Delay Modeling: Slow Start (2)

Delay components:

e 2 RTT for connection
estab and request

* O/R to transmit
object

e time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

Example:

« O/S =15 segments
* K = 4 windows
eQ=2

e P=min{K-1,Q}=2

Server idles P=2 times

initiate TCP
connection

\

request
object
$ first window
=S/R

second window
=2S/R

A

third window
= 4S/R

\ 4
A

fourth window

= 8S/R
A\ 4
. \ complete
object transmission
delivered
time at
time at server

client
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TCP Delay Modeling (3)

g ? RTT ? timefrom when server starts to send segment

until server receives acknowledgement

initiate TCP
connection

1S . . . —
pak E'?t|meto transmit thekth window et
object_> ) .
¢ flrst:vgygow
i ’?R‘I‘I’?Z"'lﬁg ?idletimeafter thekth window I d vind

gﬁ = 2S/IR

third window
=4S/R

v
A

fourth window

P
delay?g? 2RTT ? 72 idleTime
R p

=8S/IR
p?1
P
2992RTT 22 [22RTT 22 3] ,,
R w1 R R e Y -
delivered ransmission
OQOZR-I—I-?P[R-FI-?E]?(ZP 91)§ . time at
R R R t'gﬂzn?t server
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TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K ?min{k:2°S?2'S?0 ?2“'S? 0}
?min{k:2°?22'?0 ?22¥'?20/S

?min{k:Zk?l?g}
S
o O
’?mm{k.k?logz(g?l)}
? O _ .72
o O,
- ?ng(s 1)3

Calculation of Q, number of idles for infinite-size object,
IS similar (see HW).
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HTTP Modeling

« Assume Web page consists of:
= 1 base HTML page (of size O bits)
= M images (each of size O bhits)
« Non-persistent HTTP:
& M+1 TCP connections in series
= Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
« Persistent HTTP:
& 2 RTT to request and receive base HTML file
= 1 RTT to request and receive M images
« Response time = (M+1)O/R + 3RTT + sum of idle times
& Non-persistent HTTP with X parallel connections
& Suppose M/X integer.
« 1 TCP connection for base file
« M/X sets of parallel connections for images.
= Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times
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HT TP Response time (in seconds)

RTT =100 msec, O = 5 Kbytes, M=10 and X=5
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For low bandwidth, connection & response time dominated by
transmission time.

Persistent connections only give minor improvement over parallel
connections.
Transport Layer 3-104



HT TP Response time (in seconds)

RTT =1 sec, O =5 Kbytes, M=10 and X=5
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For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay?bandwidth networks.
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Chapter 3. Summary

& principles behind transport
layer services:

= multiplexing,
demultiplexing

« reliable data transfer

« Flow control Next:

= congestion control & leaving the network
& Instantiation and “edge” (application,

Implementation in the transport layers)

Internet & into the network

= UDP “core”

&« TCP
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