
Chapter 2
Application Layer
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

§ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

§ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer: 2-1

Computer Networking: A
Top-Down Approach
8th edition n
Jim Kurose, Keith Ross
Pearson, 2020

Application layer: overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-2

Application layer: overview

Our goals:
§ conceptual and

implementation aspects of
application-layer protocols
• transport-layer service

models
• client-server paradigm
• peer-to-peer paradigm

§ learn about protocols by
examining popular
application-layer protocols
and infrastructure
• HTTP
• SMTP, IMAP
• DNS
• video streaming systems, CDNs

§ programming network
applications
• socket API

Application Layer: 2-3

Some network apps

§ social networking
§ Web
§ text messaging
§ e-mail
§ multi-user network games
§ streaming stored video

(YouTube, Hulu, Netflix)
§ P2P file sharing

§ voice over IP (e.g., Skype)
§ real-time video conferencing

(e.g., Zoom)
§ Internet search
§ remote login
§ …

Q: your favorites?

Application Layer: 2-4

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Creating a network app
write programs that:
§ run on (different) end systems
§ communicate over network
§ e.g., web server software

communicates with browser software

no need to write software for
network-core devices
§ network-core devices do not run user

applications
§ applications on end systems allows

for rapid app development,
propagation

Application Layer: 2-5

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Client-server paradigm
server:
§ always-on host
§ permanent IP address
§ often in data centers, for scaling

clients:
§ contact, communicate with server
§ may be intermittently connected
§ may have dynamic IP addresses
§ do not communicate directly with

each other
§ examples: HTTP, IMAP, FTP

Application Layer: 2-6

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-peer architecture
§ no always-on server
§ arbitrary end systems directly

communicate
§ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, as well as new service
demands

§ peers are intermittently connected
and change IP addresses
• complex management

§ example: P2P file sharing [BitTorrent]
Application Layer: 2-7

Processes communicating

process: program running
within a host

§within same host, two
processes communicate
using inter-process
communication (defined by
OS)

§processes in different hosts
communicate by exchanging
messages

§ note: applications with
P2P architectures have
client processes &
server processes

client process: process that
initiates communication

server process: process
that waits to be contacted

clients, servers

Application Layer: 2-8

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out door
• sending process relies on transport infrastructure on other side of

door to deliver message to socket at receiving process
• two sockets involved: one on each side

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer: 2-9

Addressing processes

§ to receive messages, process
must have identifier

§ host device has unique 32-bit
IP address

§Q: does IP address of host on
which process runs suffice for
identifying the process?

§ identifier includes both IP address
and port numbers associated with
process on host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to
gaia.cs.umass.edu web server:
• IP address: 128.119.245.12
• port number: 80

§more shortly…

§ A: no, many processes
can be running on
same host

Application Layer: 2-10

An application-layer protocol defines:

§ types of messages exchanged,
• e.g., request, response

§message syntax:
• what fields in messages &

how fields are delineated
§message semantics

• meaning of information in
fields

§ rules for when and how
processes send & respond to
messages

open protocols:
§ defined in RFCs, everyone

has access to protocol
definition

§ allows for interoperability
§ e.g., HTTP, SMTP

proprietary protocols:
§ e.g., Skype, Zoom

Application Layer: 2-11

What transport service does an app need?

data integrity
§ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

§ other apps (e.g., audio) can
tolerate some loss

timing
§ some apps (e.g., Internet

telephony, interactive games)
require low delay to be “effective”

throughput
§ some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

§ other apps (“elastic apps”)
make use of whatever
throughput they get

security
§ encryption, data integrity,

…

Application Layer: 2-12

Transport service requirements: common apps

application

file transfer/download
e-mail

Web documents
real-time audio/video

streaming audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5Kbps-1Mbps
video:10Kbps-5Mbps
same as above
Kbps+
elastic

time sensitive?

no
no
no
yes, 10’s msec

yes, few secs
yes, 10’s msec
yes and no

Application Layer: 2-13

Internet transport protocols services

TCP service:
§ reliable transport between sending

and receiving process
§ flow control: sender won’t

overwhelm receiver
§ congestion control: throttle sender

when network overloaded
§ connection-oriented: setup required

between client and server processes
§ does not provide: timing, minimum

throughput guarantee, security

UDP service:
§ unreliable data transfer

between sending and receiving
process

§ does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Q: why bother? Why
is there a UDP?

Application Layer: 2-14

Internet applications, and transport protocols

application

file transfer/download
e-mail

Web documents
Internet telephony

streaming audio/video
interactive games

application
layer protocol

FTP [RFC 959]
SMTP [RFC 5321]
HTTP [RFC 7230, 9110]
SIP [RFC 3261], RTP [RFC
3550], or proprietary
HTTP [RFC 7230], DASH
WOW, FPS (proprietary)

transport protocol

TCP
TCP
TCP

TCP or UDP

TCP
UDP or TCP

Application Layer: 2-15

Securing TCP

Vanilla TCP & UDP sockets:
§ no encryption
§ cleartext passwords sent into socket

traverse Internet in cleartext (!)
Transport Layer Security (TLS)
§ provides encrypted TCP connections
§ data integrity
§ end-point authentication

TLS implemented in
application layer
§ apps use TLS libraries, that

use TCP in turn
§ cleartext sent into “socket”

traverse Internet encrypted
§ more: Chapter 8

Application Layer: 2-16

Application layer: overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-17

Web and HTTP

First, a quick review…
§ web page consists of objects, each of which can be stored on

different Web servers
§ object can be HTML file, JPEG image, Java applet, audio file,…
§ web page consists of base HTML-file which includes several

referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer: 2-18

HTTP overview

HTTP: hypertext transfer protocol
§ Web’s application-layer protocol
§ client/server model:

• client: browser that requests,
receives, (using HTTP protocol) and
“displays”Web objects

• server: Web server sends (using
HTTP protocol) objects in response
to requests

HTTP requestHTTP response

HTTP request

HTTP response

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

Application Layer: 2-19

HTTP overview (continued)

HTTP uses TCP:
§ client initiates TCP connection

(creates socket) to server, port 80
§ server accepts TCP connection

from client
§ HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

§ TCP connection closed

HTTP is “stateless”
§ server maintains no

information about past client
requests

protocols that maintain
“state” are complex!

§ past history (state) must be
maintained

§ if server/client crashes, their
views of “state” may be
inconsistent, must be reconciled

aside

Application Layer: 2-20

HTTP connections: two types

Non-persistent HTTP
1. TCP connection opened
2. at most one object sent

over TCP connection
3. TCP connection closed

downloading multiple
objects required multiple
connections

Persistent HTTP
§TCP connection opened to

a server
§multiple objects can be

sent over single TCP
connection between client,
and that server

§TCP connection closed

Application Layer: 2-21

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu on
port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for TCP
connection at port 80 “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
into its socket

time

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer: 2-22

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer: 2-23

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time (per object):
§ one RTT to initiate TCP connection
§ one RTT for HTTP request and first few

bytes of HTTP response to return
§ object/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time
Application Layer: 2-24

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:
§ requires 2 RTTs per object
§OS overhead for each TCP

connection
§browsers often open multiple

parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

§ server leaves connection open after
sending response

§ subsequent HTTP messages
between same client/server sent
over open connection

§ client sends requests as soon as it
encounters a referenced object

§ as little as one RTT for all the
referenced objects (cutting
response time in half)

Application Layer: 2-25

HTTP request message
§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

header
lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed characterrequest line (GET, POST,

HEAD commands)

carriage return, line feed
at start of line indicates
end of header lines * Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-26

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer: 2-27

Other HTTP request messages

POST method:
§ web page often includes form

input
§ user input sent from client to

server in entity body of HTTP
POST request message

GET method (for sending data to server):
§ include user data in URL field of HTTP

GET request message (following a ‘?’):
www.somesite.com/animalsearch?monkeys&banana

HEAD method:
§ requests headers (only) that

would be returned if specified
URL were requested with an
HTTP GET method.

PUT method:
§ uploads new file (object) to server
§ completely replaces file that exists

at specified URL with content in
entity body of POST HTTP request
message

Application Layer: 2-28

HTTP response message

status line (protocol
status code status phrase)

header
lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK
Date: Tue, 08 Sep 2020 00:53:20 GMT
Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k-fips PHP/7.4.9
mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT
ETag: "a5b-52d015789ee9e"
Accept-Ranges: bytes
Content-Length: 2651
Content-Type: text/html; charset=UTF-8
\r\n
data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer: 2-29

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in

Location: field)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

§ status code appears in 1st line in server-to-client response message.
§ some sample codes:

Application Layer: 2-30

Trying out HTTP (client side) for yourself

1. netcat to your favorite Web server:
§ opens TCP connection to port 80 (default HTTP

server port) at gaia.cs.umass.edu.
§ anything typed in will be sent to port 80 at

gaia.cs.umass.edu

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

2. type in a GET HTTP request:
GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu § by typing this in (hit carriage return twice), you

send this minimal (but complete) GET request to
HTTP server

Application Layer: 2-31

% nc -c -v gaia.cs.umass.edu 80 (for Mac)

>ncat –C gaia.cs.umass.edu 80 (for Windows)

Maintaining user/server state: cookies
Recall: HTTP GET/response

interaction is stateless
§ no notion of multi-step exchanges of

HTTP messages to complete a Web
“transaction”
• no need for client/server to track

“state” of multi-step exchange
• all HTTP requests are independent of

each other
• no need for client/server to “recover”

from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

OK

OK
unlock X

OK

update X X’

update X X’’

lock data record X

OK
X

X

X’

X’’

X’’

t’

Q: what happens if network connection or
client crashes at t’ ?

Application Layer: 2-32

Maintaining user/server state: cookies

Web sites and client browser use
cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message
2) cookie header line in next HTTP

request message
3) cookie file kept on user’s host,

managed by user’s browser
4) back-end database at Web site

Example:
§ Susan uses browser on laptop,

visits specific e-commerce site
for first time

§ when initial HTTP requests
arrives at site, site creates:

• unique ID (aka “cookie”)
• entry in backend database

for ID
• subsequent HTTP requests

from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Application Layer: 2-33

Maintaining user/server state: cookies
client

Amazon server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time Application Layer: 2-34

HTTP cookies: comments

What cookies can be used for:
§ authorization
§ shopping carts
§ recommendations
§ user session state (Web e-mail)

cookies and privacy:
§ cookies permit sites to

learn a lot about you on
their site.

§ third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state?
§ at protocol endpoints: maintain state at

sender/receiver over multiple
transactions

§ in messages: cookies in HTTP messages
carry state

Application Layer: 2-35

Example: displaying a NY Times web page

nytimes.com

AdX.com

1HTTP
GET 2 HTTP

reply

43

56

NY times page with
embedded ad displayed

GET base html file
from nytimes.com

1
2

fetch ad from
AdX.com

4
5

display composed
page

7

nytimes.com (sports)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

HTTP
reply
Set cookie: 1634

4

HTTP GET
Referrer: NY Times Sports

5
HTTP reply
Set cookie: 7493

HTTP
GET

AdX: 7493

Cookies: tracking a user’s browsing behavior

“first party” cookie –
from website you chose
to visit (provides base
html file)

“third party” cookie –
from website you did not
choose to visit

Cookies: tracking a user’s browsing behavior

nytimes.com

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

1HTTP
GET

2

HTTP
reply

4

HTTP GET
Referrer: socks.com, cookie: 7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

AdX:
§ tracks my web browsing

over sites with AdX ads
§ can return targeted ads

based on browsing history

Cookies: tracking a user’s browsing behavior (one day later)

nytimes.com (arts)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

4

HTTP GET
Referrer: nytimes.com, cookie: 7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

cookie: 1634

HTTP
reply

HTTP
GET

Set cookie: 1634

1634: arts, 2/17/22

7493: NY Times arts, 2/15/22

Returned ad for socks!

Cookies: tracking a user’s browsing behavior
Cookies can be used to:
§ track user behavior on a given website (first party cookies)
§ track user behavior across multiple websites (third party cookies)

without user ever choosing to visit tracker site (!)
§ tracking may be invisible to user:

• rather than displayed ad triggering HTTP GET to tracker, could be an invisible
link

third party tracking via cookies:
§ disabled by default in Firefox, Safari browsers
§ to be disabled in Chrome browser in 2023

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online
identifiers […] such as internet protocol addresses,
cookie identifiers or other identifiers […].
This may leave traces which, in particular when
combined with unique identifiers and other
information received by the servers, may be used to
create profiles of the natural persons and identify
them.”

GDPR, recital 30 (May 2018)

User has explicit control over
whether or not cookies are

allowed
when cookies can identify an individual, cookies
are considered personal data, subject to GDPR

personal data regulations

Web caches

§ user configures browser to
point to a (local) Web cache

§ browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client requests without involving origin server

client

Web
cache

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

HTTP response HTTP response

Application Layer: 2-42

Web caches (aka proxy servers)

§ Web cache acts as both
client and server
• server for original

requesting client
• client to origin server

Why Web caching?
§ reduce response time for client

request
• cache is closer to client

§ reduce traffic on an institution’s
access link

§ Internet is dense with caches
• enables “poor” content providers

to more effectively deliver content

§ server tells cache about
object’s allowable caching in
response header:

Application Layer: 2-43

Caching example

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access linkPerformance:

§ access link utilization = .97
§ LAN utilization: .0015
§ end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ web object size: 100K bits
§ average request rate from browsers to origin

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

problem: large
queueing delays
at high utilization!

Application Layer: 2-44

Performance:
§ access link utilization = .97
§ LAN utilization: .0015
§ end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Option 1: buy a faster access link

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ web object size: 100K bits
§ average request rate from browsers to origin

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)
Application Layer: 2-45

Performance:
§ LAN utilization: .?
§ access link utilization = ?
§ average end-end delay = ?

Option 2: install a web cache

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ web object size: 100K bits
§ average request rate from browsers to origin

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

How to compute link
utilization, delay?

Cost: web cache (cheap!)

local web cache

Application Layer: 2-46

Calculating access link utilization, end-end delay
with cache:

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

local web cache

suppose cache hit rate is 0.4:
§ 40% requests served by cache, with low

(msec) delay
§ 60% requests satisfied at origin

• rate to browsers over access link
= 0.6 * 1.50 Mbps = .9 Mbps

• access link utilization = 0.9/1.54 = .58 means
low (msec) queueing delay at access link

§ average end-end delay:
= 0.6 * (delay from origin servers)

+ 0.4 * (delay when satisfied at cache)
= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

lower average end-end delay than with 154 Mbps link (and cheaper too!)
Application Layer: 2-47

Browser caching: Conditional GET

Goal: don’t send object if browser
has up-to-date cached version

• no object transmission delay (or use
of network resources)

§ client: specify date of browser-
cached copy in HTTP request
If-modified-since: <date>

§ server: response contains no
object if browser-cached copy is
up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer: 2-48

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection
§ server responds in-order (FCFS: first-come-first-served scheduling) to

GET requests
§with FCFS, small object may have to wait for transmission (head-of-

line (HOL) blocking) behind large object(s)
§ loss recovery (retransmitting lost TCP segments) stalls object

transmission

Application Layer: 2-49

HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:
§ methods, status codes, most header fields unchanged from HTTP 1.1
§ transmission order of requested objects based on client-specified

object priority (not necessarily FCFS)

§ push unrequested objects to client
§ divide objects into frames, schedule frames to mitigate HOL blocking

Key goal: decreased delay in multi-object HTTP requests

Application Layer: 2-50

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1 O2
O3O4

object data requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1 Application Layer: 2-51

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

Application Layer: 2-52

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:
§ recovery from packet loss still stalls all object transmissions

• as in HTTP 1.1, browsers have incentive to open multiple parallel
TCP connections to reduce stalling, increase overall throughput

§ no security over vanilla TCP connection
§ HTTP/3: adds security, per object error- and congestion-

control (more pipelining) over UDP
• more on HTTP/3 in transport layer

Application Layer: 2-53

Application layer: overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-54

E-mail

Three major components:
§user agents
§mail servers
§ simple mail transfer protocol: SMTP

User Agent
§ a.k.a. “mail reader”
§ composing, editing, reading mail messages
§e.g., Outlook, iPhone mail client
§outgoing, incoming messages stored on

server user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer: 2-55

E-mail: mail servers

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

mail servers:
§mailbox contains incoming

messages for user
§message queue of outgoing (to be

sent) mail messages
SMTP protocol between mail
servers to send email messages
§ client: sending mail server
§ “server”: receiving mail server

Application Layer: 2-56

SMTP RFC (5321)

§ uses TCP to reliably transfer email message
from client (mail server initiating
connection) to server, port 25
§ direct transfer: sending server (acting like client)

to receiving server
§ three phases of transfer

• SMTP handshaking (greeting)
• SMTP transfer of messages
• SMTP closure

§ command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

initiate TCP
connection

RTT

time

220

250 Hello

HELOSMTP
handshaking

TCP connection
initiated

“client”
SMTP server

“server”
SMTP server

SMTP
transfers

Application Layer: 2-57

Scenario: Alice sends e-mail to Bob
1) Alice uses UA to compose e-mail

message “to” bob@someschool.edu
4) SMTP client sends Alice’s message

over the TCP connection

user
agent

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

2) Alice’s UA sends message to her
mail server using SMTP; message
placed in message queue

3) client side of SMTP at mail server
opens TCP connection with Bob’s mail
server

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

Application Layer: 2-58

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Application Layer: 2-59

SMTP: observations

§ SMTP uses persistent
connections

§ SMTP requires message
(header & body) to be in
7-bit ASCII

§ SMTP server uses
CRLF.CRLF to determine
end of message

comparison with HTTP:
§ HTTP: client pull
§ SMTP: client push

§ both have ASCII command/response
interaction, status codes

§ HTTP: each object encapsulated in its
own response message

§ SMTP: multiple objects sent in
multipart message

Application Layer: 2-60

Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321
(like RFC 7231 defines HTTP)
RFC 2822 defines syntax for e-mail message itself (like HTML defines
syntax for web documents)

header

body

blank
line

§ header lines, e.g.,
• To:
• From:
• Subject:
these lines, within the body of the email
message area different from SMTP MAIL FROM:,
RCPT TO: commands!

§ Body: the “message” , ASCII characters only
Application Layer: 2-61

Retrieving email: mail access protocols

sender’s e-mail
server

SMTP SMTP

receiver’s e-mail
server

e-mail access
protocol
(e.g., IMAP,

HTTP)

user
agent

user
agent

§ SMTP: delivery/storage of e-mail messages to receiver’s server
§mail access protocol: retrieval from server

• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP
provides retrieval, deletion, folders of stored messages on server

§ HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: 2-62

Application Layer: Overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-63

DNS: Domain Name System
people: many identifiers:

• SSN, name, passport #
Internet hosts, routers:

• IP address (32 bit) - used for
addressing datagrams

• “name”, e.g., cs.umass.edu -
used by humans

Q: how to map between IP
address and name, and vice
versa ?

Domain Name System (DNS):
§ distributed database implemented in

hierarchy of many name servers
§ application-layer protocol: hosts, DNS

servers communicate to resolve
names (address/name translation)
• note: core Internet function,

implemented as application-layer
protocol

• complexity at network’s “edge”

Application Layer: 2-64

DNS: services, structure
Q: Why not centralize DNS?
§ single point of failure
§ traffic volume
§ distant centralized database
§ maintenance

DNS services:
§hostname-to-IP-address translation
§host aliasing

• canonical, alias names
§ mail server aliasing
§ load distribution

• replicated Web servers: many IP
addresses correspond to one
name

A: doesn‘t scale!
§ Comcast DNS servers alone:

600B DNS queries/day
§ Akamai DNS servers alone:

2.2T DNS queries/day

Application Layer: 2-65

Thinking about the DNS
humongous distributed database:
§ ~ billion records, each simple

handles many trillions of queries/day:
§many more reads than writes
§ performance matters: almost every

Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:
§millions of different organizations

responsible for their records

“bulletproof”: reliability, security
Application Layer: 2-66

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com; 1st approximation:
§ client queries root server to find .com DNS server
§ client queries .com DNS server to get amazon.com DNS server
§ client queries amazon.com DNS server to get IP address for www.amazon.com

.com DNS servers .org DNS servers .edu DNS servers

… …

Top Level Domain

Root DNS Servers Root

nyu.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers Authoritative

…… … …

Application Layer: 2-67

DNS: root name servers

§ official, contact-of-last-resort by
name servers that can not
resolve name

Application Layer: 2-68

DNS: root name servers

§ official, contact-of-last-resort by
name servers that can not
resolve name

§ incredibly important Internet
function

• Internet couldn’t function without it!
• DNSSEC – provides security

(authentication, message integrity)

§ ICANN (Internet Corporation for
Assigned Names and Numbers)
manages root DNS domain

13 logical root name “servers”
worldwide each “server” replicated

many times (~200 servers in US)

Application Layer: 2-69

Top-Level Domain, and authoritative servers
Top-Level Domain (TLD) servers:
§ responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all top-level

country domains, e.g.: .cn, .uk, .fr, .ca, .jp
§ Network Solutions: authoritative registry for .com, .net TLD
§ Educause: .edu TLD

authoritative DNS servers:
§ organization’s own DNS server(s), providing authoritative hostname to IP

mappings for organization’s named hosts
§ can be maintained by organization or service provider

Application Layer: 2-70

Local DNS name servers

§ when host makes DNS query, it is sent to its local DNS server
• Local DNS server returns reply, answering:

• from its local cache of recent name-to-address translation pairs (possibly out
of date!)

• forwarding request into DNS hierarchy for resolution
• each ISP has local DNS name server; to find yours:

• MacOS: % scutil --dns
• Windows: >ipconfig /all

§ local DNS server doesn’t strictly belong to hierarchy

Application Layer: 2-71

DNS name resolution: iterated query

Example: host at engineering.nyu.edu
wants IP address for gaia.cs.umass.edu

Iterated query:
§ contacted server replies

with name of server to
contact

§ “I don’t know this name,
but ask this server”

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

Application Layer: 2-72

DNS name resolution: recursive query

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2 3

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serverRecursive query:
§ puts burden of name

resolution on
contacted name
server

§ heavy load at upper
levels of hierarchy?

Example: host at engineering.nyu.edu
wants IP address for gaia.cs.umass.edu

Application Layer: 2-73

Caching DNS Information

§ once (any) name server learns mapping, it caches mapping,
and immediately returns a cached mapping in response to a
query
• caching improves response time
• cache entries timeout (disappear) after some time (TTL)
• TLD servers typically cached in local name servers

§ cached entries may be out-of-date
• if named host changes IP address, may not be known Internet-

wide until all TTLs expire!
• best-effort name-to-address translation!

Application Layer: 2-74

DNS records
DNS: distributed database storing resource records (RR)

type=NS
§ name is domain (e.g., foo.com)
§ value is hostname of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some “canonical”

(the real) name
§ www.ibm.com is really servereast.backup2.ibm.com
§ value is canonical name

type=MX
§ value is name of SMTP mail

server associated with name

Application Layer: 2-75

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol messages
DNS query and reply messages, both have same format:

message header:
§ identification: 16 bit # for query,

reply to query uses same #
§ flags:

• query or reply
• recursion desired
• recursion available
• reply is authoritative

Application Layer: 2-76

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS query and reply messages, both have same format:

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may
be used

DNS protocol messages

Application Layer: 2-77

Getting your info into the DNS
example: new startup “Network Utopia”
§ register name networkuptopia.com at DNS registrar (e.g., Network

Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)
• registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

§ create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com
• type MX record for networkutopia.com

Application Layer: 2-78

DNS security

DDoS attacks
§ bombard root servers with

traffic
• not successful to date
• traffic filtering
• local DNS servers cache IPs of TLD

servers, allowing root server
bypass

§ bombard TLD servers
• potentially more dangerous

Spoofing attacks
§ intercept DNS queries,

returning bogus replies
§ DNS cache poisoning
§ RFC 4033: DNSSEC

authentication services

Application Layer: 2-79

Application Layer: Overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-80

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture
§ no always-on server
§ arbitrary end systems directly

communicate
§ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, and new service demands
§ peers are intermittently connected

and change IP addresses
• complex management

§ examples: P2P file sharing (BitTorrent),
streaming (KanKan), VoIP (Skype)

Application Layer: 2-81

Introduction: 1-82

File distribution: client-server vs P2P
Q: how much time to distribute file (size F) from one server to

N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Introduction: 1-83

File distribution time: client-server
§ server transmission: must sequentially

send (upload) N file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

§ client: each client must download
file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network
di

ui

F

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P
§ server transmission: must upload at

least one copy:
• time to send one copy: F/us

§ client: each client must download
file copy
• min client download time: F/dmin

us

network
di

ui

F

§ clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer: 2-84

Client-server vs. P2P: example
client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Application Layer: 2-85

P2P file distribution: BitTorrent
§ file divided into 256Kb chunks
§ peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer: 2-86

P2P file distribution: BitTorrent

§ peer joining torrent:
• has no chunks, but will accumulate them

over time from other peers
• registers with tracker to get list of peers,

connects to subset of peers
(“neighbors”)

§ while downloading, peer uploads chunks to other peers
§ peer may change peers with whom it exchanges chunks
§ churn: peers may come and go
§ once peer has entire file, it may (selfishly) leave or (altruistically) remain

in torrent

Application Layer: 2-87

BitTorrent: requesting, sending file chunks

Requesting chunks:
§ at any given time, different

peers have different
subsets of file chunks

§ periodically, Alice asks
each peer for list of chunks
that they have

§ Alice requests missing
chunks from peers, rarest
first

Sending chunks: tit-for-tat
§ Alice sends chunks to those four

peers currently sending her chunks
at highest rate
• other peers are choked by Alice (do

not receive chunks from her)
• re-evaluate top 4 every10 secs

§ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer: 2-88

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better trading
partners, get file faster !

Application Layer: 2-89

Application layer: overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-90

Video Streaming and CDNs: context

§ stream video traffic: major
consumer of Internet bandwidth
• Netflix, YouTube, Amazon Prime: 80% of

residential ISP traffic (2020)

§ challenge: scale - how to reach
~1B users?

§ challenge: heterogeneity
§ different users have different capabilities (e.g., wired

versus mobile; bandwidth rich versus bandwidth poor)
§ solution: distributed, application-level infrastructure

Application Layer: 2-91

Multimedia: video

§ video: sequence of images
displayed at constant rate
• e.g., 24 images/sec

§ digital image: array of pixels
• each pixel represented by bits

§ coding: use redundancy within and
between images to decrease # bits
used to encode image
• spatial (within image)
• temporal (from one image to

next)

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer: 2-92

Multimedia: video

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

§ CBR: (constant bit rate): video
encoding rate fixed

§ VBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

§ examples:
• MPEG 1 (CD-ROM) 1.5 Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in

Internet, 64Kbps – 12 Mbps)

Application Layer: 2-93

Main challenges:
§ server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, access network, network core, video
server)

§ packet loss, delay due to congestion will delay playout, or result in
poor video quality

Streaming stored video
simple scenario:

video server
(stored video) client

Internet

Application Layer: 2-94

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sentC

um
ul

at
iv

e
da

ta

streaming: at this time, client playing out
early part of video, while server still sending
later part of video

time

3. video received, played out at client
(30 frames/sec)

network delay
(fixed in this

example)

Application Layer: 2-95

Streaming stored video: challenges
§ continuous playout constraint: during client

video playout, playout timing must match
original timing
• … but network delays are variable (jitter), so will

need client-side buffer to match continuous playout
constraint

§ other challenges:
• client interactivity: pause, fast-forward, rewind,

jump through video
• video packets may be lost, retransmitted

Application Layer: 2-96

Streaming stored video: playout buffering

constant bit
rate video

transmission
Cu

m
ul

at
iv

e
da

ta

time

variable
network

delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

bu
ffe

re
d

vi
de

o

§client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Application Layer: 2-97

Streaming multimedia: DASH
server:

§ divides video file into multiple chunks
§ each chunk encoded at multiple different rates
§ different rate encodings stored in different files
§ files replicated in various CDN nodes
§ manifest file: provides URLs for different chunks client

?

client:
§ periodically estimates server-to-client bandwidth
§ consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current bandwidth
• can choose different coding rates at different points in time (depending

on available bandwidth at time), and from different servers

...
...

...

Dynamic, Adaptive
Streaming over HTTP

Application Layer: 2-98

...
...

...

Streaming multimedia: DASH
§“intelligence” at client: client

determines
• when to request chunk (so that buffer

starvation, or overflow does not occur)
• what encoding rate to request (higher

quality when more bandwidth
available)

• where to request chunk (can request
from URL server that is “close” to
client or has high available
bandwidth)

Streaming video = encoding + DASH + playout buffering

client

?

Application Layer: 2-99

Content distribution networks (CDNs)
challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

§ option 1: single, large “mega-
server”
• single point of failure
• point of network congestion
• long (and possibly congested)

path to distant clients

….quite simply: this solution doesn’t scale

Application Layer: 2-100

Content distribution networks (CDNs)
challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many access networks
• close to users
• Akamai: 240,000 servers deployed

in > 120 countries (2015)

§ option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

• bring home: smaller number (10’s) of
larger clusters in POPs near access nets

• used by Limelight

Application Layer: 2-101

Akamai today:

Transport Layer: 3-102

Source: https://networkingchannel.eu/living-on-the-edge-for-a-quarter-century-an-akamai-retrospective-downloads/

…

…

……

…

…

§ subscriber requests content, service provider returns manifest

How does Netflix work?
§ Netflix: stores copies of content (e.g., MADMEN) at its

(worldwide) OpenConnect CDN nodes

where’s Madmen?
manifest file

• using manifest, client retrieves content at highest supportable rate
• may choose different rate or copy if network path congested

Application Layer: 2-103

…

…

……

…

…
Internet host-host communication as a service

OTT challenges: coping with a congested Internet from the “edge”
§ what content to place in which CDN node?
§ from which CDN node to retrieve content? At which rate?

OTT: “over the top”

Content distribution networks (CDNs)

Application Layer: 2-104

Application Layer: Overview

§ Principles of network
applications

§ Web and HTTP
§ E-mail, SMTP, IMAP
§ The Domain Name System

DNS

§ P2P applications
§ video streaming and content

distribution networks
§ socket programming with

UDP and TCP

Application Layer: 2-105

Socket programming
goal: learn how to build client/server applications that

communicate using sockets
socket: door between application process and end-end-transport

protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer: 2-106

Socket programming

Two socket types for two transport services:
§ UDP: unreliable datagram
§ TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends

data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Application Layer: 2-107

Socket programming with UDP
UDP: no “connection” between

client and server:
§ no handshaking before sending data
§ sender explicitly attaches IP destination

address and port # to each packet
§ receiver extracts sender IP address and

port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
§ UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server processes
Application Layer: 2-108

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with serverIP address
And port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

Application Layer: 2-109

Example app: UDP client

from socket import *
serverName = 'hostname'
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = input('Input lowercase sentence:')
clientSocket.sendto(message.encode(),

(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print(modifiedMessage.decode())
clientSocket.close()

Python UDPClient
include Python’s socket library

create UDP socket

get user keyboard input

attach server name, port to message; send into socket

print out received string and close socket

read reply data (bytes) from socket

Application Layer: 2-110Note: this code update (2023) to Python 3

Example app: UDP server
Python UDPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print('The server is ready to receive')
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

create UDP socket

bind socket to local port number 12000

loop forever

Read from UDP socket into message, getting
client’s address (client IP and port)

send upper case string back to this client

Application Layer: 2-111Note: this code update (2023) to Python 3

Socket programming with TCP
Client must contact server
§ server process must first be

running
§ server must have created socket

(door) that welcomes client’s
contact

Client contacts server by:
§ Creating TCP socket, specifying IP

address, port number of server
process

§ when client creates socket: client
TCP establishes connection to
server TCP

§when contacted by client, server
TCP creates new socket for server
process to communicate with that
particular client
• allows server to talk with multiple

clients
• client source port # and IP address used

to distinguish clients (more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server
processes

Application viewpoint

Application Layer: 2-112

Client/server socket interaction: TCP
server (running on hostid) client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Application Layer: 2-113

Example app: TCP client

from socket import *
serverName = 'servername'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = input('Input lowercase sentence:')
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print ('From Server:', modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for server,
remote port 12000

No need to attach server name, port

Application Layer: 2-114Note: this code update (2023) to Python 3

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind(('',serverPort))
serverSocket.listen(1)
print('The server is ready to receive')
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.

encode())
connectionSocket.close()

Python TCPServer

create TCP welcoming socket

server begins listening for
incoming TCP requests

loop forever
server waits on accept() for incoming
requests, new socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this client (but not
welcoming socket)

Application Layer: 2-115Note: this code update (2023) to Python 3

Chapter 2: Summary

§ application architectures
• client-server
• P2P

§ application service requirements:
• reliability, bandwidth, delay

§ Internet transport service model
• connection-oriented, reliable: TCP
• unreliable, datagrams: UDP

our study of network application layer is now complete!

§ specific protocols:
• HTTP
• SMTP, IMAP
• DNS
• P2P: BitTorrent

§ video streaming, CDNs
§ socket programming:

TCP, UDP sockets

Application Layer: 2-116

Chapter 2: Summary
Most importantly: learned about protocols!
§ typical request/reply message

exchange:
• client requests info or service
• server responds with data, status code

§ message formats:
• headers: fields giving info about data
• data: info(payload) being

communicated

important themes:
§ centralized vs. decentralized
§ stateless vs. stateful
§ scalability
§ reliable vs. unreliable

message transfer
§ “complexity at network

edge”

Application Layer: 2-117

Application Layer: 2-118

Additional Chapter 2 slides

JFK note: the timeout slides are important IMHO if one is doing a programming assignment (especially
an RDT programming assignment in Chapter 3), since students will need to use timers in their code,
and the TRY/EXCEPT is really the easiest way to do this. I introduce this here in Chapter 2 with the
socket programming assignment since it teaches something (how to handle exceptions/timeouts), and
lets students learn/practice that before doing the RDT programming assignment, which is harder

timeout
handle

timeout

…

…receive a message

Socket programming: waiting for multiple events

Application Layer: 2-119

§ sometimes a program must wait for one of several events to happen, e.g.,:
§ wait for either (i) a reply from another end of the socket, or (ii) timeout: timer
§ wait for replies from several different open sockets: select(), multithreading

§ timeouts are used extensively in networking
§ using timeouts with Python socket:

socket() connect() send() recv()settimeout()

Application Layer: 2-120

s.settimeout(30) s.recv()

timer starts!

interrupt s.recv() &
raise timeout exception

timeout

s.settimeout(10) s.recv()

timer starts!
receive a message
& timer stop!

s.recv()

timer starts!

interrupt s.recv() &
raise timeout exception

timeout

Set a timeout on all future socket operations of that specific socket!

no packet arrives in 30 secs

no packet arrives in 10 secs

How Python socket.settimeout() works?

Execute a block of code, and handle “exceptions” that may occur when
executing that block of code

Python try-except block

try:

<do something>
except <exception>:

<handle the exception>

Executing this try code block may cause exception(s) to catch. If an exception
is raised, execution jumps from jumps directly into except code block

this except code block is only executed if an <exception> occurred in the try
code block (note: except block is required with a try block)

Socket programming: socket timeouts

Application Layer: 2-122

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind(('',serverPort))
serverSocket.listen(1)
counter = 0
while counter < 3:

connectionSocket, addr = serverSocket.accept()
connectionSocket.settimeout(10)
try:

wolf_location = connectionSocket.recv(1024).decode()
send_hunter(wolf_location) # a villager function
connectionSocket.send('hunter sent')

except timeout:
counter += 1

connectionSocket.close()

Python TCPServer (Villagers)

set a 10-seconds timeout on
all future socket operations

catch socket timeout exception

timer starts when recv() is called and will
raise timeout exception if there is no
message within 10 seconds.

- A shepherd boy tends his master’s sheep.
- If he sees a wolf, he can send a message to
villagers for help using a TCP socket.
- The boy found it fun to connect to the server
without sending any messages. But the villagers
don’t think so.
- And they decided that if the boy connects to
the server and doesn’t send the wolf location
within 10 seconds for three times, they will stop
listening to him forever and ever.

Toy Example:

Sample SMTP interaction

Application Layer: 2-123

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

CDN content access: a closer look

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2

2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns CNAME for
http://KingCDN.com/NetC6y&B23V 4

56. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Bob (client) requests video http://netcinema.com/6Y7B23V
§ video stored in CDN at http://KingCDN.com/NetC6y&B23V

Application Layer: 2-124

Case study: Netflix

1
Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2

Bob browses
Netflix video Manifest file,

requested
returned for
specific video

DASH server
selected, contacted,
streaming begins

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

3

4

Application Layer: 2-125

