Chapter 5
Network Layer:
Control Plane

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

= If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

= If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

James F. Kurose | Keith W. Ross

. Iy
‘‘‘‘‘

NETWORKING

A TOP-DOWN APPROACH
@ Eighth Edition

OO S

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Network layer control plane: our goals

"understand principles " instantiation, implementation
behind network control in the Internet:
plane: « OSPF, BGP
e traditional routing algorithms e OpenFlow, ODL and ONOS
* SDN controllers controllers
* network management, * Internet Control Message
configuration Protocol: ICMP

* SNMP, YANG/NETCONF

Network Layer: 5-2

Network layer: “control plane” roadmap

" introduction

" routing protocols
= |ink state
= distance vector

= intra-ISP routing: OSPF

= routing among ISPs: BGP
. DN trol bl " network management,
controt plane configuration

" Internet Control Message e SNMP
Protocol - NETCONF/YANG

Network Layer: 5-3

Network-layer functions

» forwarding: move packets from router’s

input to appropriate router output data plane

" routing: determine route taken by

packets from source to destination control plane

Two approaches to structuring network control plane:
" per-router control (traditional)
" |ogically centralized control (software defined networking)

Network Layer: 5-4

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

3 F{()ljtir1£; ‘4-"-——-—--"_---_-i’ >
Algorithm :w\ control
L \ p * plane
Local forwarding data
plane

header output
0100 3
0110 2
0111 2
1

1001

values in arriving

packet heade;

Network Layer: 5-5

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

plane

values in arriving
packet header

Network Layer: 5-6

Per-router
control plane

SDN control
plane

— Remote Controller —
—1s —

W En 1

v
- |
T 1T I
v v |

v

Network layer: “control plane” roadmap

" routing protocols

= [ink state
= distance vector

Network Layer: 5-8

Routing protocols

mobile network

national or global ISP

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host, et

network

through network of routers ot

physical

" path: sequence of routers packets
traverse from given initial source host
to final destination host

" “good”: least “cost”, “fastest”, “least
congested”

" routing: a “top-10” networking :
challenge! enterprise

datacenter
physical network

. n application
transport
P J link

physical

Network Layer: 5-9

Graph abstraction: link costs

C, - cost of direct link connecting a and b
e.g., Cy,=5,C,,=°°

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or inversely related to
congestion

graph: G = (N,E)

N: setof routers={u, v, w,x, y, 2 }

E: set of links ={ (u,v), (u,x), (vx), (vw), (xw), (xy), (wy), (W,2), (y,2) }

Network Layer: 5-10

Routing algorithm classification

t
global: all routers have complete

topolegy—tink cost info
°Igorithms

dynamic: routes change

How fast

‘doroutes Static: routes change more quickly

‘change? slowly over time e periodic updates orin
response to link cost
changes

decentralized: iterative process of
computation, exchange of info with neighbors

* routers initially only know link costs to

at ors
*(“distance vector”)algorithms
l

global or decentralized information?
Network Layer: 5-11

Network layer: “control plane” roadmap

" routing protocols
" [ink state

Network Layer: 5-12

Dijkstra’s link-state routing algorithm

= centralized: network topology, link
costs known to all nodes

e accomplished via “link state
broadcast”

* all nodes have same info

= computes least cost paths from one
node (“source”) to all other nodes

 gives forwarding table for that node

= iterative: after k iterations, know
least cost path to k destinations

notation

" C, - direct link cost from

node x to y; =< if not direct
neighbors

" D(v): current estimate of cost
of least-cost-path from source
to destination v

" p(v): predecessor node along
path from source to v

= \': set of nodes whose least-
cost-path definitively known

Network Layer: 5-13

Dijkstra’s link-state routing algorithm

1 Initialization:

2 N'= {U} [* compute least cost path from u to all other nodes */

3 forallnodesv

4 if vadjacenttou /* u initially knows direct-path-cost only to direct neighbors */
5 then D(v)=c,, /* but may not be minimum cost! */
6 elseD(v)=0o0

7/

8 Loop

9 find wnotin N'such that D(w) is a minimum

10 addwto N’

11 update D(v) for all v adjacent to w and notin N':

12 D(v) = min (D(v), D(w) +¢,,,)

13 /* new least-path-cost to v is either old least-cost-path to v or known
14 least-cost-path to w plus direct-cost from wto v */

15 until all nodes in N'

Network Layer: 5-14

Dijkstra’s algorithm: an example

V " X Y Z
Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
u 2,u 5,u 1,u oo oo

Initialization (step 0):
For all a: if g adjacent to u then D(a) = ¢,

Dijkstra’s algorithm: an example

V W Yy Z
Step N' D(v),p(v) p(w) D(x),p(x) D(y),p(y) D(z),p(z)

8 Loop
9 find a notin N'such that D(a) is a minimum

10 addato N’

Dijkstra’s algorithm: an example

Y, W X Yy Z
Step N' D(),p(v) Dw),p(w) D(x),p(x) D(y)p(y) D(z),p(z)
0 u 2,u 5,u d,w = =
1 uX 2,U 4,x 2,X oo
2
3
4
3
8 Loop
9 find a notin N'such that D(a) is a minimum
10 addato N’

11 update D(b) for all b adjacent to a and notin N':
D(b) = min (D(b), D(a) +c,)
D(v) = min (D(v), D(x) +c,,) = min(2, 1+2) = 2

D(w) = min (D(w), D(x) + ¢, ,,) = min (5, 1+3) =

D(y) = min (D(y), D(x) + c,,) = min(inf,1+1) = Z&'S

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

S
8 Loop

5 9 find a notin N'such that D(a) is a minimum

10 addato N’

Dijkstra’s algorithm: an example

Y, W X Yy Z
Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z).p(z)

0 u 2,U o,u @ oo oo

1 Uux 2,U 4,X @ oo

2 uxy 2,u 3,y 4,y

3

4

)
8 Loop

5 9 find a notin N'such that D(a) is a minimum
10 addato N’
S 11 update D(b) for all b adjacent to a and notin N':
Su- 7D D(b) = min (D(b), D(a) +c, ;)
1

2 D(w) = min (D(w), D(y) + c,,,) = min (4, 2+1) = 3 32
! D(z) = min (D(z), D(y) +c,,,) = min(inf,2+2) = 430"

Dijkstra’s algorithm: an example

[/@ W X y 4
Step N' (v).p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 u 2,U o,u @ S o
1 ux 2,U 4 x @ oo
2 uxy Q,uw 3,y 4y
3 ux
4
S
8 Loop
5 9 find a notin N'such that D(a) is a minimum
10 addato N’
)
Su3 C7D
1 2

Dijkstra’s algorithm: an example

Aa

Y W X y 4
Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 u 2,U o,u @ oo oo
1 ux 2,u 4,x @,%0 0
2 UXy Qw 3y 4,y
3 UXyv 3,y 4.y
4
)
8 Loop
5 9 find a notin N'such that D(a) is a minimum
10 addato N’
o 11 update D(b) for all b adjacent to a and notin N':
7> D(b) = min (D(b), D(a) +c,;)
2 D(w) = min (D(w), D(v) +c,,,,) = min (3, 2+3) = 3

Dijkstra’s algorithm: an example

\Y; X Y Z
Step N' D(v),p(v) /Dﬁvgv%(W) D(x).p(x) D(y).p(y) D(z).,p(z)
0 u 2,U o,u @ S o
1 ux u 4,x @ >
2 uxy Q,w 3,y 4.y
3 UXyV Gy 4,y
4 uxy
5
8 Loop

9 find a notin N'such that D(a) is a minimum
10 addato N’

Dijkstra’s algorithm: an example

Vv w X \ Z
Step N' D(v),p(v) D(w).p(w) D(x),p(x) D(y).p(y) D(z).p(z)

0 u 2,U 5,u dw 0 o

1 ux 2,u 4,x @ %0

2 uxy Qw 3,y 4.y

3 UXyvV Gy 4,y

4 UXyVW 4,y

3)

8 Loop
9 find a notin N'such that D(a) is a minimum
10 addato N’

11 update D(b) for all b adjacent to a and notin N':
D(b) = min (D(b), D(a) + ¢,)

D(z) = min (D(z), D(w) +c,,,) = min (4, 3+5) = 4

Dijkstra’s algorithm: an example

v W X W
Step N' D(v),p(v) D(w),p(w) D(x),p(x) D D(z),p(2)

0 u 2,U o,u oo oo

1 ux 2,u 4.x @, oo

2 uxy , 4.y
3 uxyv 4y
4 UXyVW
3 UXyvV

8 Loop
9 find a notin N'such that D(a) is a minimum

10 addato N’

Dijkstra’s algorithm: an example

Y, W X Yy Z
Step N' D(v).p(v) D(w),p(w) D(x),p(x) D(y)p(y) D(z).p(z)

0 u 2,u 5,u d,w = =
1 ux 2,u 4.x @, oo
2 uxy Q,uw 3,y 4y
3 UXyv Gy 4.y
4 UXyvw
5 uxyvwz

8 Loop

9 find a notin N'such that D(a) is a minimum

10 addato N’

11

Dijkstra’s algorithm: an example

resulting least-cost-path tree from u: resulting forwarding table in u:
@ destination | outgoing link
| vV (u,v) — route from u to v directly

X (u,x)

Y (u,x) __route from u to all
W (u,x) other destinations
X

(u,x) via x

Network Layer: 5-27

Dijkstra’s algorithm: another example

Y), z),
p(y) p(z)

11,w 0o

11w 14X

notes:

= construct least-cost-path tree by tracing predecessor nodes
" ties can exist (can be broken arbitrarily)

Network Layer: 5-28

Dijkstra’s algorithm: discussion

algorithm complexity: n nodes

= each of niteration: need to check all nodes, w, notin N
* n(n+1)/2 comparisons: O(n?) complexity

= more efficient implementations possible: O(nlogn)
message complexity:

= each router must broadcast its link state information to other n routers

= efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a
broadcast message from one source

= each router’s message crosses O(n) links: overall message complexity: O(n?)

Network Layer: 5-29

Dijkstra’s algorithm: oscillations possible

= when link costs depend on traffic volume, route oscillations possible

= sample scenario:
* routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
* link costs are directional, and volume-dependent

given these costs, given these costs, given these costs,
initially find new routing.... find new routing.... find new routing....
resulting in new costs resulting in new costs resulting in new costs

Network Layer: 5-30

Network layer: “control plane” roadmap

" routing protocols

® distance vector

Network Layer: 5-31

Distance vector algorithm

Based on Bellman-Ford (BF) equation (dynamic programming):

Bellman-Ford equation

Let D,(y): cost of least-cost path from x to y.
Then:

D,(y) =min, { ¢, + Dlv(Y)}

V's estimated least-cost-path cost to y

min taken over all neighbors v of x direct cost of link from x to v

Network Layer: 5-32

Bellman-Ford Example

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

D,(z) =5 Du(2) =3 Bellman-Ford equation says:

CU,X + DX(Z

CuwF Du(2) }
=min {2 + 5,

1+ 3,
node achieving minimum (x) is

next hop on estimated least-
cost path to destination (z)

Network Layer: 5-33

Distance vector algorithm
key idea:

= from time-to-time, each node sends its own distance vector estimate
to neighbors

= when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

D,(y) € minfc, ,+ D (y)} for each nodey e N

= under minor, natural conditions, the estimate D,(y) converge to the
actual least cost d,(y)

Network Layer: 5-34

Distance vector algorithm:

each node: iterative, asynchronous: each local
l iteration caused by:
wait for (change in local link " local link cost change
cost or msg from neighbor) " DV update message from neighbor

|

recompute DV estimates using
DV received from neighbor

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

_ l o = neighbors then notify their
if DV to any destination has neighbors — only if necessary
changed, notify neighbors * no notification received, no

‘ actions taken!

Network Layer: 5-35

Distance vector: example

D.(a)=0

D.(b)=8
@ D,(c) = oo @ = ¢ @ = ¢ ECB

D,(d) =1 8 1
D,(e) = e \
t=0 D,(f) = o0]
Da(g) =0 1 1
= All nodes have [[))a((h))f: 1
distance estimates all) = Af ri
to nearest) - ¢ - eV\{ a§ymr_ne ries:
neighbors (only) cdo 1 =€ 1 missing link
= All nodes send larger cost
their local $ $ $
distance vector to 1 1 1
their neighbors 1 1t 1
= 4=) 4u .
@ = =G> = = G>

Network Layer: 5-36

Distance vector example: iteration

{Z} Goe = Goe =
1 1]

t=1
1 1

All nodes:

= receive distance

vectors from $ 1

neighbors Cdo= 2 E 2C 5

1 1

1 1 1
1 1 1
1 4 $ 2
Cgoe 1 2Chye=— g

Network Layer: 5-37

Distance vector example: iteration

{Z} compute 2 compute) compute

t=1

1 1
All nodes:
. compute compute compute
= compute their new P 1 : 1
local distance
vector
1 1 1
compute 1 compute 1 compute

Network Layer: 5-38

Distance vector example: iteration

{Z} G3—= = o= =
t=1 | |

1 1
All nodes: 1+ 1

= = G5 = e o

$ 4 $
= send their new 1 1 1
local distance 1] 1 1
vector to neighbors

Go—== o= G

Network Layer: 5-39

Distance vector example: iteration

{E} Goe = Goe =
1 1]

t=2
1 1

All nodes:

= receive distance

vectors from $ 1

neighbors Cdo= 2 E 2C 5

1 1

1 1 1
1 1 1
1 4 $ 2
Cgoe 1 2Chye=— g

Network Layer: 5-40

Distance vector example: iteration

(D

t=2

All nodes:

= compute their new
local distance
vector

compute

compute

compute

compute

compute

compute

compute

compute

compute

Network Layer: 5-41

Distance vector example: iteration

{E} Go—= = o= =
t=2 | | |

1 1
All nodes: 1+ 1

= = G5 = e o

$ 4 $
= send their new 1 1 1
local distance 1] 1 1
vector to neighbors

Go—== o= G

Network Layer: 5-42

Distance vector example: iteration

.... and so on

Let’s next take a look at the iterative computations at nodes

Network Layer: 5-43

Distance vector example:

Do(a) =8 Dyff) = o De(a) = o
DEgc)) =1 Dﬁfg)) = o Bcéb)) .
: . D,(d) =2 Dy(h) =00 c\C) =

=1 Dl - D(d) = o=

a(a)_o D (e) = oo

D.(b) =8 - - DZ(f) = oo

Dalc) = o Ca’ Sb3 : Ce3 D (g) = o

D,(d)=1 8 D.(h) = oo

D,(e) = o0 Dc(i) — oo

t=1 D, (f) = o 1 1 :
= b receives DVs B:gﬁ)) — oo !)

from a,(C, e Da(i) — oo De(a) — oo
De(b) =1
Cd3 Ce SE De(c) = o

1 ! De(d) = 1

De(e) =0

De(f) =1
1 1 1 De(g) = o0

D.(h) =1

De(i) = oo

Network Layer: 5-44

Distance vector example:

D

t=1

b receives DVs
froma, ¢, e,

computes:

D.(a)=0
D.(b)=8
D,(c) = o
Da(d) =1

=

8

comBL;té

[]

1

Db(a) = min{cb,a'l'Da(a); Cb,c+Dc(a); Cb,e+De(a)} = min{8,e0,00} =8

Db(c) = min{cb,a+Da(C); Cb,c"'Dc(C)r Cpe +De(c)} = min{eo, 1,00} =1
Dp(d) = min{cy, ,+D,(d), ¢, +D((d), €, o +De(d)} = min{9,2,00} = 2
Dp(e) = min{c, ,+D,(€e), ¢y +D.(€), Cpe+De(€)} = minfeo,e0,1} =1

Dp(f) = min{cy 2+D5(f), Cp,c +D(f), Cpe +De(f)} = min{eo,00,2} =2

Db(g) = min{cb,a'l'Da(g)r Cb,C+DC(g)I c b,e+De(g)} = min{oo’ ©o, oo} =<
Dy(h) = min{c;+D,(h), Coe+Delh), Cie#De(h)} = mingoe, o2, 2} = 2

Dyp(i) = min{cp 5+D,(i), Cp,c +Dc(i), CpetDe(i)} = minfeo, oo, oo} = co

Dyfa) =8 Dyf) = o0

Dy(c) =1 Dy(g) = o

Dy(d) = o= Dy(h) = oo

Dyfe) =1 Dyfi) = oo
-

Sc

1

Db(a) =8
Db(C) =1
Db(d) =2
Db(E) =1

Dy(f) =2

Dp(g) = o=
Db(h) = 2
Dy (i) = o0

Network Layer: 5-45

Distance vector example:

D

t=1

= creceives DVs

from b

D.(a)=0
D,(b) =8
D,(c) = o
D,(d) =1

Dyfa) =8 Dyf) = o0
Dy(c) =1 Dy(g) = o
Dy(d) = o= Dy(h) = oo
Dyfe) =1 Dyfi) = oo
= -

Sb 6

1

[]

Ce2 ———CLF3

1 1

<h> ——Ci>

Network Layer: 5-46

Distance vector example:

Dp(a) =8 Dy(f)=oo D(a) = oo

Dc)=1 Dyfg) = o D(b) = 1

Dp(d) = oo Dy(h) = oo D.(c)=0
Db(e) =1 Db(l) = oo Dc(d) = oo

D(e) ==

= D(f) = o

@ 1 compute D (g) = o=
Dc(h) = e

t= 1 Dc(l) =00

= creceives DVs
from b computes:

D(a) = min{c ,+Dp(a}}=1+8=9

D.(b) = min{c ,+Dp(b)}=1+0=1 D.(a) = 9
Dc(d) = min{c.,+Dp(d)} = 1+ o0 = o0 D.(b) =1
Dc(e) = min{c.,+Dp(e)}=1+1=2 D.(c) =0
- _ _ D (d) =2
D(f) = min{c p+Dp(f)} = 1+ o0 = o0
. De(€) = o * Check out the online interactive
D.(g) = min{c.p+Dy(g)} = 1+ oo = o0 D, (f) = oo . _
_ c exercises for more examples:
Dc(h) = min{cyp+Dp(h)} = 1+ o0 = o0 Dc(g) = e° http://gaia.cs.umass.edu/kurose_ross/interactive/
De(i) = min{ce p+Dp(i)} = 1+ o0 = oo De(h) = e
D (i) = oo

Network Layer: 5-47

Distance vector example:

Dp(a) =8 Dy(f) = o=
Dp(c) =1 Dy(g) ===

Dy(d) = e Dy(h) = oo DV in e:
R YRR N OV ine:

De(a) =0
D(a)=1 Do(b)=1
D (b) = o0 DelC) =00
@ Dc(c) =00 @ 8 E% 1 @ Deéd)) =1
Dc(d) =0 De(E) =0
t= 1 D(e)=1 Q: what is new DV computed in e at D.(f) = 1
D(f) = o= 1 t=1? De(g) = oo
= e receives DVs D.(g) =1 D.(h)=1
fromb, d, f, h Dc(h) = oo ‘ De(i) = o
D (i) = = !
= = compute————CF
1 : D.(a) ==
D (a) = o D(b) = oo
Dc(b) =0 DC(C) = oo
D (c) = o0 1 1 D(d) = o0
D (d) = oo D(e)=1
D(e)=1 D(f)=0
D(f) = oo Dc(g) = oo
g1 | S G——— G2 o o
D.(h)=0 D (i) =1
DC(I) =1 Network Layer: 5-48

Distance vector: state information diffusion

Iterative communication, computation steps diffuses information through network:

(D) =0

c’s state at t=0is at c only

c’s state at t=0 has propagated to b, and
may influence distance vector computations

up to 1 hop away, i.e., atb

c’s state at t=0 may now influence distance

vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., atd, f, h

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, i

B

1

8

Distance vector: link cost changes

link cost changes: :

" node detects local link cost change gx }@1
= updates routing info, recalculates local DV 90

" if DV changes, notify neighbors

t,: y detects link-cost change, updates its DV, informs its neighbors.

‘good news ¢, : 7 receives update from y, updates its DV, computes new least cost
travels fast to x, sends its neighbors its DV.

t,:y receives z’s update, updates its DV. y’s least costs do not
change, so y does not send a message to z.

Distance vector: link cost changes

60

link cost changes:
" node detects local link cost change gx }@1
= “bad news travels slow” — count-to-infinity problem: 20
e y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.
e zlearns that path to x via y has new cost 6, so z computes “my new cost to

x will be 7 via y), notifies y of new cost of 7 to x.

* y learns that path to x via z has new cost 7, so y computes “my new cost to
x will be 8 via y), notifies z of new cost of 8 to x.

e zlearns that path to x via y has new cost 8, so z computes “my new cost to
x will be 9 via y), notifies y of new cost of 9 to x.

" see text for solutions. Distributed algorithms are tricky!

Comparison of LS and DV algorithms

message complexity
LS: n routers, O(n?) messages sent

DV: exchange between neighbors;
convergence time varies

speed of convergence

LS: O(n?) algorithm, O(n?) messages
* may have oscillations
DV: convergence time varies

* may have routing loops
e count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?
LS:
e router can advertise incorrect link cost

e each router computes only its own
table

DV:

* DV router can advertise incorrect path
cost (“I have a really low-cost path to
everywhere”): black-holing

e each router’s DV is used by others:
error propagate thru network

Network layer: “control plane” roadmap

= intra-ISP routing: OSPF

Network Layer: 5-53

Making routing scalable

our routing study thus far - idealized
= 3|l routers identical
= network “flat”

... hot true in practice

scale: billions of destinations: administrative autonomy:

= can’t store all destinations in = |nternet: a network of networks
routing tables! = each network admin may want to

= routing table exchange would control routing in its own network

swamp links!

Network Layer: 5-54

Internet approach to scalable routing

aggregate routers into regions known as “autonomous
systems” (AS) (a.k.a. “domains”)

intra-AS (aka “intra-domain”): inter-AS (aka “inter-domain”):

routing among routers within same routing among AS’es

AS (“network”) = gateways perform inter-domain

= all routers in AS must run same intra- routing (as well as intra-domain
domain protocol routing)

= routers in different AS can run different
intra-domain routing protocols

= gateway router: at “edge” of its own AS,
has link(s) to router(s) in other AS’es

Network Layer: 5-55

Interconnected ASes

Intra-AS Inter-AS
Routing Routing

forwarding
table

"

AS1

forwarding table configured by intra-
and inter-AS routing algorithms

= intra-AS routing determine entries for
destinations within AS

= inter-AS & intra-AS determine entries
for external destinations

AS2

Network Layer: 5-56

Inter-AS routing: a role in intradomain forwarding

" suppose router in AS1 receives AS1 inter-domain routing must:
datagram destined outside of AS1: 1. learn which destinations reachable
rl)’ router should forward packet to through AS2, which through AS3
s gateway routerin AS1, but which 2. propagate this reachability info to all

? .
One: routers in AS1

\ other

networks

other
networks

AS2

AS1

Network Layer: 5-57

Intra-AS routing: routing within an AS

most common intra-AS routing protocols:

" RIP: Routing Information Protocol [RFC 1723]
* classic DV: DVs exchanged every 30 secs
* no longer widely used

" EIGRP: Enhanced Interior Gateway Routing Protocol
* DV based
* formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

= OSPF: Open Shortest Path First [RFc 2328]

* link-state routing
e |S-IS protocol (ISO standard, not RFC standard) essentially same as OSPF

Network Layer: 5-58

OSPF (Open Shortest Path First) routing

" “open”: publicly available

» classic link-state

* each router floods OSPF link-state advertisements (directly over IP
rather than using TCP/UDP) to all other routers in entire AS

* multiple link costs metrics possible: bandwidth, delay

e each router has full topology, uses Dijkstra’s algorithm to compute
forwarding table

= security: all OSPF messages authenticated (to prevent malicious
intrusion)

Network Layer: 5-59

Hierarchical OSPF

= two-level hierarchy: local area, backbone.
* link-state advertisements flooded only in area, or backbone

* each node has detailed area topology; only knows direction to reach
other destinations

boundary router:
connects to other ASes

\| runs OSPF I|m|ted
to backbone

area border routers:
“summarize” distances to

destinations in own area, —_—

advertise in backbone

local routers:
* flood LS in area only , .area 3
e compute routing within ;
area .
. internal

* forward packets to outside N 7 ' / f
: real ~---- - . routers

via area border router

N e ——-—

Network Layer: 5-60

Network layer: “control plane” roadmap

=" routing among ISPs: BGP

Network Layer: 5-61

Interconnected ASes

inter-AS routing
N
7~ X

AS3
AS2

AS1

Q intra-AS (aka “intra-domain”): routing among routers within same
AS (“network”)

» inter-AS (aka “inter-domain”): routing among AS’es

Network Layer Control Plane: 5-62

Internet inter-AS routing: BGP

= BGP (Border Gateway Protocol): the de facto inter-domain routing
protocol

e “glue that holds the Internet together”

= allows subnet to advertise its existence, and the destinations it can
reach, to rest of Internet: “/ am here, here is who | can reach, and how”

= BGP provides each AS a means to:

e obtain destination network reachability info from neighboring ASes
(eBGP)

* determine routes to other networks based on reachability information
and policy

e propagate reachability information to all AS-internal routers (iBGP)

e advertise (to neighboring networks) destination reachability info

Network Layer Control Plane: 5-63

eBGP, iBGP connections

AS 1 — — — eBGP connectivity AS 3
------ logical iBGP connectivity

gateway routers run both eBGP and iBGP protocols

Network Layer: 5-64

BGP basics

= BGP session: two BGP routers (“peers”) exchange BGP messages over
semi-permanent TCP connection:

 advertising paths to different destination network prefixes (BGP is a “path
vector” protocol)

= when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
* AS3 promises to AS2 it will forward datagrams towards X

AS 3 @@\{3})
AS 1 -~ §1bd = | o==
4

BGP advertisement:

AS3, X @

Network Layer: 5-65

BGP protocol messages

" BGP messages exchanged between peers over TCP connection
= BGP messages [rFc4371):

* OPEN: opens TCP connection to remote BGP peer and authenticates
sending BGP peer

 UPDATE: advertises new path (or withdraws old)

 KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs
OPEN request

* NOTIFICATION: reports errors in previous msg; also used to close
connection

Path attributes and BGP routes

= BGP advertised route: prefix + attributes
* prefix: destination being advertised

* two important attributes:
e AS-PATH: list of ASes through which prefix advertisement has passed
 NEXT-HOP: indicates specific internal-AS router to next-hop AS

" policy-based routing:

e gateway receiving route advertisement uses import policy to
accept/decline path (e.g., never route through ASY).

* AS policy also determines whether to advertise path to other other
neighboring ASes

Network Layer: 5-67

BGP path advertisement

= AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

= based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all
AS2 routers

= based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to
AS1 router 1c

Network Layer: 5-68

BGP path advertisement: multiple paths

> %

gateway router may learn about multiple paths to destination:

= AS1 gateway router 1c learns path AS2,AS3,X from 2a

= AS1 gateway router 1c learns path AS3,X from 3a

= based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path
within AS1 via iBGP

Network Layer: 5-69

BGP: populating forwarding tables

AS 3
AS 1 | T

local link
interfaces
at 1a, 1d
><
dest | interface | = recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”
1|1 = at 1d: OSPF intra-domain routing: to get to 1c, use interface 1
X | 1 = at 1d: to get to X, use interface 1

BGP: populating forwarding tables

> ®\«@

dest | interface

1

= recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c

= at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

. = at 1d: to get to X, use interface 1
e = at 1a: OSPF intra-domain routing: to get to 1c, use interface 2
= at 1a: to get to X, use interface 2

Hot potato routing

= 2d learns (via iBGP) it can route to X via 2a or 2c

= hot potato routing: choose local gateway that has least intra-domain
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry
about inter-domain cost!

Network Layer: 5-72

BGP: achieving policy via advertisements

Aw W

/ ~_ provider
I network

N / legend:
Aw W customer
’ network:

ISP only wants to route traffic to/from its customer networks (does not want
to carry transit traffic between other ISPs — a typical “real world” policy)

= A advertises path AwtoBandtoC

= B chooses not to advertise BAw to C!
= B gets no “revenue” for routing CBAw, since none of C, A, w are B’s customers
= Cdoes not learn about CBAw path

= Cwill route CAw (not using B) to get tow

Network Layer: 5-73

BGP: achieving policy via advertisements (more)

provider
/ I network
N legend:

customer
network:

ISP only wants to route traffic to/from its customer networks (does not want
to carry transit traffic between other ISPs — a typical “real world” policy)

= A,B,C are provider networks

= x,w,y are customer (of provider networks)

" X is dual-homed: attached to two networks

= policy to enforce: x does not want to route from B to C via x
= .. so x will not advertise to B a route to C

Network Layer: 5-74

BGP route selection

" router may learn about more than one route to destination

AS, selects route based on:
1. local preference value attribute: policy decision

2. shortest AS-PATH
3. closest NEXT-HOP router: hot potato routing
|

. additional criteria

Network Layer: 5-75

Why different Intra-, Inter-AS routing ?

policy:
= inter-AS: admin wants control over how its traffic routed, who
routes through its network

" intra-AS: single admin, so policy less of an issue
scale:

" hierarchical routing saves table size, reduced update traffic
performance:

" intra-AS: can focus on performance

" inter-AS: policy dominates over performance

Network Layer: 5-76

Network layer: “control plane” roadmap

=" SDN control plane

Network Layer: 5-77

Software defined networking (SDN)

" Internet network layer: historically implemented via
distributed, per-router control approach:

* monolithic router contains switching hardware, runs proprietary
implementation of Internet standard protocols (IP, RIP, IS-IS, OSPF,
BGP) in proprietary router OS (e.g., Cisco 10S)

e different “middleboxes” for different network layer functions:
firewalls, load balancers, NAT boxes, ..

= ~2005: renewed interest in rethinking network control plane

Network Layer: 5-78

Per-router control plane

Individual routing algorithm components in each and every router
interact in the control plane to computer forwarding tables

3 F{()ljtir]gl "-‘"-——-—-——-"__-_-__i’ >
Algorithm :w\ control
L \ p * plane
Local forwarding data
plane

header output
0100 3
0110 2
0111 2
1

1001

values in arriving

packet heade;

Network Layer: 4-79

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

plane

values in arriving
packet header

Network Layer: 4-80

Software defined networking (SDN)

Why a logically centralized control plane?

" easier network management: avoid router misconfigurations,
greater flexibility of traffic flows

= table-based forwarding (recall OpenFlow API) allows
“programming” routers

* centralized “programming” easier: compute tables centrally and distribute

e distributed “programming” more difficult: compute tables as result of
distributed algorithm (protocol) implemented in each-and-every router

" open (nhon-proprietary) implementation of control plane
e foster innovation: let 1000 flowers bloom

Network Layer: 5-81

SDN analogy: mainframe to PC revolution

Specialized i J .
Applications —— Open Interface
vl [) L] |
Specialized ” | E]E] o0 ’
Operating ’ or& or O
System

I Windows Linux MAC OS

Specialized | — Open Interface —

Hardware

Microprocessor

Vertically integrated } Horizontal

Closed, proprietary Open interfaces
Slow innovation Rapid innovation
Small industry Huge industry

* Slide courtesy: N. McKeown Network Layer: 5-82

Traffic engineering: difficult with traditional routing

Q: what if network operator wants u-to-z traffic to flow along
uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!

Network Layer: 5-83

Traffic engineering: difficult with traditional routing

Q: what if network operator wants to split u-to-z
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Network Layer: 5-84

Traffic engineering: difficult with traditional routing

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination-based forwarding, and LS, DV routing)

We learned in Chapter 4 that generalized forwarding and SDN can
be used to achieve any routing desired

Network Layer: 5-85

Software defined networking (SDN)
access load 3. t l / f t
7 external to data-plane

switches

4. programmable
control

app lications — Remote Controller <

control
plane

2. control, data
plane separation

1: generalized “flow-based” .
forwarding (e.qg., OpenFlow)

Network Layer: 5-86

Software defined networking (SDN)

Data-plane switches:

= fast, simple, commodity switches
implementing generalized data-plane
forwarding (Section 4.4) in hardware

= flow (forwarding) table computed,
installed under controller supervision

= API| for table-based switch control
(e.g., OpenFlow)
e defines what is controllable, what is not

= protocol for communicating with
controller (e.g., OpenFlow)

=
E ="

SDN-controlled switches

data
plane

Network Layer: 5-87

Software defined networking (SDN)

SDN controller (network OS):

" maintain network state
information

= interacts with network control
applications “above” via
northbound API

= interacts with network switches
“below” via southbound API

" implemented as distributed system
for performance, scalability, fault-
tolerance, robustness

northbound API

SDN Controller
H (network operating system)

southbound API

control

plane

Network Layer: 5-88

Software defined networking (SDN)

network-control applications
network-control apps: ,
= “brains” of control:
, . access
implement control functions control) \balance

USing lower-level services, APl . control
. northbound AP Plane
provided by SDN controller

= ynbundled: can be provided by
3" party: distinct from routing

vendor, or SDN controller southbound API |

Network Layer: 5-89

Components of SDN controller

interface layer to network
control apps: abstractions API

network-wide state
management : state of
networks links, switches,

services: a distributed database

communication: communicate e

between SDN controller and
controlled switches

controller

Network Layer: 5-90

OpenFlow protocol

= operates between controller, switch OpenFlow Controller

e OpenFlow

= TCP used to exchange messages
e optional encryption

= three classes of OpenFlow messages:
e controller-to-switch
e asynchronous (switch to controller)
e symmetric (misc.)

= distinct from OpenFlow API

e APl used to specify generalized
forwarding actions

Network Layer: 5-91

OpenFlow: controller-to-switch messages

Key controller-to-switch messages OpenFlow Controller

= features: controller queries switch
features, switch replies

= configure: controller queries/sets
switch configuration parameters

" modify-state: add, delete, modify flow
entries in the OpenFlow tables

= packet-out: controller can send this
packet out of specific switch port

Network Layer: 5-92

OpenFlow: switch-to-controller messages

Key switch-to-controller messages OpenFlow Controller

" packet-in: transfer packet (and its
control) to controller. See packet-out
message from controller

" flow-removed: flow table entry deleted
at switch

" port status: inform controller of a

change on a port.

Fortunately, network operators don’t “program” switches by creating/sending
OpenFlow messages directly. Instead use higher-level abstraction at controller

Network Layer: 5-93

SDN: control/data plane interaction example

Dijkstra’s link-state

routing (D s1, experiencing link failure uses
"""" 7 OpenFlow port status message to
network RESTful : i
o -1 J intent J notify controller
» (2) SDN controller receives OpenFlow
statistics flow tablesJ . .
message, updates link status info

Link-state finfo host info J switch infoJ

(® Dijkstra’s routing algorithm

J application has previously registered
to be called when ever link status

changes. It is called.

OpenFlow | | SNMP

(@ Dijkstra’s routing algorithm
access network graph info, link
state info in controller, computes
new routes

Network Layer: 5-94

SDN: control/data plane interaction example

Dijkstra’s link-state
routing

network 9 RESTful ¢ | intent . . .
- AP inten (® link state routing app interacts
(3) — with flow-table-computation
=

component in SDN controller,

. . which computes new flow tables
@7

needed

/™

® controller uses OpenFlow to
install new tables in switches
that need updating

Network Layer: 5-95

Google ORION SDN control plane

ORION: Google’s SDN control plane (vsor21): control plane for
Google’s datacenter (Jupiter) and wide area (B4) networks

- routing (intradomain, iBG P), traffic Orion SDN architecture and core apps

engineering: implemented in applications | [LorionApp | - [orion App ([Routing Engin 4
Narthboun:d Interfa ontracts
on top of ORION core o| [Orion Core
» edge-edge flow-based controls (e.g., : L . e
CoFlow scheduling) to meet contract SLAs Marager) / Marager J L Manager J 1 ovtawe
. . Openflow Front End (OFE) | Policy
" management: pub-sub distributed - e T S Monttr

microservices in Orion core, OpenFlow for
switch signaling/monitoring

SDN Switch ¢ SDN Switch
OpenFlow Agent (OFA OpenFlow Agent (OFA) |[Iryses
Data Plane Data Plane Configure

Monitor

‘ Data Plane | |

Note: ORION provides intradomain services within Google’s network

Management Plane

OpenDaylight (ODL) controller

Traffic i ll Load Balanci . L
Engineering ittt oad balancing) eee Network Orchestrations and Applications

Northbound API

Topology = Switch Stats
processing mgr. mgr.
Forwarding Host
rules mgr. Tracker
opg‘r’a'l‘;f,;:'"gata Service Abstraction
store Layer (SAL)

——————————————————————————————————— Southbound API
OpenFlow NETCONF SNMP OVSDB cee

Service Abstraction Layer:

= interconnects internal,
external applications

and services

Network Layer: 5-97

ONOS controller

Traffic i ll lanci
Engineering esalieyy Colliels Network Applications

Northbound API = control apps separate
REST API Intent from controller
|

intent framework: high-
level specification of
- PoIoSY service: what rather

= considerable emphasis

e on distributed core:
device | link | host | flow | packet | service reIiabiIity,

OpenFlow I Netconf [OVSDB| replication performance

___________________________________ Southbound AP! scaling

Network Layer: 5-98

SDN: selected challenges

" hardening the control plane: dependable, reliable, performance-
scalable, secure distributed system

* robustness to failures: leverage strong theory of reliable distributed
system for control plane

* dependability, security: “baked in” from day one?

= networks, protocols meeting mission-specific requirements
e e.g., real-time, ultra-reliable, ultra-secure

" |nternet-scaling: beyond a single AS
= SDN critical in 5G cellular networks

Network Layer: 5-99

SDN and the future of traditional network protocols

= SDN-computed versus router-computer forwarding tables:

* just one example of logically-centralized-computed versus protocol
computed

" one could imagine SDN-computed congestion control:

* controller sets sender rates based on router-reported (to
controller) congestion levels

How will implementation of
network functionality (SDN
versus protocols) evolve?

H P) H

Network Layer: 5-100

Network layer: “control plane” roadmap

" Internet Control Message
Protocol

Network Layer: 5-101

ICMP: internet control message protocol

= used by hosts and routers to
communicate network-level
information

e error reporting: unreachable host,
network, port, protocol

* echo request/reply (used by ping)

=" network-layer “above” IP:

* |CMP messages carried in IP
datagrams

= |CMP message: type, code plus
first 8 bytes of IP datagram causing
error

Type Code description

0
3
3
3
3
3
3
4

8
9
10
11
12

0

ONOOWN-0

O OO0 oo

echo reply (ping)

dest. network unreachable
dest host unreachable
dest protocol unreachable

dest port unreachable

dest network unknown
dest host unknown

source quench (congestion
control - not used)

echo request (ping)

route advertisement

router discovery

TTL expired

bad IP header

Network Layer: 4-102

Traceroute and ICMP

./ \
3 probes s 3 probes
TR S %
3 probe

" source sends sets of UDP segments to stopping criteria:

destination UDP i tuall
u segment eventua
* 1 set has TTL =1, 2" set has TTL=2, etc. arrives gt destination hgst
= datagram in nth set arrives to nth router: = destination returns ICMP

“port unreachable”
message (type 3, code 3)

" source stops

* router discards datagram and sends source
ICMP message (type 11, code 0)

* ICMP message possibly includes name of
router & IP address

= when ICMP message arrives at source: record RTTs

Network Layer: 4-103

Network layer: “control plane” roadmap

" network management,
configuration

* SNMP
* NETCONF/YANG

Network Layer: 5-104

What is network management?

" gutonomous systems (aka “network”): 1000s of interacting
hardware/software components

" other complex systems requiring monitoring, configuration,
control:

* jet airplane, nuclear power plant, others?

"Network management includes the deployment, integration
and coordination of the hardware, software, and human

! elements to monitor, test, poll, configure, analyze, evaluate,
and control the network and element resources to meet the
real-time, operational performance, and Quality of Service
requirements at a reasonable cost."

Network Layer: 5-105

Components of hetwork management

Managed device:

equipment with manageable,

configurable hardware,
(‘{ 4 devi software components
manage evice
gy

Managing server:

with network server/controller
managers (humans) in | g4a =

the loop Data: device “state”

~ configuration data,
Network ot [. > = ope-ratlona-l d.ata,
management - managed device device statistics
protocol: used by N, e

managing server to query,

. . v agent data

configure, manage device; \
. . R

used by devices to inform agent G

managing server of data,

events. managed device \

< N

managed device

Network Layer: 5-106

Network operator approaches to management

CLI (Command Line Interface)
* operator issues (types, scripts) direct to
individual devices (e.g., vis ssh) :

&

server/controller

SNMP/MIB data
==

* operator queries/sets devices data
S managed device

(MIB) using Simple Network

Management Protocol (SNMP)
agent data

NETCONF/YANG

more abstract, network-wide, holistic

* emphasis on multi-device configuration v
management. :
> < o

< N

* YANG: data modeling language B ced device
* NETCONF: communicate YANG-compatible managed deVICEING

actions/data to/from/among remote devices

managed deyice

Network Layer: 5-107

SNMP protocol

Two ways to convey MIB info, commands:

managing data
server/controller i ‘{
A

request

v

response

agent data

managed device \

request/response mode

managing data
server/controller

A

trap message

agent data

managed device

trap mode

Network Layer: 5-108

SNMP protocol: message types

GetBulkRequest

Message type Function
GetRequest manager-to-agent: “get me data”
GetNextRequest (data instance, next data in list,

block of data).

SetRequest manager-to-agent: set MIB value
Response Agent-to-manager: value, response
to Request
Trap Agent-to-manager: inform manager

of exceptional event

Network Layer: 5-109

SNMP protocol: message formats

<+—— Get/set header > Variables to get/set ——

PDU Request crr Error
message types 0-3 type g Status Name | Value | Name | Value
(0-3) ID (0-5) Index

< Trap header »<— Trap info —>

.| Agent Specific
message type 4 Enterprise Name | Value

< SNMP PDU >

Network Layer: 5-110

SNMP: Management Information Base (MIB)

" managed device’s operational (and some configuration) data

= gathered into device MIB module

e 400 MIB modules defined in RFC’s; many more vendor-specific MIBs

= Structure of Management Information (SMI): data definition language

= example MIB variables for UDP protocol:

Object ID

1.3.6.1.2.1.7.1
1.3.6.1.2.1.7.2
1.3.6.1.2.1.7.3
1.3.6.1.2.1.7.4
1.3.6.1.2.1.7.5

Name Type
UDPInDatagrams 32-bit counter

UDPNoPorts 32-bit counter
UDInErrors 32-bit counter
UDPOutDatagrams 32-bit counter
udpTable SEQUENCE

Comments

total # datagrams delivered

undeliverable datagrams (no application at port)

undeliverable datagrams (all other reasons)

total # datagrams sent

one entry for each port currently in use

Network Layer: 5-111

NETCONF overview

" goal: actively manage/configure devices network-wide

" operates between managing server and managed network devices
* actions: retrieve, set, modify, activate configurations
e atomic-commit actions over multiple devices
e query operational data and statistics
* subscribe to notifications from devices

" remote procedure call (RPC) paradigm
* NETCONF protocol messages encoded in XML
e exchanged over secure, reliable transport (e.g., TLS) protocol

Network Layer: 5-112

NETCONF initialization, exchange, close

managing T agent data
server/controller Session initiation,

o capabilities exchange: <hello>
ata

[
L
<rpc>
(_,I rpc -
- —<rpc-reply>
<rpc>
rpc -
- —<rpc-reply>
«— —<notification>="
<rpc>
rpc -
S —<rpc-reply>
Session close: <close-session>
< >

Network Layer: 5-113

Selected NETCONF Operations

NETCONF Operation Description

<get-config> Retrieve all or part of a given configuration. A device may have multiple
configurations.

<get> Retrieve all or part of both configuration state and operational state data.

<edit-config> Change specified (possibly running) configuration at managed device.

Managed device <rpc-reply> contains <ok> or <rpcerror> with rollback.

<lock>, <unlock> Lock (unlock) configuration datastore at managed device (to lock out
NETCONF, SNMP, or CLIs commands from other sources).

<create-subscription>, Enable event notification subscription from managed device
<notification>

Network Layer: 5-114

Sample NETCONF RPC message

01 <?xml version="1.0" encoding="UTF-8"7?>
02 <rpc message-id=”101” note message id

03 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
04 <edit-config> change a configuration
05 <target>
06 <running/> change the running configuration
07 </target>
08 <config>
09 <top xmlns="http://example.com/schema/
1.2 /config”>
10 <interface>
11 <name>Ethernet0/0</name> change MTU of Ethernet 0/0 interface to 1500
12 <mtu>1500</mtu>
13 </interface>
14 </top>
L5 </config>

16 </edit-config>
19 <lrpe>

Network Layer: 5-115

YANG

= data modeling language used to specify
structure, syntax, semantics of
NETCONF network management data

* built-in data types, like SMI

data

managing
server/controller

NETCONF RPC message

<edit-config>

= XML document describing device, YANG-generated XML

capabilities can be generated from </edit-config>
YANG description

" can express constraints among data that
must be satisfied by a valid NETCONF
configuration

e ensure NETCONF configurations satisfy
correctness, consistency constraints

YANG
generated

agent data

Network Layer: 5-116

Network layer: Summary

we’ve learned a lot!

= approaches to network control plane
e per-router control (traditional)
* logically centralized control (software defined networking)

= traditional routing algorithms
* implementation in Internet: OSPF , BGP

= SDN controllers
* implementation in practice: ODL, ONOS

" Internet Control Message Protocol
" network management

next stop: link layer!

Network Layer: 5-117

Network layer, control plane: Done!

" introduction

" routing protocols
= |ink state
= distance vector

" intra-ISP routing: OSPF
" routing among ISPs: BGP " network management,
= SDN control plane configuration

" Internet Control Message e SNMP
Protocol - NETCONF/YANG

Network Layer: 5-118

Additional Chapter 5 slides

Distance vector: another example

tt cost to
D,() xy z Xy z
X 0/2 x |0
g S
SY|wew o gy|2 O\ 1 Dy(z) = min{cy,* Dy(z), ¢, ,+ D,(2)}
Z | w0 oo |7 1\0 = min{2+1 , 7+0} = 3
D,() | 2 1
Dy(y) = mln{Cx,y + Dy(y), Cxz+ D(y)}
X =min{2+0, 7+1} =2 7
=
<
Z
D,()
X
Sy
Z

Network Layer: 5-120

Distance vector: another example

cost to
Xy z

02 7

cost to

N < X

cost to
Xy z

N < X

N < X

02 3
2 01
310

cost to

N < X

N < X

y
2
0
1

W N O|X
O -~ W|N

cost to

N < X

w N O | X
- O N |«
O -~ W | N

Network Layer: 5-121

