Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

= If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)
= If you post any slides on a www site, that you note that they are

adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

James F. Kurose | Keith W. Ross

A TOP-DOWN APPROACH -
@ Eighth Edition

{5 ;‘\ ‘

OO S

—

Computer Networking: A
Top-Down Approach

8th edition

Jim Kurose, Keith Ross

Pearson, 2020

Transport Layer: 3-1

Transport layer: overview

Our goal.:
= understand principles " |earn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, * TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer e TCP congestion control

* flow control
e congestion control

Transport Layer: 3-2

Transport layer: roadmap

" Transport-layer services

" Multiplexing and demultiplexing

" Connectionless transport: UDP

" Principles of reliable data transfer

= Connection-oriented transport: TCP

" Principles of congestion control
" TCP congestion control

= Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

= transport protocols actions in end
systems:

* sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

= two transport protocols available to
Internet applications

 TCP, UDP

Transport Layer: 3-4

Transport vs. network layer services and protocols

— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

" hosts = houses
" processes = kids

" app messages = letters in
envelopes

1028, WM. EVANS,
HERE was an old woman who lived in a shce,
She had so many children, she didn’t know what to do.
* She gave them some milk and nice butter bread, .
She kissed them all round and put them to bed.

e

Transport Layer: 3-5

Transport vs. network layer services and protocols

— household analogy:

» :
transport layer: 12 kids in Ann’s house sending

communication between letters to 12 kids in Bill’s
processes house:
* relies on, enhances, network " hosts = hOUS?S
layer services " processes = kids
= app messages = letters in

envelopes
" network layer: P

communication between
hosts

Transport Layer: 3-6

Transport Layer Actions

Sender:
" is passed an application-
layer message

= determines segment
header fields values

= creates segment
= passes segment to IP

app. msg

app. msg

Transport Layer: 3-7

Transport Layer Actions

C)!pp- msg

bl L]

app. msg

Receiver:
" receives segment from IP
= checks header values

= extracts application-layer
message

= demultiplexes message up
to application via socket

Transport Layer: 3-8

Two principal Internet transport protocols

networ
| data lind

=" TCP: Transmission Control Protocol

* reliable, in-order delivery
e congestion control
* flow control
* connection setup
= UDP: User Datagram Protocol
* unreliable, unordered delivery
* no-frills extension of “best-effort” IP

= services not available:

e delay guarantees
* bandwidth guarantees

Transport Layer: 3-9

Chapter 3: roadmap

= Multiplexing and demultiplexing

Transport Layer: 3-10

Multiplexing/demultiplexing

— multiplexing as sender: ——

— demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

application

*‘
application [| socket

— 3 -

netwaork trangport
Ik netiyork

physical |

mk \
physical

<

Transport Layer: 3-11

client

application

NETFLIX Q

tra nsport‘

HoH¢ HTTP msg

link

physical

HTTP server

HTTP SERVER

/ APACHE

Hi HTTP msg

application

e

HoHy HTTP msg

transport

network

HoHy HTTP msg

link

physical

Transport Layer: 3-12

Q: how did transport layer know to deliver message to Firefox
browser process rather then Netflix process or Skype process?

client

/APACHE —
application HT‘TP SERVER application
NETFLIX e
transport

network

link
physical

Transport Layer: 3-13

de-multiplexing

: T - LA ‘-"' ') 0'~
E ;- \J - . "
w - - P | I
» - ‘ ‘ .- _ < 18 l "J ™ ‘ ‘
r.' - ") I c A’\« ," . h * " C “. " |'
. ..LDDC h---.. I

Vidall |

-Neckpoll

multiplexing

Multiplexing

How demultiplexing works

* host receives IP datagrams

e each datagram has source IP
address, destination IP address

e each datagram carries one
transport-layer segment

* each segment has source,
destination port number
" host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits »>

source port dest port #

—

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer: 3-22

Connectionless demultiplexing

Recall: when receiving host receives
= when creating socket, must UL?P;egkmden’if " Cu
specify host-local port #: gegr‘;;ntes nation port#1in

DatagramSocket mySog

e directs UDP segment to
= new DatagramSocKet(12534); 5

socket with that port #

!

specify IP/UDP datagra.ms with same dest.
. L. port #, but different source IP
destination IP address addresses and/or source port

* destination port # numbers will be directed to same
socket at receiving host

= when creating datagram to
send into UDP socket, must

Transport Layer: 3-23

Connectionless demultiplexing: an example

mySocket =

socket (AF_INET, SOCK DGRAM)
mySocket.bind (myaddr, 6428) ;

mySocket =
socket (AF_INET, SOCK STREAM)

mySocket.bind (myaddr, 9157) ;

mySocket =
socket (AF_INET, SOCK STREAM)

m— mySocket.bind (myaddr,5775) ;
application
application application
vy
‘ transport T sl
tramgport network trangport
network link netwprk
link link
ysical
L/ T il -
phygical phykilcal \
- =i
source port: 6428 source port: ?
. dest port: 9157] dest port: ?
> g 4
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Connection-oriented demultiplexing

= TCP socket identified by
4-tuple:
e source |IP address
* source port number
e dest IP address
e dest port number

= demux: receiver uses all

four values (4-tuple) to
direct segment to

appropriate socket

" server may support many
simultaneous TCP sockets:

e each socket identified by its
own 4-tuple

e each socket associated with
a different connecting client

Transport Layer: 3-25

Connection-oriented demultiplexing: example

application

—fus

APACHE

HTTP SERVER

4
traanort

net\l'vork

lihk

N/ phykical

host: IP
address A

source IP,port: B,80
dest IP,port: A,9157

rang port
retwork
link
phygical
server: [P
address B

Three segments, all destined to IP address: B,

source IP,pops#7S
dest IP{port: B,80

dest port: 80 are demultiplexed to different sockets

appl|cat|on

Teransport

network

link

physical

host: IP
address C

Transport Layer: 3-26

Summary

= Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

= TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-27

Chapter 3: roadmap

" Connectionless transport: UDP

Transport Layer: 3-28

UDP: User Datagram Protocol

= “no frills,” “bare bones”
Internet transport protocol

= “best effort” service, UDP
segments may be:

* |ost
* delivered out-of-order to app

m connectionless:

* no handshaking between UDP
sender, receiver

* each UDP segment handled
independently of others

- Why is there a UDP?

no connection
establishment (which can
add RTT delay)

simple: no connection state
at sender, receiver

small header size

no congestion control

= UDP can blast away as fast as
desired!

= can function in the face of
congestion

Transport Layer: 3-29

UDP: User Datagram Protocol

= UDP use:
" streaming multimedia apps (loss tolerant, rate sensitive)
= DNS
= SNMP
= HTTP/3

= if reliable transfer needed over UDP (e.g., HTTP/3):
" add needed reliability at application layer
= add congestion control at application layer

Transport Layer: 3-30

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768 J. Postel
ISI
28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1l] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. The
protocol is transaction oriented, and delivery and duplicate protection
are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) [2].

Format

0 7 8 15:/16 23 24 31

- R - D R +

Source Destination
Port Port

TP Fommmmaaa o o +
Length | Checksum |

o —_—— o —_—— o —_—— e —_—— +

data octets ...

T e Transport Layer: 3-31

UDP: Transport Layer Actions

SNMP client

application

transport
(UDP)

network (IP)
link
physical

SNMP server

application

transport
(UDP)

network (IP)

link

physical

/

=
N
S
h
()

Transport Layer: 3-32

UDP: Transport Layer Actions

. SNMP server
UDP sender actions:
" is passed an application- SNMP msg
layer message
= determines UDP segment {uDP, [SNMP msg

header fields values
= creates UDP segment

= passes segment to IP

I AV A A& /

Transport Layer: 3-33

UDP: Transport Layer Actions

- SNMP server
SNMP client UDP receiver actions:

" receives segment from IP
= checks UDP checksum

ONMP . header value
= extracts application-layer
message
= demultiplexes message up

to application via socket

= — _—

UDP,, | SNMP msg

Transport Layer: 3-34

UDP segment header

32 bits

M

application
data

\Iength, in bytes of

UDP segment,
including header

\ data to/from

UDP segment format application layer

Transport Layer: 3-35

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

1st number 2"d number sum

Transmitted: 5 6 11

h 4

Received: 4 6 11
\ v J I
receiver-computed sender-computed
checksum checksum (as received)

O

Transport Layer: 3-36

Internet checksum
Goal: detect errors (i.e., flipped bits) in transmitted segment

sender: receiver:

" treat contents of UDP = compute checksum of received
segment (including UDP header segment

fields and IP addresses) as _
sequence of 16-bit integers " check if computed checksum equals

» checksum: addition (one’s checksum field value:
complement sum) of segment * not equal - error detected
content * equal - no error detected. But maybe

. ?
» checksum value put into errors nonetheless? More later

UDP checksum field

Transport Layer: 3-37

Internet checksum: an example

example: add two 16-bit integers

001100

1 1 0] 0
01010101 1 1

=

11 1 0] 1
11 0 0 0]

wraparound@1011101110111011

N,
>

sum 1011101110111100
checksum 0100010001000011

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
Transport Layer: 3-38

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1110011001100 1310
1101010101010 10 U
waparound 1)1 011101110111011
1011101110111100
0100010001000011

0
1

1
0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-39

Summary: UDP

= “no frills” protocol:
e segments may be lost, delivered out of order
e best effort service: “send and hope for the best”
= UDP has its plusses:
* no setup/handshaking needed (no RTT incurred)
e can function when network service is compromised

* helps with reliability (checksum)

= build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Chapter 3: roadmap

" Principles of reliable data transfer

Transport Layer: 3-41

Principles of reliable data transfer

| =\
%sending receiving B
process Process
application data g

reliable service abstraction

Transport Layer: 3-42

Principles of reliable data transfer

b/ — &
sending receiving j
T
. process process
application data
transport l T

sender-side of
reliable data
transfer protocol

receiver-side
of reliable data
transfer protocol

transport
network

reliable service implementation

Transport Layer: 3-43

Principles of reliable data transfer

=\
sendmg receiving Bl
. process Process
application

data
transport T

sender-side of
reliable data
transfer protocol

receiver-side
of reliable data
transfer protocol

Complexity of reliable data
transfer protocol will depend

(strongly) on characteristics of transport
. work
unreliable channel (lose, nemwer 4_]

corrupt, reorder data?)

reliable service implementation

Transport Layer: 3-44

Principles of reliable data transfer

Sender, receiver do not know

the “state” of each other, e.g.,

was a message received?

= unless communicated via a
message

= sending
process
application

transport l

sender-side of
reliable data
transfer protocol

t

reliable service implementation

transport

network

Transport Layer: 3-45

IR

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

rdt send()

<4
process

deliver_data(): called by rdt
to deliver data to upper layer

receiving BIl
process

data

udt send()

sender-side
implementation of
rdt reliable data
transfer protocol

data

packet

yd

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt rcv()

\/

Bi-directional communication over

unreliable channel

T deliver data()

rdt_rcv(): called when packet
arrives on receiver side of
channel

Transport Layer: 3-46

Reliable data transfer: getting started
We will:

" incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow in both directions!

= use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event

Transport Layer: 3-47

rdt1.0: reliable transfer over a reliable channel

" underlying channel perfectly reliable
* no bit errors
* no loss of packets

" separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

“Wait for
call from
below

\Wait for rdt_send(data)
call from)packet = make_pkt(data) receiver

rdt_rcv(packet)
sender b extract (packet,data)
above udt_send(packet)

deliver_data(data)

Transport Layer: 3-48

rdt2.0: channel with bit errors

" underlying channel may flip bits in packet
e checksum (e.g., Internet checksum) to detect bit errors

" the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-49

rdt2.0: channel with bit errors

" underlying channel may flip bits in packet
 checksum to detect bit errors

" the question: how to recover from errors?

* acknowledgements (ACKs): receiver explicitly tells sender that pkt
received OK

* negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

* sender retransmits pkt on receipt of NAK

— stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-50

rdt2.0: FSM specifications

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isSNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

Transport Layer: 3-51

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
iSNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Note: “state” of receiver (did the receiver get my

message correctly?) isn’t known to sender unless

somehow communicated from receiver to sender
= that’s why we need a protocol!

Transpc&ay

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)

rdt_rcv(rcvpkt) &&
isSNAK(rcvpkt)

dt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt)
udt_send(NAK)

D

Wait for
call from
below

call from
above

< rdt_rcv(rcvpkt) && isACK(rcvpkt)

A receiver

rdt_rcv(rcvpkt) && >notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer: 3-53

rdt2.0: corrupted packet scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

Wait for
call from
above

rdt_rcv(rcvpkf) && corrupt(rcvpkt)
udt send(NAK)

Ldt_rcv(rcvpkt) && isACK(rcvpkt) S ()
Wait for
call from
below

A receiver

o
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer: 3-54

rdt2.0 has a fatal flaw!

what happens if ACK/NAK handling duplicates:
corrupted? " sender retransmits current pkt
» sender doesn’t know what if ACK/NAK corrupted
happened at receiver! = sender adds sequence number
" can’t just retransmit: possible to each pkt
duplicate = receiver discards (doesn’t

deliver up) duplicate pkt

— stop and wait

sender sends one packet, then
waits for receiver response

Transport Layer: 3-55

rdt2.1: sender, handling garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

Wait for
call O from
above

VVaHﬂN“I’
ACK or

NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) &&
iSACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A
ﬁ&g&ﬁﬂ' Wait for
rdt_rcv(rcvpkt) NAK 1 ca;Ibl\tr:m
&& (corrupt(rcvpkt) ||
isNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer: 3-56

rdt2.1: receiver, handling garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer: 3-57

rdt2.1: discussion

sender:
" seq # added to pkt

" two seq. #s (0,1) will suffice.
Why?

» must check if received ACK/NAK
corrupted

= twice as many states

» state must “remember” whether
“expected” pkt should have seq #
ofOor1l

receiver:

" must check if received packet
is duplicate
 state indicates whetherOor 1is
expected pkt seq #

= note: receiver can not know if
its last ACK/NAK received OK
at sender

Transport Layer: 3-58

rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only

" instead of NAK, receiver sends ACK for last pkt received OK
 receiver must explicitly include seq # of pkt being ACKed

" duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-59

rdt2.2: sender, receiver fragments

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
~ — — rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

, Wait for .
ch%tf];z:n ACK isSACK(rcvpkt,1))
10 rc 0 udt_send(sndpkt)
_______________ sender FSM
... fragment rdt_rCV(rcvpkt)
....................................... && notcorrupt(rcvpkt)
.. &8 isACK(rcvpkt,0)
T A
receiver FSM
fragment
[fi T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Transport Layer: 3-60

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)

* checksum, sequence #s, ACKs, retransmissions will be of help ...

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-61

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
" if pkt (or ACK) just delayed (not lost):

* retransmission will be duplicate, but seq #s already handles this!

* receiver must specify seq # of packet being ACKed

" use countdown timer to interrupt after “reasonable” amount
of time

N /meout

Transport Layer: 3-62

rdt3.0 sender

rdt_send(data)

\ sndpkt = make_pkt(0, data, checksum)

\ udt_sendisadpids
start_timer

—

Wait for Wait
call 0 from for
above ACKO
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& isACK(rcvpkt,1) && notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)
op_timer

stop_timer

Wait for

call 1 from
above

di_send(data

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer: 3-63

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_se_nd(sndpkt) iSACK(rcvpkt,1))
rdt_rcv(rcvpkt) start_timer A
_— —
A Wait for timeout
ca!boof/reom udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer
stop_timer
: Wait for
timeout call 1 from
udt_send(sndpkt) above
start_timer rdt_rcv(rcvpkt)

A

rdt_rcv(rcvpkt) && rdt_send(data)
(corrupt(rcvpkt) || sndpkt = make_pkt(1, data, checksum)

isACK(rcvpkt,0)) udt_send(sndpkt)
N start_timer

Transport Layer: 3-64

rdt3.0 in action

sender recelver
send pkt0 ktO
\\ Fcv pkto
ac send ack0
rcv ackO /Q/
send pkti \K
rcv pktl
ack send ackl
rcv ackl
send pkt0 \WOP\‘
rcv pkt0
ack send ackO

(a) no loss

sender recejver

send pktO ktO
\ Fcv pkto

ac send ackO
sen
p \Kx

‘ &) timeout-
resend pktl \K
rcv pktl

ack send ackl
rcv ackl
send pkt0 \lto\‘
rcv pktO
ack send ack0

(b) packet loss

Transport Layer: 3-65

rdt3.0 in action

sender receiver

send pktO ktO
\ rcv pkto

ac send ackO
rcv ackO /ﬂ/
send pktl a2l
rcv pktl

XW send ackl

timeoutd
resend pkt1 \K rCv Pkt
(detect du

ack send acﬁnlcate)
rcv ackl
rcv pktO
ack send ackO

(c) ACK loss

sender receiver

send pkt0 —_
PkO ~, rcv pkt0
_—send ack0

rcv ack0 — 2¢O
send pktl_~— ki1

~ rcv pktl
/ send ackl

ack1

limeout-
resend pktl
pkt1 _ rcv pktl

rcv ackl (detect duplicate)
send pkto\ pktO send ackl

+ ack rcv pktO
— send ack0

rcv ackl
(ignore) ackO
/

\
pkt1 -

(d) premature timeout/ delayed ACK

Transport Layer: 3-66

Performance of rdt3.0 (stop-and-wait)

= . utilization — fraction of time sender busy sending

sender:

" example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

e time to transmit packet into channel:

D.ans = L = 800,0 bits = 8 microsecs
rans = R 10° bits/sec

Transport Layer: 3-67

rdt3.0: stop-and-wait operation

sender

first packet bit transmitted, t = 0 —

4

RTT

A

ACK arrives, send next,
packet, t=RTT+L/R

receiver

— first packet bit arrives
—last packet bit arrives, send ACK

Transport Layer: 3-68

rdt3.0: stop-and-wait operation

sender receiver
_ L/R TH:
Usender_ RTT + L/ R !
~.008 RTT
~30.008
= 0.00027 -

= rdt 3.0 protocol performance stinks!
" Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-69

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
* range of sequence numbers must be increased
 buffering at sender and/or receiver

data pc:.cke’r—r
| |

g —

(a) a stop-and-wait protocol in operation

Transport Layer: 3-70

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 -~
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

>—last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT+L/R_

..................... 3-packet pipelining increases
- utilization by a factor of 3!

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]

3L/R .0024
U j— p— —— p—
sender™ ST 11 R~ dooas ~ 0-00081

Transport Layer: 3-71

Go-Back-N: sender

= sender: “window” of up to N, consecutive transmitted but unACKed pkts
* k-bit seq # in pkt header

send _base hexfsegnum dlready sable. ot
L i ack’ed yet sent
[AREDEEELRENRET00I00] | serioera [oo
t _ window size —*%
N

» cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

* on receiving ACK(n): move window forward to begin at n+1
= timer for oldest in-flight packet

" timeout(n): retransmit packet n and all higher seq # packets in window

Transport Layer: 3-72

Go-Back-N: receiver

= ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
* may generate duplicate ACKs
* need only remember rcv base

" on receipt of out-of-order packet:
e can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq #

Receiver view of sequence number space:
received and ACKed

I I I I I Q I I I H H H HH I Out-of-order: received but not ACKed

rcv base)
— Not received

Transport Layer: 3-73

Go-Back-N in action

sender window (N=4)

EEE): 56738
EEE): 56738
EEE): 56738
EEE): 56738

012 3 4 JHaE
R12 3 4 5 e

0 12EEEF 7 8
0 12EEEK 7 8
0 12EEEK 7 8
Rl 2 3 4 5 F&:

rcv ackO, send pkt4
rcv ackl, send pkt5

ignore duplicate ACK

Pkt 2 timeout

sender

send pkt0
send pktl
send pkt2-
send pkt3

(wait)

send pkt2
send pkt3
send pkt4
send pkt5

/

\X/oss

recelver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, discard,
(re)send ackl

receive pkt4, discard,
(re)send ackl
receive pkt5, discard,
(re)send ackl

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

W

Transport Layer: 3-74

Selective repeat: the approach

" pipelining: multiple packets in flight
m receiver individually ACKs all correctly received packets

* buffers packets, as needed, for in-order delivery to upper layer
=sender:

* maintains (conceptually) a timer for each unACKed pkt
* timeout: retransmits single unACKed packet associated with timeout

* maintains (conceptually) “window” over N consecutive seq #s
* limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-75

Selective repeat: sender, receiver windows

send_base hexfsegnhum

| - G
T T T

g S window size —4
PN

i (a) sender view of sequence numbers
L)

Selective repeat: sender and receiver

— sender
data from above:

" if next available seq # in
window, send packet

timeout(n):
" resend packet n, restart timer
ACK(n) in [sendbase,sendbase+N-1]:

" mark packet n as received

" if n smallest unACKed packet,
advance window base to next
unACKed seq #

—recejver

packet n in [rcvbase, rcvbase+N-1]
= send ACK(n)
= out-of-order: buffer

= in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet
packet n in [rcvbase-N,rcvbase-1]
= ACK(n)
otherwise:

= ignore

Transport Layer: 3-77

Selective Repeat in action

sender window (N=4) sender
5678 send pkt0
EEE): 5678 send pktl
FEPE): 5678 send pkt2-
5678 send pkt3
(wait)
okBEE6 78 rcv ackO, send pkt4
o 1EBEEEI6 78 rcv ackl, send pkt5
record ack3 arrived
DKt 2 timeout
0 1 RN 7 8 send pkt2
0 1 EEYE 7 5 (but not 3,4,5)
W12 3 4 5 gt
W12 3 4 5 gt

\

\Xloss

=

Q. what happens when ack2 arrives?

\
e

recelver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, buffer,
send ack3

receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,

pkt3, pkt4, pkt5; send ack2

Transport Layer: 3-78

Selective repeat:
a dilemmal

example:

= seq #s:0, 1, 2, 3 (base 4 counting)
= window size=3

sender window receiver window
(after receipt) (after receipt)
BEEs 012
0 1 2 NI oflEE]lo 1 2
0 1 2 YKV o 1N 2
0 1 2k El2

oflEElo 1 2
0 1EENY1 2

pktO will accept packet

with seq number 0
(@) no problem

EBs 0 1 2 —RktO

FEF: 0 1 2 —Dkil 412 3[EIP
EF: 012 —pki2 X 0 1EEN]1 2

0 1 2N K2
timeout

retransmit pktO KO

(N3 012

- will accept packet
with seq number 0

(b) oops!

Transport Layer: 3-79

Selective repeat:
a dilemma!

example:
= seq #s:0, 1, 2, 3 (base 4 counting)
= window size=3

Q: what relationship is needed
between sequence # size and
window size to avoid problem
in scenario (b)?

sender window receiver window
(after receipt) (after receipt)

7 oflEE]o 12
0 12X 2
\> 0 1 2k Kl2
= receiver can’t T
. —— will accept packet
see sender side with seq number 0

= receiver
— ofEEl0 12
— 0 1EEI1 2
— 012EIH2
—, will accept packet
W/l'h seq number 0

behavior
identical in both
cases!
= something’s
(very) wrong!
Transport Layer: 3-80

Chapter 3: roadmap

= Connection-oriented transport: TCP

e segment structure

* reliable data transfer

e flow control

* connection management

Transport Layer: 3-81

TCP: overview Rrcs: 7931122, 2018, 5681, 7323

" point-to-point: " cumulative ACKs
 one sender, one receiver = pipelining:
= reliable, in-order byte * TCP congestion and flow control
steam: set window size
* no “message boundaries” = connection-oriented:
" full duplex data: * handshaking (exchange of control

messages) initializes sender,

* bi-directional data flow in .
receiver state before data exchange

same connection
e MSS: maximum segment size = flow controlled:
 sender will not overwhelm receiver

Transport Layer: 3-82

TCP segment structure

&
<

32 bits

v

source port # dest port #

ACK: seq # of next expected

sequence number

byte; A bit: this is an ACK ~~——_

——acknowledgement number

length (of TCP header)

head| not
len usedC

\~

E(UIAIP|R[S|IF| receive window

Va

//—

Internet checksum

checksdm

C, E: congestion notification

7

tions (variable length)

TCP options /

RST, SYN, FIN: connection /

management

/

application
data

segment seq #: counting

bytes of data into bytestream
(not segments!)

flow control: # bytes
receiver willing to accept

data sent by

(variable length)

application into
TCP socket

Transport Layer: 3-83

TCP sequence numbers, ACKs

outgoing segment from sender

Sequence numbers:

e byte stream “number” of
first byte in segment’s data

Acknowledgements:

e seq # of next byte expected
from other side

e cumulative ACK

Q: how receiver handles out-of-
order segments
 A: TCP spec doesn’t say, - up
to implementor

source port # dest port #

sequence number

acknowledgement number

rwnd

checksum

urg pointer

window size

N

sender sequence number space

sent
ACKed

sent not- usable not
yet ACKed but not usable

(in-flight”) ~ yet sent

putgoing segment from receiver
source port # dest port #

sequence number

Jll acknowledgement number

A

rwnd

checksum

urg pointer

Transport Layer: 3-84

TCP sequence numbers, ACKs

Host A

g

&

User types C’

L
£42, \CK=79, data = ‘C
dk, host ACKs receipt

of ‘C’, echoes back ‘C’
Seq ACK data= ‘C’
host ACKs receipt @
of echoed ‘C’
\Seq=43, AC

simple telnet scenario

Transport Layer: 3-85

TCP round trip time, timeout

Q: how to set TCP timeout

value?

" longer than RTT, but RTT varies!

" too short: premature timeout,
unnecessary retransmissions

" too long: slow reaction to
segment loss

Q: how to estimate RTT?

" SampleRTT : measured time
from segment transmission until
ACK receipt

* ignore retransmissions

" SampleRTT will vary, want
estimated RTT “smoother”

¢ average several recent

measurements, not just current
SampleRTT

Transport Layer: 3-86

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

exponential weighted moving average (EWMA)
influence of past sample decreases exponentiallv fast

typical value: a =0.125

RTT (milliseconds)

350 -

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

1 o N\ﬂm

& sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconds)
Transport Layer: 3-87

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimaIted RTT “SafetyImargin”

" DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f)*DevRTT + [*|SampleRTT-EstimatedRTT |

(typically, B =0.25)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ . o e
ransport Layer: 3-

TCP Sender (simplified)

event: data received from event: timeout
application " retransmit segment that

. caused timeout
= create segment with seq # = restart timer

" seq # is byte-stream number

of first data byte in segment event: ACK received

= start timer if not already .
running if ACK acknowledges

reviously unACK men
* think of timer as for oldest previously u | CKed segments
unACKed segment e update what is known to be

L ACKed
e expiration interval:

TimeOutInterval e start timer if there are still
unACKed segments

Transport Layer: 3-89

TCP Receiver: ACK generation (rrcsssi;

Event at receiver ‘ TCP receiver action

TCP: retransmission scenarios

I
(@]
n
~
p>2

['®

—— timeout —

H

=

\
Seq=92, 8 bytes of data

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

0S
-

-
ACK=100

Host A Host B
w D
e —— -

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

\

Seq=92, 8 bytes of data
\

Seq=100, 20 bytes of dat

premature timeout

ACK=10/

send cumulative
ACK for 120

Transport Layer: 3-91

TCP: retransmission scenarios
Host A Host B
\ull

Seq=92, 8 bytes of data

Seq=100, 20 bytes@d{

ACK=100
X
ACK=120

A

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

Transport Layer: 3-92

TCP fast retransmit

] Host A Host B
— TCP fast retransmit N/ D
. . —_ 4&, =
if sender receives 3 additional =
Wy x S =
ACKs for same data (“triple qu:jz, 8 bytes of gy,
duplicate ACKs”), resend unACKed M\O"%
segment with smallest seq # X
= |ikely that unACKed segment lost, o I
so don’t wait for timeout oK >
§ c\("\oo
\\ I // = “
' /Receipt of three duplicate ACKs '*\‘(
indicates 3 segments received Seq=100, 20 bytes of data
after a missing segment — lost
segment is likely. So retransmit!

Transport Layer: 3-93

Chapter 3: roadmap

= Connection-oriented transport: TCP

 flow control
* connection management

Transport Layer: 3-94

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Application removing
data from TCP socket
buffers

Network layer

delivering IP datagram |

payload into TCP
socket buffers

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-95

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Application removing
data from TCP socket
buffers

Network layer
delivering IP datagram

payload into TCP |

socket buffers

application

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-96

TCP flow control

Q: What happens if network

Application removing

layer delivers data faster than data from TCP socket

application layer removes
data from socket buffers?

receive window

flow control: # bytes
receiver willing to accept

buffers

application
proces

TCP socket
receiver buffers

|
1
1
from sender |

receiver protocol stack

Transport Layer: 3-97

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

—flow control
receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

Application removing
data from TCP socket
buffers

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-98

TCP flow control

= TCP receiver “advertises” free buffer

space in rwnd field in TCP header

e RevBuffer size set via socket

options (typical default is 4096 bytes)
* many operating systems auto-adjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

to application process

RcvBuffer buffered data

T

rwnd

_L free buffer space

1

TCP segment payloads

|)

TCP receiver-side buffering

Transport Layer: 3-99

TCP flow control

= TCP receiver “advertises” free buffer

space in rwnd field in TCP header

e RevBuffer size set via socket

options (typical default is 4096 bytes)
* many operating systems auto-adjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

N\

\ . "
receive window

TCP segment format

Transport Layer: 3-100

TCP connection management

before exchanging data, sender/receiver “handshake”:
= agree to establish connection (each knowing the other willing to establish connection)
" agree on connection parameters (e.g., starting seq #s)

./

application

———0

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

—_—

application
[T 1

network

Socket clientSocket =

newSocket ("hostname", "port number") ;

[al_lm |
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer Size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept () ;

Transport Layer: 3-101

Agreeing to establish a connection

2-way handshake:

O - 1 Q: will 2-way handshake always
T Lletstalk work in network?
ok — | ESTAB = variable delays
ESTAB & . y
" retransmitted messages (e.g.
req_conn(x)) due to message loss
./ .
— E " message reordering
choose x "~ Feq_conn(x)___ " can’t “see” other side

—® ESTAB
ESTAR "acc_conn(x)

Transport Layer: 3-102

2-way handshake scenarios

Z V/ =
choose x
\req_conn(>_<L’

% ESTAB

acc_conn(x)

ESTAB ‘{

data(x+1)
+
ACK(x+1)
| _ connection |
X completes

No iroblem!

Transport Layer: 3-103

2-way handshake scenarios
g

. 4

choose x

—
req_conn(x
> ESTAB

retransmit acc_conn(x)

req_conn(x)
ESTAB '><
req_conn(x)

\

1. connection N I
client x completes | server
terminates forgets x

ESTAB

m Problem: half open
connection! (no client)

Transport Layer: 3-104

2-way handshake scenarios

P
=

e\
req_conn(x)

server
forgets x

\ S—s EsTAB

data(x+1)

accept
data(x+1)

m Problem: dup data
accepted!

TCP 3-way handshake

Server state

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr =

Client state

clientSocket = socket(AF_INET, SOCK_STREAM) serverSocket.accept()

LISTEN

clientSocket.connect((serverName,serverPort))

choose init seq num, x
send TCP SYN msg

SYNSENT
v received SYNACK(x)
ESTAB indicates server is live;

send ACK for SYNACK;
this segment may contain
client-to-server data

:" V{
4§!§y

‘--~‘~

SYNbit=1, Seq=x

P

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

_—
T~

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

LISTEN

SYN RCVD

ESTAB

Transport Layer: 3-106

A human 3-way handshake protocol

Transport Layer: 3-107

Closing a TCP connection

= client, server each close their side of connection
e send TCP segment with FIN bit=1

= respond to received FIN with ACK
e on receiving FIN, ACK can be combined with own FIN

= simultaneous FIN exchanges can be handled

Transport Layer: 3-108

Chapter 3: roadmap

" Principles of congestion control

Transport Layer: 3-109

Principles of congestion control

Congestion:

" informally: “too many sources sending too much data too fast for
network to handle”
" manifestations:
* long delays (queueing in router buffers)
e packet loss (buffer overflow at routers)

= different from flow control! o -y
congestlon control.

too many senders,
sending too fast

= 3 top-10 problem!

5\ flow control: one sender
too fast for one receiver

Transport Layer: 3-110

Causes/costs of congestion: scenario 1

Simplest scenario:
= one router, infinite buffers

" input, output link capacity: R

= two flows
" no retransmissions needed

Q: What happens as
arrival rate 4,
approaches R/2?

original data: }‘in

Ao

i

7 ==

throughput: }‘*out
A

infinite shared
output link buffers

P
throughput:kout N
I

maximum per-connection
throughput: R/2

<« _

==

delay

i
7\‘in R/2
large delays as arrival rate

Alve approaches capacity
Transport Layer: 3-111

Causes/costs of congestion: scenario 2

" one router, finite buffers

= sender retransmits lost, timed-out packet

* application-layer input = application-layer output: A;, = Ayt
* transport-layer input includes retransmissions : \';,= A,

=

Host A @ «—)\, : original data
/ V{ ®— A'i: original data, plus
e — retransmitted data
[
? P
R L Lo R
g \7M
7 Host B finite shared output

link buffers

B Xout

Transport Layer: 3-112

Causes/costs of congestion: scenario 2

|dealization: perfect knowledge

= sender sends only when router buffers available

Host A _F— Ain : original data
dopy B @< : original data, plus
. retransmitted data
®

free buffer space!
P >
Trrrrr

d

=

" "Host B finite shared output
link buffers

= a4

R/2 |-

throughput: }‘“out

xin R}Z

Transport Layer: 3-113

Causes/costs of congestion: scenario 2

|dealization: some perfect knowledge

= packets can be lost (dropped at router) due to
full buffers

= sender knows when packet has been dropped:
only resends if packet known to be lost

Host A

%

opy

|

" Host B

L A\, : original data
X% 1

— A'j,: original data, plus
retransmitted data

Z

no buffer space!
/\ —?*

R

finite shared outpu"cv., |

i)
link buffers—

>

Transport Layer: 3-114

Causes/costs of congestion: scenario 2

|dealization: some perfect knowledge

= packets can be lost (dropped at router) due to
full buffers

= sender knows when packet has been dropped:
only resends if packet known to be lost

L A\, : original data

Host A @ +
w [ELe—
N
®

" Host B

A'i: original data, plus

Z

retransmitted data

free buffer space!
N
_?7

R

finite shared output

=7

link buffers

R/2 —
, |] “wasted” capacity due
=7 N ?_@J toretransmissions
o 1
< |
5 i when sending at
e ' R/2, some packets
o]0] 1
3 1 are needed
= | retransmissions
+ :
1
A |
in R/2

Transport Layer: 3-115

Causes/costs of congestion: scenario 2

Realistic scenario: un-needed duplicates

= packets can be lost, dropped at router due to
full buffers — requiring retransmissions

= but sender times can time out prematurely,
sending two copies, both of which are delivered

R/2 —

/7 ' “wasted” capacity due
. +to un-needed

v{transmissions

when sending at
R/2, some packets
are retransmissions,
including needed

throughput: Kout

L A\, : original data

— A'j,: original data, plus

i and un-needed
) duplicates, that are
delivered!

retransmitted data

free buffer space!

link buffers

Transport Layer: 3-116

Causes/costs of congestion: scenario 2

Realistic scenario: un-needed duplicates

= packets can be lost, dropped at router due to ¢ ! “wasted” capacity due
full buffers — requiring retransmissions L |- to un-needed

! retransmissions
= but sender times can time out prematurely, :\

sending two copies, both of which are delivered when sending at
R/2, some packets

are retransmissions,
! including needed
. | and un-needed
Xin R/2 duplicates, that are
delivered!

Z
N
|

throughput: kout

“costs” of congestion:

= more work (retransmission) for given receiver throughput
= unneeded retransmissions: link carries multiple copies of a packet
e decreasing maximum achievable throughput

Transport Layer: 3-117

Causes/costs of congestion: scenario 3

" four senders Q: what happens as A,, and ;. increase ?

" multi-hop paths A:asred A, increases, all arriving blue pkts at upper

= timeout/retransmit queue are dropped, blue throughput = 0

HostA ,: original data
| A'i\: original data, plus
retransmitted data | *

finite shared

output link buffers |

out Host C

)

s

Transport Layer: 3-118

Causes/costs of congestion: scenario 3

RI2 -

Kout

another “cost” of congestion:

= when packet dropped, any upstream transmission capacity and
buffering used for that packet was wasted!

Transport Layer: 3-119

Causes/costs of congestion: insights

= throughput can never exceed capacity :
H Ain R}sz i
= delay increases as capacity approached 5
R/ZS— A RI/2
= |oss/retransmission decreases effective 3
throughput
R/2 A
" un-needed duplicates further decreases E——

effective throughput

= upstream transmission capacity / buffering _
wasted for packets lost downstream ~ /L

Transport Layer: 3-120

Approaches towards congestion control

End-end congestion control:

" no explicit feedback from . -
network ,
.
= congestion inferred from < g = o i
observed loss, delay A "'.. ACKs
I~

= approach taken by TCP ===

Transport Layer: 3-121

Approaches towards congestion control

Network-assisted congestion
control:

o = explicit congestion info

" routers provide direct feedback
to sending/receiving hosts with <
flows passing through congested
router

ACKs

" may indicate congestion level or
explicitly set sending rate

= TCP ECN, ATM, DECbit protocols

Transport Layer: 3-122

Chapter 3: roadmap

" TCP congestion control

Transport Layer: 3-123

TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease —
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

AIMD sawtooth

behavior: probing
for bandwidth

7

=%
7

\

TCP sender Sending rate

time Transport Layer: 3-124

TCP AIMD: more

Multiplicative decrease detail: sending rate is

= Cutin half on loss detected by triple duplicate ACK (TCP Reno)

= Cutto 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

= AIMD - a distributed, asynchronous algorithm — has been
shown to:

e optimize congested flow rates network wide!
* have desirable stability properties

Transport Layer: 3-125

TCP congestion control: details

sender sequence number space

cvnd TCP sending behavior:

" roughly: send cwnd bytes,
|II||| wait RTT for ACKS, then

send more bytes

last byte /| L | ond
vet ACKed not used RTT
(“in-flight”) — last byte sent

= TCP sender limits transmission; LastByteSent- LastByteAcked < cwnd

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

Transport Layer: 3-126

TCP slow start

=" when connection begins,
increase rate exponentially
until first loss event:
* initially cwnd = 1 MSS
* double cwnd every RTT

e done by incrementing cwnd
for every ACK received

" summary: initial rate is

slow, but ramps up
exponentially fast

Host A
B/
|T_ W
v
|

Transport Layer: 3-127

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

14—
A: when cwnd gets to 1/2 of its . '~
value before timeout. ggi:_ss_tﬁrg.%b ____________
%é‘ -
Implementation: §°
= variable ssthresh (2)_ — T T T T T T
=" on loss event, ssthresh is set to che STra:_gmi;ioi roindm e

1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer: 3-128

Summary: TCP congestion control

duplicate ACK

dupACKcount++

o

A

cwnd =1 MSS
ssthresh = 64 KB

‘f timeout </

AY
(\,sthresh thresh = cwnd/2
cwnd = 1 MSS
dupACKcount =0
retransmit missing segment

dupACKcount == 3

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

new ACK
cwnd = cwnd+MSS
dupACKcount =0

/)transmit new segment(s), as allowed
cwnd > ssthresh

A
T Z Q timeout
\())ssthresh = cwnd’2
cwnd =1 MSS
dupACKcount =0
A

retransmit missing segment

d
timeout (

ssthresh = cwnd/2
cwnd =1 New ACK
cwnd = ssthresh

dupACKcount =0
retransmit missing segment dupACKcount = 0

A

v

duplicate ACK

new ACK *E%E

cwnd = cwnd + MSS , (MSS/cwnd)
dupACKcount =0
transmit new segment(s), as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

L_) cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer: 3-129

TCP CUBIC

" |s there a better way than AIMD to “probe” for usable bandwidth?

" |nsight/intuition:
* W,,.: sending rate at which congestion loss was detected
e congestion state of bottleneck link probably (?) hasn’t changed much

* after cutting rate/window in half on loss, initially ramp to to W,,, faster, but then
approach W,., more slowly

Wiax — classic TCP
== = = = TCP CUBIC - higher
W nax/2 throughput in this
example

Transport Layer: 3-130

TCP CUBIC

= K: point in time when TCP window size will reach W, .,
* Kitself is tunable

= increase W as a function of the cube of the distance between current
time and K

* larger increases when further away from K
* smaller increases (cautious) when nearer K

= TCP CUBIC default !
in Linux, most B I ey Sy Ay
popular TCP for IEE EE:;Tc
popular Web et

servers rate

time

»

Transport Layer: 3-131

TCP and the congested “bottleneck link”

=" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source destination
TCP
- \
= =t
packet queue almost

never empty, sometimes
overflows packet (loss)

bottleneck link (almost always busy)
Transport Layer: 3-132

TCP and the congested “bottleneck link”

=" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

= understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
source not increase end-end throughout
with congested bottleneck

TCP TCP |
E E
=<3

destination

S ~

insight: increasing TCP
sending rate will
increase measured RTT

al: “keep the end-end pipe just full, but not fuller”
RTT >

A

Transport Layer: 3-133

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

D _‘ D # bytes sent in
< L&* measured _ last RTT interval
— RTT,,

easured throughput RTT
measured

Delay-based approach:

" RTT,,, - minimum observed RTT (uncongested path)

* uncongested throughput with congestion window cwnd is cwnd/RTT,,,

if measured throughput “very close” to uncongested throughput
increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout

decrease cwnd linearly /* since path is congested */

Transport Layer: 3-134

Delay-based TCP congestion control

= congestion control without inducing/forcing loss

" maximizing throughout (“keeping the just pipe full... ”) while keeping
delay low (“...but not fuller”)
= a2 number of deployed TCPs take a delay-based approach

= BBR deployed on Google’s (internal) backbone network

Transport Layer: 3-135

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
= two bits in IP header (ToS field) marked by network router to indicate congestion
 policy to determine marking chosen by network operator
= congestion indication carried to destination
= destination sets ECE bit on ACK segment to notify sender of congestion
= involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

TCP ACK segment))
source / 9 destination

TCP &

Transport Layer: 3-136

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection

1
/

|

bottleneck
router
capacity R

N
TCP connection 2

Transport Layer: 3-137

Q: is TCP Fair?

Example: two competing TCP sessions:

= additive increase gives slope of 1, as throughout increases

=" multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

— Is TCP fair?

A: Yes, under idealized

assumptions:
= same RTT
= fixed number of sessions
only in congestion
avoidance

Transport Layer: 3-138

Fairness: must all network apps be “fair”?

Fairness and UDP Fairness, parallel TCP
* multimedia apps often do not connections
use TCP

= application can open multiple

* do not want rate throttled by parallel connections between two

congestion control

= instead use UDP: hosts
e send audio/video at constant rate, = web browsers do this, e.g., link of
tolerate packet loss rate R with 9 existing connections:
= there is no “Internet police” * new app asks for 1 TCP, gets rate R/10
policing use of congestion * new app asks for 11 TCPs, gets R/2

control

Transport Layer: 3-139

Transport layer: roadmap

= Evolution of transport-layer
functionality

Transport Layer: 3-140

Evolving transport-layer functionality

= TCP, UDP: principal transport protocols for 40 years
= different “flavors” of TCP developed, for specific scenarios:

Long, fat pipes (large data Many packets “in flight”; loss shuts down

transfers) pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs

Data center networks Latency sensitive

Background traffic flows Low priority, “background” TCP flows

" moving transport—layer functions to application layer, on top of UDP
 HTTP/3: QUIC

Transport Layer: 3-141

QUIC: Quick UDP Internet Connections

" application-layer protocol, on top of UDP

* increase performance of HTTP
* deployed on many Google servers, apps (Chrome, mobile YouTube app)

Application

Network

HTTP/2 over TCP

Transport Layer: 3-142

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

* error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QuIC specification]

* connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

" multiple application-level “streams” multiplexed over single QUIC
connection

* separate reliable data transfer, security
* common congestion control

Transport Layer: 3-143

QUIC: Connection establishment

B/
N

TCP handshake \
(transport layer) <
TLS handshake

(security) /

\
data —

TCP (reliability, congestion control
state) + TLS (authentication, crypto
state)

=) serial handshakes

N/
——

QUIC handShake /

QUIC: reliability, congestion control,

authentication, crypto state

= 1 handshake

Transport Layer: 3-144

application

transport

QUIC: streams: parallelism, no HOL blocking

]

HTTP
GET
HTTP
GET A
HTTP
GET
TLY ehcryption TLS|encr ption
TAPRDIT error| IOT
TCP tohgl Contr. T(@P|ddng. fontr.
(a) HTTP 1.1

Transport Layer: 3-145

Chapter 3: summary

= principles behind transport
layer services:
* multiplexing, demultiplexing
* reliable data transfer
* flow control
e congestion control

" instantiation, implementation
in the Internet
* UDP
* TCP

Up next:

" [eaving the network
“edge” (application,
transport layers)

" into the network “core”

= two network-layer
chapters:

* data plane
e control plane

Transport Layer: 3-146

Additional Chapter 3 slides

Transport Layer: 3-147

Go-Back-N: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqgnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)
start_timer

nextseqgnum-++

..... }
A T, else
refuse_data(data)

""""" N timeout
start_timer
3 udt_send(sndpkt[base])
C‘ udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else
start_timer

Transport Layer: 3-148

Go-Back-N: receiver extended FSM

any other event
udt_send(sndpkt) rdt_rcv(rcvpkt)
- C) && notcorrupt(rcvpkt)

A TS~o_ && hasseqnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedseqgnum++

ACK-only: always send ACK for correctly-received packet with highest
in-order seq #
* may generate duplicate ACKs
* need only remember expectedsegqnum

" out-of-order packet:
e discard (don’t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #

Transport Layer: 3-149

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

“A

. start timer
NextSegqNum = InitialSeqNum

SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer: 3-150

TCP 3-way handshake FSM

Socket connectionSocket =
welcomeSocket.accept() ;

A Socket clientSocket =
newSocket ("hostname" , "port number") ;

SYN(x)
SYNACK(seq=y,ACKnum=x+1) ! SYN(seq=x)

create new socket for communication
back to client)
l listen v

| ; ‘ | SYNACK(seq=y,ACKnum=x-+1)

A

Transport Layer: 3-151

Closing a TCP connection

client state
ESTAB

clientSocket.close ()

FIN_WAIT_1

|

FIN_WAIT_2

TIMED_WAIT

CLOSED

can no longer
send but can
receive data

wait for server
close

timed wait
for 2*max
segment lifetime

|

N/

\FINb't 1
it=1, Seq=X\‘

/
ACKbit=1; ACKnum=x+1
—

/
A/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

server state

can still
send data

can no longer
send data

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer: 3-152

TCP throughput

" avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume there is always data to send

" W: WindoWw Size (measured in bytes) Where loss occurs
e avg. window size (# in-flight bytes) is %4 W
 avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

N14%%4%%

TCP over “long, fat pipes”

= example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput
" requires W = 83,333 in-flight segments
" throughput in terms of segment loss probability, L [Mathis 1997]:

_1.22-MSS
TCP throughput = RTTJE

-» to achieve 10 Gbps throughput, need a loss rate of L=2'1019 —qg
very small loss rate!

= versions of TCP for long, high-speed scenarios

Transport Layer: 3-154

