Chapter 3
Transport Layer

A note on the use of these ppt slides:

We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

& If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we'd like people to use our book!)

5 If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2002
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking:
A Top Down Approach
Featuring the Internet,
2nd edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2002.

Transport Layer 3-1

Chapter 3: Transport Layer

Our goals:

& understand principles
behind transport
layer services:

= multiplexing/demultipl
exing

= reliable data transfer

« Flow control

&« congestion control

& learn about transport
layer protocols in the
Internet:

= UDP: connectionless
transport

« TCP: connection-oriented
transport

=« TCP congestion control

Transport Layer

3-2

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented

transport: TCP
= segment structure
« reliable data transfer

« Flow control

=« connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion

control

Transport Layer

3-3

Transport services and protocols

& provide logical communication

between app processes
running on different hosts

& transport protocols run in
end systems

=« send side: breaks app
messages into segments,
passes to network layer

= Icv side: reassembles
segments into messages,
passes to app layer

& more than one transport
protocol available to apps

« Internet: TCP and UDP

network

data link

network /

physical

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

Transport Layer

Transport vs. network layer

= network layer: logical
communication
between hosts

& transport layer: logical
communication
between processes

=« relies on, enhances,
network layer services

Household analogy:

12 kids sending letters
to 12 kids

& processes = Kkids

& app messages = letters
In envelopes

& hosts = houses

& transport protocol =
Ann and Bill

= network-layer protocol
= postal service

Transport Layer

3-5

Internet transport-layer protocols

& reliable, in-order application

delivery (TCP) oo ok T P
. sica ata lin
«~ congestion control 3 b pnysical
=« Flow control | .
: networ
= connection setup dera nk

network
data link
physical

physical

& unreliable, unordered
delivery: UDP

= no-Trills extension of
“best-effort” IP

network

& services not available: C@ ¢ |dataink

Q physical

« delay guarantees
= bandwidth guarantees

Transport Layer 3-6

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented

transport: TCP
= segment structure
« reliable data transfer

« Flow control

=« connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion

control

Transport Layer

3-7

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

[] =socket O = process

_| Multiplexing at send host: | _

gathering data from multiple
sockets, enveloping data with
header (later used for

demultiplexing)

application @ application @ application
L T I ¥ ——
transport transport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

« host receives IP datagrams

=« each datagram has source
IP address, destination IP
address

« each datagram carries 1
transport-layer segment

= each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits -

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

« Create sockets with port

numbers:

Dat agr anSocket nmySocket 1
Dat agr antSocket (99111) ;

Dat agr anSocket nmySocket 2
Dat agr antSocket (99222) ;

« UDP socket identified by
two-tuple:

(dest IP address, dest port number)

new

new

=« When host receives UDP
segment:

= Checks destination port
number in segment

=« directs UDP segment to
socket with that port
number

« |P datagrams with

different source IP

addresses and/or source

port numbers directed

to same socket

Transport Layer 3-10

Connectionless demux (cont)

Dat agr anocket server Socket = new Dat agr antSocket (6428) ;

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

SP provides “return address”

Transport Layer 3-11

Connection-oriented demux

= TCP socket identified
by 4-tuple:
« source IP address
= source port number
« dest IP address
=« dest port number

& recv host uses all four
values to direct
segment to appropriate
socket

& Server host may support
many simultaneous TCP
sockets:

= each socket identified by
Its own 4-tuple

=« Web servers have
different sockets for
each connecting client

& non-persistent HTTP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux
(cont)

SP: 80 SP: 80
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 80 server DP: 80 Client
IP: A IP: C IP:B

Transport Layer 3-13

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-14

UDP: User Datagram Protocol [RFC 768]

& “no frills,” “bare bones”
Internet transport Why is there a UDP?
!?rotocol . _ £ NO connection
= “best effort” service, UDP establishment (which can
segments may be: add delay)
= lost & simple: no connection state
=« delivered out of order at sender, receiver
to app « small segment header
= connectionless: & no congestion control: UDP
« No handshaking between can blast away as fast as
UDP sender, receiver desired
= each UDP segment

handled independently
of others

Transport Layer 3-15

UDP: more

e often used for streaming

< 32 bits

multimedia apps

v

=« loss tolerant Length, in |Source port # dest port #
= rate sensitive bytes of UDP | length checksum
segment,
« other UDP uses including
= DNS header
= SNMP
« reliable transfer over UDP: Application
add reliability at data
application layer (message)

= application-specific

error recovery!

UDP segment format

Transport Layer 3-16

UDP checksum

Goal: detect “errors” (e.g., Tlipped bits) in transmitted
segment

Sender: Receiver:
&« treat segment contents & compute checksum of
as sequence of 16-bit received segment
Integers & check if computed checksum
& checksum: addition (1's equals checksum field value:
complement sum) of = NO - error detected
segment contents « YES - no error detected.
& sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

Transport Layer 3-17

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-18

Principles of reliable data transfer

& Important in app., transport, link layers
& top-10 list of important networking topics!

-
O
O O
O = receiver
% ~ orocess process
O 1
dt d .
= Ib()relic:lble chc:mnel)j rdt_send () deliver data()
8_ o) reliable data reliable data
D > transfer protocol transfer protocol
% O (sending side) (receiving side)

udt_send()1 Irdt_rcv ()

Junreliable c:hcmnel);'A

(a) provided service (b) service implementation

& characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-19

Reliable data transfer: getting started

rdt _send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer profocol
(sending side)

send
side

del i ver _dat a(): called by
rdt to deliver data to upper

/

dafa]fdeliver data()

recejve
side

reliapble data
fransfer protocol
(receiving side)

udt_send ()} [pactel

packet Irdt_rcv ()

T—hOunreIiobIe channel)41lA

udt send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt _rcv(): called when packet
arrives on rcv-side of channel

Transport Layer 3-20

Reliable data transfer: getting started

we'll:
& Incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

& consider only unidirectional data transfer
& but control info will flow on both directions!

& use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition
\‘

Transport Layer 3-21

state: when in this
“state” next state
uniquely determined
by next event

—

RAt1.0: reliable transfer over a reliable channel

& underlying channel perfectly reliable

&« NO bit errors
= No loss of packets

= separate FSMs for sender, receiver:
=« sender sends data into underlying channel
=« recelver reads data from underlying channel

. Wait for rdt_send(data)

call from
above packet = make_ pkt(data)

udt_send(packet)

sender

“S\Wait for

rdt_rcv(packet)

call from
below

extract (packet,data)
deliver_data(data)

receiver

Transport Layer 3-22

Rdt2.0: channel with bit errors

& underlying channel may flip bits in packet
« recall: UDP checksum to detect bit errors

& the question: how to recover from errors:

= acknowledgements (ACKSs): receiver explicitly tells sender
that pkt received OK

=« negative acknowledgements (NAKS): receiver explicitly
tells sender that pkt had errors

=« sender retransmits pkt on receipt of NAK
=« human scenarios using ACKs, NAKs?
& new mechanisms in rdt 2. 0 (beyond r dt 1. 0):

=« error detection
=« receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-23

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum) rece ive r
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && iSACK(rcvpkt) S .

~ Wait for
' call from
below

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-24

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

o

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<

?

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-25

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rcv(rcvpkt) &&
ISNA s

1£

-

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

end(NAK

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<

call from

?
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-26

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

& sender doesn't know what
happened at receiver!

& can't just retransmit:
possible duplicate

What to do?

&« sender ACKs/NAKSs
receiver's ACK/NAK? What
IT sender ACK/NAK lost?

& retransmit, but this might
cause retransmission of
correctly received pkt!

Handling duplicates:

« sender adds sequence
number to each pkt

& Sender retransmits current
pkt if ACK/NAK garbled

& receiver discards (doesn't
deliver up) duplicate pkt

—stop and wait
Sender sends one packet,
then waits for receiver
response

Transport Layer 3-27

rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iSACK(rcvpkt)

?
| ?
Wait for
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-28

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)

\ udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (,
has_seql(rcvpkt) has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt
- (sndpka) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

&& has_seqgl(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-29

rdt2.1: discussion

Sender: Recelver:
& Seq # added to pkt & must check If received
= two seq. #'s (0,1) will packet is duplicate
suffice. Why? « state indicates whether
O or 1 is expected pkt

= must check If received seq #
ACK/NAK corrupted _ :
& note: receiver can not

« twice as many states know if its last

= State must “remember” ACK/NAK received OK
whether “current” pkt at sender

has O or 1 seq. #

Transport Layer 3-30

rdt2.2: a NAK-free protocol

&« same functionality as rdt2.1, using ACKs only

& Instead of NAK, receiver sends ACK for last pkt
received OK
=« receiver must explicitly include seq # of pkt being ACKed

& duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-31

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

\Wai Cfor (corrupt(rcvpkt) ||
ACK ISACK(rcvpkt,1))
0 udt_send(sndpkt)
sender FSM
fragment rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

?

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seql(rcvpkt))

receiver FSM

fragment
—— L

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-32

udt_send(sndpkt)

rdt3.0: channels with errors and loss

New assumption: Approach: sender waits
underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) & retransmits if no ACK
= checksum, seq. #, ACKs, received in this time

retransmissions will be &« IF pkt (or ACK) just delayed
of help, but not enough (not lost):

Q: how to deal with loss? P retrgnsmission will be
« sender waits until dt{phcate, but use of ><0.

certain data or ACK #'s already handles this
lost, then retransmits = recelver must specify seq
& yuck: drawbacks? # of pkt being ACKed

& requires countdown timer

Transport Layer 3-33

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

v sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
2

Wait for

above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

e

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

?

timeout
udt_send(sndpkt)
start_timer

call Ofrom

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
?

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
?

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-34

rdt3.0 Iin action

sender receiver

okt
sendpk0 =——0__ rcvpkio
send ACKO
]

ov ACKO /

ACK
send pkt1 \m\‘
rcv pkil
ACK send ACK]1
rcvACK]
K q
CK

send pkt0
A rcv pktO
send ACKO

(a) operation with no loss

sender receiver
okt
send pki0 0 v pki0
ACK send ACKO
rcv ACKO
send pkil 7 \%ﬂ(
(loss)
fimeout _|
resend Pkt %
rCV Pkt
ACK send ACK]
rCVvACK] o
send pkio

rcv pktO
y send ACKQO

(b) lost packet

Transport Layer 3-35

rdt3.0 Iin action

sender receiver sender receiver
send pki0 % rcv pkio send pki0 \%’ rcv pktO
ACK send ACKO ACK send ACKO

rcv ACKO rcv ACKO
send pki1 KT send pkil 7]
rcv kil rcv pktl
ACK send ACKI1 send ACKI
(loss) X/
timeout
timeout = okt resend pkil =
oo kT \rcv Pk | rcv pktl |
ACK (detect duplicate) rcvACK1 (detect duplicate)
send ACK send pktO send ACK1
[CvACK " rcv pkio
send pki0 send ACKO
ACK rcv pkio ACK g
send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-36

Performance of rdt3.0

& rdt3.0 works, but performance stinks
= example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T ~ L (packet length in bits) _ 8kb/pkt _ami
transmit™ R (transmission rate, bps) 10**9 b/sec o THeFOSEC
U = L/R = 008 = 0.00027
sender RTT+L/R 30.008
= U . utilization - fraction of time sender busy sending

sender-

= 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
= network protocol limits use of physical resources!

Transport Layer 3-37

rdt3.0: stop-and-walit operation

sender receiver
first packet bit transmitted, t = 0
last packet bit transmitted, t =L/ R

—first packet bit arrives

RTT —last packet bit arrives, send
ACK
ACK arrives, send next|
packet,t =RTT+L/R
.008
U = L/R — = 0.00027

sender RTT+L/R = 30.008

Transport Layer 3-38

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
=« range of sequence numbers must be increased
« buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocoel in operation (b) a pipelined protocol in operation

« Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-39

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = O-

last bit transmitted, t =L/ R

— first packet bit arrives

- Jast packet bit arrives, send ACK

—last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next
packet, t =RTT+L/R |

Increase utilization
/ by a factor of 3!

u =-—3TL/R _ 922 _ 0008

sender RTT+L /R "~ 30.008

Transport Layer 3-40

Go-Back-N

Sender:

& K-bit seq # in pkt header
& “window” of up to N, consecutive unack'ed pkts allowed

send_base hexftsegnum dlready sable. hot
iv i ack’ed yet sent
TR D EETATROO000NT | oot roroscee
t __ window size—%
N

& ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
= may receive duplicate ACKs (see receiver)

« timer for each in-flight pkt

& timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-41

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextsegnum)
start_timer
nextsegnum-++
}
2 else
— refuse_data(data)

»
>
&

base=1
nextseqnum=1 ™

""u.‘ : : timeout
start_timer
3 udt_send(sndpkt[base])
O U udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqgnum-1])

.
‘b

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer Transport Layer 3-42

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(rcvpkt)
TS~a < > && notcurrupt(rcvpkt)
? Il - && hassegnum(rcvpkt,expectedsegnum)
= -
expectedseqnum=1 Oextract(rcvpkt,data)
sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedsegnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum-++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
= may generate duplicate ACKs
= need only remember expect edseqnum

& out-of-order pkt:
= discard (don’'t buffer) -> no receiver buffering!

= Re-ACK pkt with highest in-order seq #
Transport Layer 3-43

GBN In

action

sender

send pkt0
send pktl

¥ send pki2

send pkt3
(wait)

rcv ACKO
send pkt4

rcv ACKT

—pkf2 fimeout
send pkt2
send pkt3
send pkt4
send pktd

receiver

\
\(l&ss)

N

send pkts \

—
~

rcv pkto
send ACKO

rcv pkrl
send ACKI

rcv pktd, discard
send ACKI

rcv pkitd, discard
send ACK]

rcv pkitd, discard
seng ACK

rev pkit2, deliver

send ACKZ2
rcv pkt3, deliver

send ACK3

Transport Layer 3-44

Selective Repeat

& receiver individually acknowledges all correctly
received pkts

=« buffers pkts, as needed, for eventual in-order delivery
to upper layer

& sender only resends pkts for which ACK not
received
=« sender timer for each unACKed pkt

& sender window

= N consecutive seq #'s
= again limits seq #s of sent, unACKed pkts

Transport Layer 3-45

Selective repeat: sender, receiver windows

send_base hextseghum dlready sable. not
i' i ack’ed yet sent
R TLTTITTI] Sy e
t __ window size —4
N

(a) sender view of sequence numlbers

acceptable
(buffered) but § (\yithin window)
adlready ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂllﬂlllllIIIIIIIIIII el R

t _ indow size—24
N

out of order I

rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-46

Selective repeat

sender

recelver

data from above :

& 1T next available seq # in
window, send pkt

timeout(n):

e« resend pkt n, restart timer

ACK(Nn) in [sendbase,sendbase+N]:

& mark pkt n as received

« 1F n smallest unACKed pkt,
advance window base to
next unACKed seq #

pkt nin [rcvbase, rcvbase+N-1]
& send ACK(n)
e out-of-order: buffer

& In-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

PKTt N IN [revbase-N, revbase-1]
& ACK(n)

otherwise:
& ignhore

Transport Layer 3-47

Selective repeat in action

pktl =ent
D1c3f456 7879 ﬁ—_hﬂq__hﬁﬁ__h““__““i'pktD rovd, delivered, ACKD =ent
pktl =ent nf1 2 3 4(5 6 7 8 9

012 3456 78279

pktl rocwd, delivered. ACEl =ent
pkt2 =ent n 1|2 24 &5fe 7 89

— |01 2 3[/456 789 WX

(losz)

pkt3 =ent. window full
n1z2 3456 7 829

pktd rovd, buffered. ACKI sent
0 1{2z 3 4 5|6 7 8 9

ACKD rovd, pktd ==nt
oL 2 3 4|56 7 89

pktd rcvd, buffered. ACE4 =ent

ACKEl rowd, pktS ==nt

01

2 345

£ 7 &8 9

o1

2 345

B 7 893

pktt rovd, buffersd. ACEKS =ent
012 2 4 5|6 7 8 9

—— pkt2 TIMEOUT, pktZ re=szent
o1z 2 4 5le 7 89

pkt? rovd, pkt?, pkt3d, pltd plth
delivered, ACK?Z =e=nt

012345k 7819

ACK3 rowd, nothing =sent
o1z 3456 7 829

rt Layer 3-48

Selective repeat:

sender window
(after receipt)

receiver window
(after receipt)

dilemma

Example:
&« seq#'s:0,1,2,3
& window size=3

& receiver sees no
difference in two
scenarios!

& Incorrectly passes
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

ktO
01230149

Ofl 2 3jJ0 1 2

012|301 01123 0/1 2

0123012

0123012

ACK2
timeout
retransmit pktOQ
012|301 fkto —Jp receive packet

with seq number O

(a)

sender window
(after receipt)

ktO
01230149

receiver window
(after receipt)

Ofl 2 3J0 1 2

0121301 012 30]1 2

012|301 2 01230 12
ACK2

ol1 2301

o123 01

receive packet
with seq number O

(0)

Transport Layer 3-49

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-50

TCP: Overview recs: 793, 1122, 1323, 2018, 2581

& point-to-point: & Tull duplex data:

=« 0One sender, one receiver = bi-directional data flow
= reliable, in-order byte In same connection

steam: = MSS: maximum segment

' . size

= NO “message boundaries _ _

e & connection-oriented:
& pipelined:

=« handshaking (exchange
of control msgs) init's
sender, receiver state

=« TCP congestion and flow
control set window size

& send & receive buffers before data exchange
= Flow controlled:
application application .
socker_ ||| WHeS g e G sender will not
oot TP o door overwhelm receiver
send buffer receive buffer
) [Seament] —» (

Transport Layer 3-51

TCP segment structure

A

32 bits

URG: urgent data
(generally not used)\

source port # | dest port #

v

ACK: ACK #

seguence number

valid

-y
@
QD
o

ckowledgement number

PSH: push data now
(generally not used)— |

not
Sed

’I'lR S|F| Receive window

/heek/ Urg data pnter

RST. SYN, FIN:—
connection estab

\

Op)@(s (variable length)

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

\

application
data
(variable length)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

Transport Layer 3-52

TCP seq. #'s and ACKs

Seq. #'s:
=« byte stream
“number” of first
byte in segment’s
data
ACKs:

= seq # of next byte
expected from
other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn't
say, - up to
Implementer

host ACKs
receipt

of echoed
LC!

receipt of
‘C’, echoes
back ‘C’

time

simple telnet scenario

v

Transport Layer 3-53

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? = Sanpl eRTT: measured time from
& longer than RTT segment transmission until ACK
« but RTT varies rec_elpt
« 100 short: premature = Ignore retransmissions
timeout = Sanpl eRTT will vary, want
~ unnecessary estimated RTT “smoother”
retransmissions =« average several recent
& too long: slow reaction measurements, not just
to segment loss current Sanpl eRTT

Transport Layer 3-54

TCP Round Trip Time and Timeout

Estimat edRTT = (1- ?)*EstinmatedRTT + ?*Sanpl eRTT

& EXponential weighted moving average
« Influence of past sample decreases exponentially fast
& typical value: ? = 0.125

Transport Layer 3-55

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 1

\ . N
A m.ﬁ..‘ J.‘.mu_!mltll‘ﬁ\‘h 'M!‘ﬁ'i‘g.lﬂ‘

N

a1

o
—®
—

RTT (milliseconds)

N
o
o

v,‘ [

150

100 T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—— SampleRTT —®—Estimated RTT

Transport Layer 3-56

TCP Round Trip Time and Timeout

Setting the timeout

& Esti nm edRTT plus “safety margin”
& large variation in Est i mat edRTT - > larger safety margin

« Tirst estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-7?)*DevRIT +
?*| Sanpl eRTT- Est i mat edRTT]|

(typically, ? = 0.25)

Then set timeout interval:

Ti neoutl nterval = EstinatedRTT + 4*DevRTT

Transport Layer 3-57

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-58

TCP reliable data transfer

= TCP creates rdt = Retransmissions are
service on top of IP’s triggered by:
unreliable service = timeout events

& Pipelined segments = duplicate acks

=~ Cumulative acks « Initially consider

simplified TCP sender:
& Ignore duplicate acks

« Ignore flow control,
congestion control

& TCP uses single
retransmission timer

Transport Layer 3-59

TCP sender events:

data rcvd from app:

« Create segment with
seq #
& Seq # Is byte-stream

number of first data
byte In segment

& start timer if not
already running (think
of timer as for oldest
unacked segment)

& expiration interval:
Ti meQut | nt er val

timeout:

& retransmit segment
that caused timeout

& restart timer
Ack rcvd:

« T acknowledges
previously unacked
segments

=« Update what is known to
be acked

=« Sstart timer if there are
outstanding segments

Transport Layer 3-60

NextSegNum = InitialSegNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

» SendBase-1: last
cumulatively
ack'ed byte
Example:
 SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-61

TCP: retransmission scenarios

I

«—timeout ———

loss
Seq:
2, 8bytes data
_100
pC A0
SendBase
=100
time

lost ACK scenario

Sendbase
=100
SendBase
=120

SendBase
=120

02 timeouq—>|

92 timeout}—y«— [Seq

Seq

4

time

premature timeout

Transport Layer 3-62

TCP retransmission scenarios (more)

timeout ———

loss
SendBase P\c\iﬂzo

=120

time
Cumulative ACK scenario

Transport Layer 3-63

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Recelver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment startsat lower end of gap

Transport Layer 3-64

Fast Retransmit

& Time-out period often
relatively long:
« long delay before
resending lost packet
« Detect lost segments
via duplicate ACKs.

= Sender often sends
many segments back-to-
back

« I segment is lost,
there will likely be many
duplicate ACKs.

« |f sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

=« Tast retransmit: resend
segment before timer
expires

Transport Layer 3-65

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
If (y > SendBase) {
SendBase =y
If (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

already ACKed segment

Transport Layer 3-66

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-67

TCP Flow Control

& receijve side of TCP
connection has a
receive buffer:

k— RevWindow —f

7
// =3 / application

/_" process
////
'|l— RevBuffer —l*

data from
IP

& app process may be
slow at reading from
buffer

-flow control

sender won't overflow
receiver’'s buffer by
transmitting too much,
too fast

& Speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

Transport Layer 3-68

TCP Flow control: how 1t works

k— RevWindow —f

7077 &« Rcvr advertises spare
/ // applicaion - FOOM DYy Including value

data from

¥ e of RevW ndowin
7 / _ / segments
pere & Sender limits unACKed
(Suppose TCP receiver data to RcvW ndow
discards out-of-order ~ guarantees receive
segments) buffer doesn't overflow
& spare room in buffer

= RcvW ndow

= RcvBuffer-[LastByteRcvd -
Last Byt eRead]

Transport Layer 3-69

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-70

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

& Initialize TCP variables:
& Se(q. #S

« buffers, flow control
Info (e.g. RevW ndow)

& client: connection initiator

Socket clientSocket = new
Socket (" host nane", " port

nunber") ;

& Sserver: contacted by client

Socket connecti onSocket =
wel coneSocket . accept () ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

=« specifies initial seq #
& NO data
Step 2: server host receives
SYN, replies with SYNACK
segment
= server allocates buffers

=« specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-71

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
client Socket. cl ose();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

d wait

Qo time

close

cK

» close
‘fﬂ/’/////ﬁﬁi//”//////
k

(l
server | &8
<5

=

FIN

Transport Layer 3-72

TCP Connection Management (cont.)

server (f(

S

=

Step 3: client receives FIN,
replies with ACK.

closing

. . F
=« Enters “timed wait” - N

will respond with ACK
to received FINs

Y
/ closing
: N
Step 4: server, receives /
ACK. Connection closed. -
k

Note: with small
modification, can handle
simultaneous FINSs.

d wait

closed

Qo time

close

Transport Layer 3-73

TCP Connection Management (cont)

wait 30 secands

CLOSED

TIME_WAIT

F Y

recere FIM
send ACK

FIN_WAIT_2

receie ACHK
=end nothing

TCP client
lifecycle

client application
initiates a TCP connection

send SV

SYN_SENT

receie 3T & ACK
send ACK

¥

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIM CLOSED

receive ACK
send nothing

LAST_ACK

TCP server

lifecycle

server application
creates a listen socket

LISTEN

[

h

send FIM

CLOSE_WAIT

receive FIM
send ACK

receive SN
send SYMN & ACK

h

r

SYN_RCVD

ESTABLISHED

Trans

receive ACK
send nothing

port Layer

3-74

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-75

Principles of Congestion Control

Congestion:

« Informally: “too many sources sending too much
data too fast for network to handle”

« different from flow control!
= manifestations:
=« lost packets (buffer overflow at routers)
& long delays (queueing in router buffers)
&« a top-10 problem!

Transport Layer 3-76

Causes/costs of congestion: scenario 1

Host A ?out
& tWO Sender—s’ tWO — ?., original data
receivers t
Host B unlimited shared
25 One router, °) - output link buffers
Infinite buffers ==

& NO retransmission

& large delays
when congested

& maximum
i achievable
2 C/2 throughput
in

C/2+4

Kou’r
delay

Transport Layer 3-77

Causes/costs of congestion: scenario 2

& one router, finite buffers
& sender retransmission of lost packet

HOosStA 5 original data ? out
el ..
&—t 7 original data, plus /'Y
retransmitted drata
Host B finite shared output
Py s link buffers

Transport Layer 3-78

Causes/costs of congestion: scenario 2

. =7
& always: 7. 2 out (goodput)

in ,
& “perfect” retransmission only when loss: ?in> ?out
- - /
& retransmission of delayed (not lost) packet makes ?in larger
(than perfect case) for same ?out
Cr24 Cr4 C/2-
5 C/3T
@] " T
~ 3 3
. o g S /
C/2 5C 6C 5C
I I I
kin: 7\’in 7\‘in 7\'in

“costs” of congestion:

& more work (retrans) for given “goodput”

&« unneeded retransmissions: link carries multiple copies of pkt
Transport Layer 3-79

Causes/costs of congestion: scenario 3

= Tour senders Q: what happens as ?.
= multihop paths and ?’ increase ?
= timeout/retransmit In

Host A ..
?., - original data

f t /L ?'. . original data, plus
|
|
|

retransmitted ddtd "

finite shared output
lipk buffers

Host B

—

?

*out

Ses

A

]

Transport Layer 3-80

Causes/costs of congestion: scenario 3

C/2

7\’ou’r
gk

k!
Ig
Another “cost” of congestion:

= when packet dropped, any “upstream transmission
—_capacity used for that packet was wasted!

Transport Layer 3-81

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

« no explicit feedback from
network

& congestion inferred from
end-system observed loss,
delay

& approach taken by TCP

Network-assisted
congestion control:

& routers provide feedback
to end systems
& single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

=« explicit rate sender
should send at

Transport Layer 3-82

Case study: ATM ABR congestion control

ABR: available bit rate:

& “elastic service”

« 1f sender’s path
“underloaded’:

= sender should use
available bandwidth

« If sender’s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

& sent by sender, interspersed
with data cells

« bits in RM cell set by switches
(“network-assisted”)

« NI bit: no increase In rate
(mild congestion)

=« CI bit: congestion
indication
= RM cells returned to sender by
receiver, with bits intact

Transport Layer 3-83

Case study: ATM ABR congestion control

I RM cells
source I:I data cells destination

Switch Switch

= 1 Syl Wipqlt S2

= two-byte ER (explicit rate) field in RM cell
=« congested switch may lower ER value in cell
= sender’ send rate thus minimum supportable rate on path

« EFCI bit in data cells: set to 1 in congested switch

=« 1T data cell preceding RM cell has EFCI set, sender sets Cl
bit in returned RM cell

Transport Layer 3-84

Chapter 3 outline

« 3.1 Transport-layer
services

& 3.2 Multiplexing and
demultiplexing

&« 3.3 Connectionless
transport: UDP

&« 3.4 Principles of
reliable data transfer

= 3.5 Connection-oriented
transport: TCP
= segment structure
=« reliable data transfer
= Flow control
= connection management

& 3.6 Principles of
congestion control

« 3.7 TCP congestion
control

Transport Layer 3-85

TCP Congestion Control

« end-end control (no network
assistance)

& sender limits transmission:
Last Byt eSent - Last Byt eAcked

? CongWn
& Roughly,

How does sender

CongWin
RTT

rate = Bytes/sec

perceive congestion?

& loss event = timeout or
3 duplicate acks

&« TCP sender reduces
rate (CongW n) after
loss event

three mechanisms:

& CongW n Is dynamic, function
of perceived network
congestion

= AIMD
« Slow start

« conservative after
timeout events

Transport Layer 3-86

TCP AIMD

multiplicative decrease:

additive increase:

cut CongW n iIn half
after loss event

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes —

Increase CongW n by
1 MSS every RTT in
the absence of loss
events: probing

p time

Long-lived TCP connection

Transport Layer 3-87

TCP Slow Start

= When connection begins, « \WWhen connection begins,

CongW n =1 MSS InCreaset!‘aITef -~
= Example: MSS = 500 exponentially Tast unti

bytes & RTT = 200 msec first loss event
« Initial rate = 20 kbps

« avalilable bandwidth may
be > MSS/RTT

=« desirable to quickly ramp
up to respectable rate

Transport Layer 3-88

TCP Slow Start (more)

« \WWhen connection
begins, increase rate
exponentially until
first loss event:

=« double CongW n every
RTT

=« done by incrementing
CongW n for every ACK
received
& Summary: initial rate
IS slow but ramps up

exponentially fast

time

,,]

Transport Layer 3-89

Refinement

Philosophy:

= After 3 dup ACKs:

* 3 dup ACKs indicates
= CongW n is cut in half P

network capable of

= window then grows delivering some segments
linearly « timeout before 3 dup
« But after timeout event: ACKs Is “more alarming”
= CongW n instead set to
1 MSS;

= window then grows
exponentially

& to a threshold, then
grows linearly

Transport Layer 3-90

Refinement (more)

Q: When should the
exponential
Increase switch to
linear?

A: When CongW n
gets to 1/2 of its

value before
timeout.

congestion window size

Implementation:
Variable Threshold

& At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

(segments)

10 1

O N b~ O 0
I I I

threshold
1 _ TCP TCP
|*" Tahoe _ Reno

1 2 3 45 6 7 8 9101112 13 14 15

Transmission round

Transport Layer 3-91

Summary: TCP Congestion Control

= When CongW n is below Thr eshol d, sender iIn
slow-start phase, window grows exponentially.

=« When CongW n is above Thr eshol d, sender is in
congestion-avoidance phase, window grows linearly.

= When a triple duplicate ACK occurs, Thr eshol d
set to CongW n/ 2 and CongW n set to
Thr eshol d.

= When timeout occurs, Thr eshol d set to
CongW n/ 2 and CongW n is set to 1 MSS.

Transport Layer 3-92

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

@Eﬂ—l-xi

TCP@ bottleneck

connection 2 rou’ger
capacity R

Transport Layer 3-93

Why is TCP fair?

Two competing sessions:
= Additive increase gives slope of 1, as throughout increases
& multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-94

Fairness (more)

Fairness and UDP Fairness and para”el TCP
connections

= Multimedia apps often

do not use TCP & nothing prevents app from
. do not want rate opening parallel cnctions
throttled by congestion between 2 hosts.
control « Web browsers do this
= Instead use UDP: = Example: link of rate R
= pump audio/video at supporting 9 cnctions;
constant rate, tolerate
packet loss = new app asks for 1 TCP, gets
_ rate R/10
5 Re_searCh area: TCP = new app asks for 11 TCPs,
friendly gets R/2 !

Transport Layer 3-95

Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
Influenced by:

« TCP connection establishment

« data transmission delay
« slow start

Notation, assumptions:

= Assume one link between
client and server of rate R

& S: MSS (bits)

= O: object size (bits)

& No retransmissions (no loss,
no corruption)

Window size:

& First assume: fixed
congestion window, W
segments

& Then dynamic window,
modeling slow start

Transport Layer 3-96

Fixed congestion window (1)

First case:

WS/R>RTT + S/R: ACK fc
first segment in window
returns before window's

worth of data sent

delay = 2RTT + O/R

irtiate TCF
cormecton B
recue st et

ohject pafl RS

fime ¥

at cliert

ey,
—irirrie

i,
=y

¥ tithe
at aerrer

Transport Layer 3-97

Fixed congestion window (2)

commetion A
Second case: - }n
& WS/R<RTT +S/R: wait =% Lo
for ACK after sending | 7T — .
window's worth of data / stm
sent / .

delay = 2RTT + O/R %‘\mad{

+ (K-D[S/R + RTT - WS/R]

e
at client

Transport Layer 3-98

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

o S
R R

Latency ? 2RTT ?

? 2 p oS
?PRTT? 252(2° 21 2

where P is the number of times TCP idles at server:
P?minfQ,K?%

- where Q is the number of times the server idles
IT the object were of infinite size.

-and K is the number of windows that cover the object.

Transport Layer 3-99

TCP Delay Modeling: Slow Start (2)

Delay components:

e 2 RTT for connection
estab and request

* O/R to transmit
object

e time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

Example:

« O/S =15 segments
* K = 4 windows
eQ=2

e P=min{K-1,Q}=2

Server idles P=2 times

initiate TCP
connection

\

request
object
$ first window
=S/R

second window
=2S/R

A

third window
= 4S/R

\ 4
A

fourth window

= 8S/R
A\ 4
. \ complete
object transmission
delivered
time at
time at server

client

Transport Layer 3-100

TCP Delay Modeling (3)

g ? RTT ? timefrom when server starts to send segment

until server receives acknowledgement

initiate TCP
connection

1S . . . —
pak E'?t|meto transmit thekth window et
object_>) .
¢ flrst:vgygow
i ’?R‘I‘I’?Z"'lﬁg ?idletimeafter thekth window I d vind

gﬁ = 2S/IR

third window
=4S/R

v
A

fourth window

P
delay?g? 2RTT ? 72 idleTime
R p

=8S/IR
p?1
P
2992RTT 22 [22RTT 22 3] ,,
R w1 R R e Y -
delivered ransmission
OQOZR-I—I-?P[R-FI-?E]?(ZP 91)§ . time at
R R R t'gﬂzn?t server

Transport Layer 3-101

TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K ?min{k:2°S?2'S?0 ?2“'S? 0}
?min{k:2°?22'?0 ?22¥'?20/S

?min{k:Zk?l?g}
S
o O
’?mm{k.k?logz(g?l)}
? O _ .72
o O,
- ?ng(s 1)3

Calculation of Q, number of idles for infinite-size object,
IS similar (see HW).

Transport Layer 3-102

HTTP Modeling

« Assume Web page consists of:
= 1 base HTML page (of size O bits)
= M images (each of size O bhits)
« Non-persistent HTTP:
& M+1 TCP connections in series
= Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
« Persistent HTTP:
& 2 RTT to request and receive base HTML file
= 1 RTT to request and receive M images
« Response time = (M+1)O/R + 3RTT + sum of idle times
& Non-persistent HTTP with X parallel connections
& Suppose M/X integer.
« 1 TCP connection for base file
« M/X sets of parallel connections for images.
= Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

Transport Layer 3-103

HT TP Response time (in seconds)

RTT =100 msec, O = 5 Kbytes, M=10 and X=5

20
18
16
14
12
10

8

non-persistent

persistent

[parallel non-
persistent

6
4
2
0

28 100 1 10

Kbps Kbps Mbps Mbps
For low bandwidth, connection & response time dominated by
transmission time.

Persistent connections only give minor improvement over parallel
connections.
Transport Layer 3-104

HT TP Response time (in seconds)

RTT =1 sec, O =5 Kbytes, M=10 and X=5

70
60
50 :
non-persistent
40
30 persistent
20 [parallel non-
10 persistent
0

28 100 1 10
Kbps Kbps Mbps Mbps

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay?bandwidth networks.

Transport Layer 3-105

Chapter 3. Summary

& principles behind transport
layer services:

= multiplexing,
demultiplexing

« reliable data transfer

« Flow control Next:

= congestion control & leaving the network
& Instantiation and “edge” (application,

Implementation in the transport layers)

Internet & into the network

= UDP “core”

&« TCP

Transport Layer 3-106

