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Network layer control plane: our goals

§understand principles 
behind network control 
plane:
• traditional routing algorithms
• SDN controllers
• network management, 

configuration

§ instantiation, implementation 
in the Internet:
• OSPF, BGP
• OpenFlow, ODL and ONOS 

controllers
• Internet Control Message 

Protocol: ICMP
• SNMP, YANG/NETCONF
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Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols

§ link state
§ distance vector

§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 
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Two approaches to structuring network control plane:
§ per-router control (traditional)
§ logically centralized control (software defined networking)

Network-layer functions
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§ forwarding: move packets from router’s 
input to appropriate router output data plane

control plane§ routing: determine route taken by 
packets from source to destination



Per-router control plane
Individual routing algorithm components in each and every 
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!
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Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 
packet header
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Per-router 
control plane

SDN control 
plane



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols

§ link state
§ distance vector

§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 
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Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers
§ path: sequence of routers packets 

traverse from given initial source host 
to final destination host

§ “good”: least “cost”, “fastest”, “least 
congested”

§ routing: a “top-10” networking 
challenge!

Routing protocols
mobile network

enterprise
network

national or global ISP

datacenter 
network

application
transport
network
link

physical

application
transport
network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical
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Graph abstraction: link costs
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely related 
to bandwidth, or inversely related to 
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification
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global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols

§ link state
§ distance vector

§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 
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Dijkstra’s link-state routing algorithm
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§ centralized: network topology, link 
costs known to all nodes
• accomplished via “link state 

broadcast” 
• all nodes have same info

§ computes least cost paths from one 
node (“source”) to all other nodes
• gives forwarding table for that node

§ iterative: after k iterations, know 
least cost path to k destinations

§ cx,y: direct link cost from 
node x to y;  = ∞ if not direct 
neighbors

§ D(v): current estimate of cost 
of least-cost-path from source 
to destination v

§ p(v): predecessor node along 
path from source to v

§ N': set of nodes whose least-
cost-path definitively known

notation



Dijkstra’s link-state routing algorithm
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1  Initialization:
2   N' = {u}                               /* compute least cost path from u to all other nodes */
3    for all nodes v
4      if v adjacent to u /* u initially knows direct-path-cost only to  direct neighbors    */
5          then D(v) = cu,v      /* but may not be minimum cost!                                                    */
6      else D(v) = ∞
7 
8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N'

find w not in N' such that D(w) is a minimum 
add w to N'
update D(v) for all v adjacent to w and not in N' : 

D(v) = min ( D(v),  D(w) + cw,v  )
/* new least-path-cost to v is either old least-cost-path to v or known 
least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z
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5
3

5

D(w),p(w)
5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0): 
For all a: if a adjacent to u then D(a) = cu,a 



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10    

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11    

find a not in N' such that D(a) is a minimum 
add a to N'
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v w x y z

u
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wv

z
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5

update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

∞2,x4,x2,u

D(v) = min ( D(v), D(x) + cx,v ) = min(2, 1+2) = 2 
D(w) = min ( D(w), D(x) + cx,w ) = min (5, 1+3) = 4 
D(y) = min ( D(y), D(x) + cx,y ) = min(inf,1+1) = 2  



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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v w x y z
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z
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∞2,x4,x2,u
uxy



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

4,y3,y2,u

D(w) = min ( D(w), D(y) + cy,w ) = min (4, 2+1) = 3 
D(z) = min ( D(z), D(y) + cy,z ) = min(inf,2+2) = 4  



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

D(w) = min ( D(w), D(v) + cv,w ) = min (3, 2+3) = 3 

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

D(z) = min ( D(z), D(w) + cw,z ) = min (4, 3+5) = 4 

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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uxyvw 4,y



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 



Dijkstra’s algorithm: an example
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wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 
other destinations 
via x



Dijkstra’s algorithm: another example
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w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2
3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
§ construct least-cost-path tree by tracing predecessor nodes
§ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z



Dijkstra’s algorithm: discussion
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algorithm complexity: n nodes
§ each of n iteration: need to check all nodes, w, not in N
§ n(n+1)/2 comparisons: O(n2) complexity
§ more efficient implementations possible: O(nlogn)

message complexity:
§ each router must broadcast its link state information to other n routers 
§ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a 

broadcast message from one source
§ each router’s message crosses O(n) links: overall message complexity: O(n2)



Dijkstra’s algorithm: oscillations possible

Network Layer: 5-30

§ when  link costs depend on traffic volume, route oscillations possible

a

d

c

b
1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1
0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

§ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols

§ link state
§ distance vector

§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 
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Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Network Layer: 5-32

Let Dx(y): cost of least-cost path from x to y.
Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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u

y
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),
cu,x + Dx(z),
cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

1 + 3,
5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)



Distance vector algorithm 
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key idea: 
§ from time-to-time, each node sends its own distance vector estimate 

to neighbors

§ under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

§ when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  

Network Layer: 5-35

iterative, asynchronous: each local 
iteration caused by: 
§ local link cost change 
§ DV update message from neighbor

wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes
§ neighbors then notify their 

neighbors – only if necessary
§ no notification received, no 

actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=0
§ All nodes have 

distance estimates 
to nearest 
neighbors (only)

A few asymmetries:
§ missing link
§ larger cost

d e f

a b c

§ All nodes send 
their local 
distance vector to 
their neighbors



Distance vector example: iteration
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All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their new 
local  distance 
vector

§ send their new 
local distance 
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their new 
local  distance 
vector

§ send their new 
local distance 
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their new 
local  distance 
vector

§ send their new 
local distance 
vector to neighbors

t=1



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their new 
local  distance 
vector

§ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their new 
local  distance 
vector

§ send their new 
local distance 
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

Network Layer: 5-42

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their new 
local  distance 
vector

§ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration
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…. and so on

Let’s next take a look at the iterative computations at nodes



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
§ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:
Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 
Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
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g h i

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 
Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 
Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive 
exercises for more examples: 
http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation
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1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at 
t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c
c’s state at t=0 has propagated to b, and 
may influence distance vector computations 
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance 
vector computations up to 2 hops away, i.e., 
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector 
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector 
computations up to 4 hops away, i.e., at g, it=4

Iterative communication, computation steps diffuses information through network: 

t=1 
t=2 

t=3 

t=4 



Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost 
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV.  y’s least costs do not
change, so y does not send a message to z. 

link cost changes:
§ node detects local link cost change 
§ updates routing info, recalculates local DV
§ if DV changes, notify neighbors

x z
14

50

y
1



Distance vector: link cost changes
link cost changes:
§ node detects local link cost change 
§ “bad news travels slow” – count-to-infinity problem:

x z
14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So 
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost to 
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost to 
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost to 
x will be 9 via y), notifies y of new cost of 9 to x.
…

§ see text for solutions.  Distributed algorithms are tricky!



Comparison of LS and DV algorithms
message complexity

LS: n routers, O(n2) messages sent  
DV: exchange between neighbors; 

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router 
malfunctions, or is compromised?

LS: 
• router can advertise incorrect link cost
• each router computes only its own

table
DV:
• DV router can advertise incorrect path

cost (“I have a really low-cost path to 
everywhere”): black-holing

• each router’s DV is used by others: 
error propagate thru network



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols
§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 

Network Layer: 5-53



our routing study thus far - idealized 
§ all routers identical
§ network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-54

scale: billions of destinations:
§ can’t store all destinations in 

routing tables!
§ routing table exchange would 

swamp links!

administrative autonomy:
§ Internet: a network of networks
§ each network admin may want to 

control routing in its own network



aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-55

intra-AS (aka “intra-domain”): 
routing among routers within same 
AS (“network”)
§ all routers in AS must run same intra-

domain protocol
§ routers in different AS can run different 

intra-domain routing protocols
§ gateway router: at “edge” of its own AS, 

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”): 
routing among AS’es

§ gateways perform inter-domain 
routing (as well as intra-domain 
routing)



Interconnected ASes

Network Layer: 5-56

3b

1d

3a

1c
2a

AS3

AS1
AS21a

2c
2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table  configured by intra-
and inter-AS routing algorithms

Intra-AS
Routing 

Inter-AS
Routing § intra-AS routing determine entries for 

destinations within AS
§ inter-AS & intra-AS determine entries 

for external destinations



Inter-AS routing:  a role in intradomain forwarding

Network Layer: 5-57

3b

1d

3a

1c
2a

AS3

AS1
AS21a

2c
2b

1b

3c

other
networks

other
networks

§ suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3
2. propagate this reachability info to all 

routers in AS1

• router should forward packet to 
gateway router in AS1, but which 
one?



Intra-AS routing:  routing within an AS

Network Layer: 5-58

most common intra-AS routing protocols:
§ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs
• no longer widely used

§ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based
• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

§ OSPF: Open Shortest Path First  [RFC 2328]

• link-state routing
• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF



OSPF (Open Shortest Path First) routing

Network Layer: 5-59

§ “open”: publicly available
§ classic link-state 

• each router floods OSPF link-state advertisements (directly over IP 
rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay
• each router has full topology, uses Dijkstra’s algorithm to compute 

forwarding table
§ security: all OSPF messages authenticated (to prevent malicious 

intrusion) 



Hierarchical OSPF

Network Layer: 5-60

§ two-level hierarchy: local area, backbone.
• link-state advertisements flooded only in area, or backbone
• each node has detailed area topology; only knows direction to reach 

other destinations

area border routers: 
“summarize” distances  to 
destinations in own area, 
advertise in backbone

area 1
area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF limited 
to backbone

boundary router: 
connects to other ASes

local routers: 
• flood LS in area only
• compute routing within 

area
• forward packets to outside 

via area border router



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols
§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 

Network Layer: 5-61



Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1
AS21a

2c
2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

intra-AS (aka “intra-domain”): routing among routers within same 
AS (“network”)

inter-AS (aka “inter-domain”): routing among AS’es

Network Layer Control Plane: 5-62



§ BGP (Border Gateway Protocol): the de facto inter-domain routing 
protocol

• “glue that holds the Internet together”

§ allows subnet to advertise its existence, and the destinations it can 
reach, to rest of Internet: “I am here, here is who I can reach, and how”

§ BGP provides each AS a means to:
• obtain destination network reachability info from neighboring ASes 

(eBGP)
• determine routes to other networks based on reachability information 

and policy
• propagate reachability information to all AS-internal routers (iBGP)
• advertise (to neighboring networks) destination reachability info

Internet inter-AS routing: BGP

Network Layer Control Plane: 5-63



eBGP, iBGP connections

Network Layer: 5-64

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols



BGP basics

Network Layer: 5-65

§ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

§ BGP session: two BGP routers (“peers”) exchange BGP messages over 
semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP  is a “path 
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

XBGP advertisement:
AS3, X



BGP protocol messages
§ BGP messages exchanged between peers over TCP connection
§ BGP messages [RFC 4371]:

• OPEN: opens TCP connection to remote BGP peer and authenticates 
sending BGP peer

• UPDATE: advertises new path (or withdraws old)
• KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs 

OPEN request
• NOTIFICATION: reports errors in previous msg; also used to close 

connection



Path attributes and BGP routes

Network Layer: 5-67

§ BGP advertised route:  prefix + attributes 
• prefix: destination being advertised
• two important attributes:

• AS-PATH: list of ASes through which prefix advertisement has passed
• NEXT-HOP: indicates specific internal-AS router to next-hop AS

§ policy-based routing:
• gateway receiving route advertisement uses import policy to 

accept/decline path (e.g., never route through AS Y).
• AS policy also determines whether to advertise path to other other 

neighboring ASes



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-68

§ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all 
AS2 routers

AS2,AS3,X 

§ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

§ based on AS2 policy,  AS2 router 2a advertises (via eBGP)  path AS2, AS3, X  to 
AS1 router 1c

AS3, X



Network Layer: 5-69

AS2,AS3,X 

§ AS1 gateway router 1c learns path AS2,AS3,X from 2a
gateway router may learn about multiple paths to destination:

AS3,X

§ AS1 gateway router 1c learns path AS3,X from 3a
§ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path 

within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X

BGP path advertisement: multiple paths



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP: populating forwarding tables 

AS2,AS3,X 

AS3,X

AS3, X

§ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”
§ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

12

1

2

dest interface
…

…

…

…

local link 
interfaces
at 1a, 1d

§ at 1d: to get to X, use  interface 1
1c 1
X 1

AS3,X

AS3,X

AS3,X



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP: populating forwarding tables 

§ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”
§ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

1

2

§ at 1d: to get to X, use  interface 1

dest interface
…

…

…

…

1c 2
X 2

§ at 1a: OSPF intra-domain routing: to get to 1c, use  interface 2
§ at 1a: to get to X, use  interface 2



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-72

§ 2d learns (via iBGP) it can route to X via 2a or 2c
§ hot potato routing: choose local gateway that has least intra-domain

cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry 
about inter-domain cost!

AS3,X AS1,AS3,X 

OSPF link weights

201

112

263



BGP: achieving policy via advertisements

Network Layer: 5-73

B
legend:

customer 
network:

provider
network

§ A advertises path Aw to B and to C
§ B chooses not to advertise BAw to C!  

§ B gets no “revenue” for routing CBAw, since none of  C, A, w are B’s customers
§ C does not learn about CBAw path

§ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not want 
to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

A,w

A,w



BGP: achieving policy via advertisements (more)

Network Layer: 5-74

B

ISP only wants to route traffic to/from its customer networks (does not want 
to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

§ A,B,C are provider networks
§ x,w,y are customer (of provider networks)
§ x is dual-homed: attached to two networks
§ policy to enforce: x does not want to route from B to C via x 

§ .. so x will not advertise to B a route to C

legend:
customer 
network:

provider
network



§ router may learn about more than one route to destination 
AS, selects route based on:

1. local preference value attribute: policy decision
2. shortest AS-PATH 
3. closest NEXT-HOP router: hot potato routing
4. additional criteria 

BGP route selection

Network Layer: 5-75



Why different Intra-, Inter-AS routing ?

Network Layer: 5-76

policy:
§ inter-AS: admin wants control over how its traffic routed, who 

routes through its network 
§ intra-AS: single admin, so policy less of an issue

scale:
§ hierarchical routing saves table size, reduced update traffic

performance: 
§ intra-AS: can focus on performance
§ inter-AS: policy dominates over performance



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols
§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 

Network Layer: 5-77



§ Internet network layer: historically implemented via 
distributed, per-router control approach:
• monolithic router contains switching hardware, runs proprietary 

implementation of Internet standard protocols (IP, RIP, IS-IS, OSPF, 
BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions: 
firewalls, load balancers, NAT boxes, ..

§ ~2005: renewed interest in rethinking network control plane

Software defined networking (SDN)

Network Layer: 5-78



Per-router control plane
Individual routing algorithm components in each and every router 
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables
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0111
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packet header

3
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Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 
packet header

Network Layer: 4-80



Why a logically centralized control plane?
§ easier network management: avoid router misconfigurations, 

greater flexibility of traffic flows
§ table-based forwarding (recall OpenFlow API) allows 

“programming” routers
• centralized “programming” easier: compute tables centrally and distribute
• distributed “programming” more difficult: compute tables as result of 

distributed algorithm (protocol) implemented in each-and-every router 

§ open (non-proprietary) implementation of control plane
• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)

Network Layer: 5-81



SDN analogy: mainframe to PC revolution

Network Layer: 5-82

Vertically integrated
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Slow innovation
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* Slide  courtesy: N. McKeown
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Traffic engineering: difficult with traditional routing

Network Layer: 5-83

Q: what if network operator wants u-to-z traffic to flow along 
uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm 
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!
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Traffic engineering: difficult with traditional routing

Network Layer: 5-84

Q: what if network operator wants to split  u-to-z 
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)



Traffic engineering: difficult with traditional routing

Network Layer: 5-85

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination-based forwarding, and LS, DV routing)

2
2

1
3

1

1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and SDN can 
be used to achieve any routing desired



Software defined networking (SDN)

Network Layer: 5-86

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based” 
forwarding (e.g., OpenFlow)

2. control, data 
plane separation

3. control plane functions 
external to data-plane 
switches

…routing access 
control

load
balance4. programmable 

control 
applications



Software defined networking (SDN)

Network Layer: 5-87

Data-plane switches:
§ fast, simple, commodity switches 

implementing generalized data-plane 
forwarding (Section 4.4) in hardware

§ flow (forwarding) table computed, 
installed under controller supervision

§ API for table-based switch control 
(e.g., OpenFlow)
• defines what is controllable, what is not

§ protocol for communicating with 
controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)
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Software defined networking (SDN)
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SDN controller (network OS): 
§ maintain network state 

information
§ interacts with network control 

applications “above” via 
northbound API

§ interacts with network switches 
“below” via southbound API

§ implemented as distributed system 
for performance, scalability, fault-
tolerance, robustness
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Software defined networking (SDN)
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network-control apps:
§ “brains” of control:  

implement control functions 
using lower-level services, API 
provided by SDN controller

§ unbundled: can be provided by 
3rd party: distinct from routing 
vendor, or SDN controller
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Components of SDN controller
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Network-wide distributed, robust  state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…  

…  
OpenFlow SNMP…  

network 
graph intent

RESTful
API

…  
Interface, abstractions for network control apps

SDN
controller

routing access 
control

load
balance

communication: communicate 
between SDN controller and 
controlled switches

network-wide state 
management : state of 
networks links, switches, 
services: a distributed database

interface layer to network 
control apps: abstractions API



OpenFlow protocol
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§ operates between controller, switch
§ TCP used to exchange messages

• optional encryption

§ three classes of  OpenFlow messages:
• controller-to-switch
• asynchronous (switch to controller)
• symmetric (misc.)

§ distinct from OpenFlow API
• API used to specify  generalized 

forwarding actions

OpenFlow Controller



OpenFlow: controller-to-switch messages
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Key controller-to-switch messages
§ features: controller queries switch 

features, switch replies
§ configure: controller queries/sets 

switch configuration parameters
§ modify-state: add, delete, modify flow 

entries in the OpenFlow tables
§ packet-out: controller can send this 

packet out of specific switch port

OpenFlow Controller



OpenFlow: switch-to-controller messages
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Key switch-to-controller messages
§ packet-in: transfer packet (and its 

control) to controller.  See packet-out 
message from controller

§ flow-removed: flow table entry deleted 
at switch

§ port status: inform controller of a 
change on a port.

Fortunately, network operators don’t “program” switches by creating/sending 
OpenFlow messages directly.  Instead use higher-level abstraction at controller

OpenFlow Controller



SDN: control/data plane interaction example
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Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP…  

network 
graph intentRESTful

API
…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

S1, experiencing link failure uses 
OpenFlow port status message to 
notify controller

1

SDN controller receives OpenFlow 
message, updates link status info

2

Dijkstra’s routing algorithm 
application has previously registered 
to be called when ever link status 
changes.  It is called.

3

Dijkstra’s routing algorithm 
access network graph info, link 
state info in controller,  computes 
new routes

4
1

2

3

4



SDN: control/data plane interaction example
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Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP…  

network 
graph intentRESTful

API
…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

link state routing app interacts 
with flow-table-computation 
component in SDN controller, 
which computes new flow tables 
needed

5

controller uses OpenFlow to 
install new tables in switches 
that need updating

6

5

61
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Google ORION SDN control plane

ORION: Google’s SDN control plane (NSDI’21): control plane for 
Google’s datacenter (Jupiter) and wide area (B4) networks

Orion SDN architecture and core apps§ routing (intradomain, iBGP), traffic 
engineering: implemented in applications
on top of ORION core

§ edge-edge flow-based controls (e.g., 
CoFlow scheduling) to meet contract SLAs

§ management: pub-sub distributed 
microservices in Orion core, OpenFlow for 
switch signaling/monitoring 

Note: ORION provides intradomain services within Google’s network



OpenDaylight (ODL) controller
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Network Orchestrations and Applications

Southbound API

Service Abstraction 
Layer (SAL)

config. and 
operational data 

store

REST/RESTCONF/NETCONF APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic 
Engineering …Firewalling Load Balancing

Basic Network FunctionsEnhanced 
Services

…

… Forwarding 
rules mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topology
processing

Service Abstraction Layer: 
§ interconnects internal, 

external applications 
and services



ONOS controller
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Network Applications

Southbound API

Northbound API

Traffic 
Engineering …Firewalling Load Balancing

southbound 
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound 
abstractions,
protocols

REST    API Intent

ONOS
distributed 
core

statisticsdevices

hosts

links

paths flow rules topology

§ control apps separate 
from controller

§ intent framework: high-
level specification of 
service: what rather 
than how

§ considerable emphasis 
on distributed core: 
service reliability, 
replication performance 
scaling



§ hardening the control plane: dependable, reliable, performance-
scalable, secure distributed system
• robustness to failures: leverage strong theory of reliable distributed 

system for control plane
• dependability, security: “baked in” from day one? 

§ networks, protocols meeting mission-specific requirements
• e.g., real-time, ultra-reliable, ultra-secure

§ Internet-scaling: beyond a single AS
§ SDN critical in 5G cellular networks

SDN:  selected challenges

Network Layer: 5-99



§ SDN-computed versus router-computer forwarding tables:
• just one example of logically-centralized-computed versus protocol 

computed

§ one could imagine SDN-computed congestion control: 
• controller sets sender rates based on router-reported (to 

controller) congestion levels 

SDN and the future of traditional network protocols
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How will implementation of 
network functionality (SDN 
versus protocols) evolve?



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols
§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 

Network Layer: 5-101



ICMP: internet control message protocol
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§ used by hosts and routers to 
communicate network-level 
information
• error reporting: unreachable host, 

network, port, protocol
• echo request/reply (used by ping)

§ network-layer “above” IP:
• ICMP messages carried in IP 

datagrams

§ ICMP message: type, code plus 
first 8 bytes of IP datagram causing 
error

Type Code description
0        0         echo reply (ping)
3        0         dest. network unreachable
3        1         dest host unreachable
3        2         dest protocol unreachable
3        3         dest port unreachable
3        6         dest network unknown
3        7         dest host unknown
4        0         source quench (congestion

control - not used)
8        0         echo request (ping)
9        0         route advertisement
10      0         router discovery
11      0         TTL expired
12      0         bad IP header



Traceroute and ICMP
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§ when ICMP message arrives at source: record RTTs

stopping criteria:
§ UDP segment eventually 

arrives at destination host
§ destination returns ICMP 
“port unreachable”
message (type 3, code 3)

§ source stops

3 probes

3 probes

3 probes

§ source sends sets of UDP segments to 
destination
• 1st set has TTL =1, 2nd set has TTL=2, etc.

§ datagram in nth set arrives to nth router:
• router discards datagram and sends source 

ICMP message (type 11, code 0)
• ICMP message possibly includes name of 

router & IP address



Network layer: “control plane” roadmap

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols
§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 

Network Layer: 5-104



§ autonomous systems (aka “network”): 1000s of interacting 
hardware/software components

§ other complex systems requiring monitoring, configuration, 
control:
• jet airplane, nuclear power plant, others?

What is network management?

Network Layer: 5-105

"Network management includes the deployment, integration 
and coordination of the hardware, software, and human 
elements to monitor, test, poll, configure, analyze, evaluate, 
and control the network and element resources to meet the 
real-time, operational performance, and Quality of Service 
requirements at a reasonable cost."



Components of network management
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managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

Managing server: 
application, typically 
with network
managers (humans) in 
the loop

Managed device: 
equipment with manageable, 
configurable hardware, 
software components

Data: device “state” 
configuration data, 
operational data, 
device statistics

Network 
management 
protocol: used by 
managing server to query, 
configure, manage device; 
used by devices to inform 
managing server of data, 
events.



Network operator approaches to management
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managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

CLI (Command Line Interface) 
• operator issues (types, scripts) direct to 

individual devices (e.g., vis ssh)

SNMP/MIB 
• operator queries/sets devices data 

(MIB) using Simple Network 
Management Protocol (SNMP)

NETCONF/YANG
• more abstract, network-wide, holistic
• emphasis on multi-device configuration 

management. 
• YANG: data modeling language 
• NETCONF: communicate YANG-compatible 

actions/data to/from/among remote devices 



SNMP protocol
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managed device

agent data

managing
server/controller

data

request

response trap message

Two ways to convey MIB info, commands:

request/response mode

managed device

agent data

managing
server/controller

data

trap mode



SNMP protocol: message types
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GetRequest
GetNextRequest
GetBulkRequest

manager-to-agent: “get me data”
(data instance, next data in list, 

block of data). 

Message type Function

SetRequest manager-to-agent: set MIB value

Response Agent-to-manager: value, response 
to Request

Trap Agent-to-manager: inform manager
of exceptional event



SNMP protocol: message formats
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….
PDU
type
(0-3)

Request
ID

Error
Status
(0-5)

Error
Index Name Value Name Value

Get/set header Variables to get/set

SNMP PDU

message types 0-3

….
PDU
type
4

Enterprise Agent
Addr

Trap
Type
(0-7)

Specific
code

Time
stamp Name Value

Trap header Trap info

message type 4



§managed device’s operational (and some configuration) data
§ gathered into device MIB module

• 400 MIB modules defined in RFC’s; many more vendor-specific MIBs

SNMP: Management Information Base (MIB)

Network Layer: 5-111

Object ID           Name                      Type                  Comments
1.3.6.1.2.1.7.1     UDPInDatagrams     32-bit counter     total # datagrams delivered 
1.3.6.1.2.1.7.2    UDPNoPorts              32-bit counter     # undeliverable datagrams (no application at port)
1.3.6.1.2.1.7.3    UDInErrors                 32-bit counter     # undeliverable datagrams (all other reasons)
1.3.6.1.2.1.7.4    UDPOutDatagrams   32-bit counter    total  # datagrams sent
1.3.6.1.2.1.7.5    udpTable SEQUENCE          one entry for each port currently in use

agent data

§ Structure of Management Information (SMI): data definition language
§ example MIB variables for UDP protocol:



§ goal: actively manage/configure devices network-wide
§ operates between managing server and managed network devices

• actions: retrieve, set, modify, activate configurations
• atomic-commit actions over multiple devices
• query operational data and statistics
• subscribe to notifications from devices

§ remote procedure call (RPC) paradigm
• NETCONF protocol messages encoded in XML
• exchanged over secure, reliable transport (e.g., TLS) protocol

NETCONF overview

Network Layer: 5-112



NETCONF initialization, exchange, close
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Session initiation, 
capabilities exchange: <hello>

Session close:  <close-session>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<notification>

…
…

…
…

…

…
…

…
…

managing
server/controller

data

agent data



Selected NETCONF Operations
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NETCONF              Operation Description
<get-config>                Retrieve all or part of a given configuration. A device may have multiple 

configurations. 

<get>                            Retrieve all or part of both configuration state and operational state data.

<edit-config>              Change specified (possibly running) configuration at managed device. 
Managed device <rpc-reply> contains <ok>  or <rpcerror> with rollback.

<lock>, <unlock>        Lock (unlock) configuration datastore at managed device (to lock out 
NETCONF, SNMP, or CLIs commands from other sources).

<create-subscription>,    Enable event notification subscription from managed device
<notification>



Sample NETCONF RPC message
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note message id

change the running configuration 

change MTU of Ethernet 0/0 interface to 1500

change a configuration



§ data modeling language used to specify 
structure, syntax, semantics of 
NETCONF network management data
• built-in data types, like SMI

§ XML document describing device, 
capabilities can be generated from 
YANG description

§ can express constraints among data that 
must be satisfied by a valid NETCONF 
configuration
• ensure NETCONF configurations satisfy 

correctness, consistency constraints

YANG

Network Layer: 5-116

agent data

managing
server/controller

data

NETCONF RPC message
<edit-config>

YANG-generated XML
</edit-config> YANG

generated



Network layer:  Summary
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we’ve learned a lot!
§ approaches to network control plane

• per-router control (traditional)
• logically centralized control (software defined networking)

§ traditional routing algorithms
• implementation in Internet: OSPF , BGP

§ SDN controllers
• implementation in practice: ODL, ONOS

§ Internet Control Message Protocol
§ network management

next stop:  link layer!



Network layer, control plane:  Done!

§ network management, 
configuration 
• SNMP
• NETCONF/YANG

§ introduction
§ routing protocols

§ link state
§ distance vector

§ intra-ISP routing: OSPF
§ routing among ISPs: BGP
§ SDN control plane
§ Internet Control Message 

Protocol 

Network Layer: 5-118



Additional Chapter 5 slides
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Distance vector: another example
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Distance vector: another example
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